論文 セメント系材料のフレッシュ時の粘弾性限界に関する微視的考察

李 柱国^{*1}·谷川恭雄^{*2}·森 博嗣"·黒川善幸**

要旨:本研究では、フレッシュ状態にあるセメント系材料を粒子集合体と仮定し、その粘弾 性状態における変位挙動に関して理論的な検討を行い、粘弾性限界に及ぼす各種要因の影響に ついて考察した。その結果、変形が終息したときの粘弾性限界は、試料の初期状態に依存し、 締固め応力によってほぼ決定されることを明らかにした。

キーワード:セメント系材料, フレッシュ性状, 粘弾性限界, 粒子集合体, せん断実験

1. はじめに

現在、報告されているセメント系材料のフレ ッシュ時の変形挙動に関する研究のほとんど は、その降伏条件および降伏後の流動特性に関 して検討したものである。フレッシュモルタル やフレッシュコンクリートなどのセメント系材 料では、粉粒体の性質として一般的に知られて いる内部摩擦が作用するため、そのレオロジー 性質が垂直応力、骨材粒子間の摩擦などに依存 することが確認されている"。筆者らは、既に、 セメント系材料の応力状態が、せん断応力があ る限界でを超え、その増加に伴って、粘弾性状 態、粘弾塑性状態、破壊状態の順に移行するこ とを明らかにし、Fig.1に示すような力学モデル を提案した2~4)。しかしながら、その流動性状を 定量的に評価し、また作業性を解析的に予測す るためには、応力レベル限界値が不可欠であ り、それに関する情報が望まれている。

線混ぜ直後のセメント系材料は、粒子の間に 水が満たされており、粘着性粒子(セメント粒子) と非粘着性粒子(骨材粒子)からなる粒子集合体と みなすことができる^{3,4}。本研究では、ミクロな粒 子個々の挙動を累積してマクロな粒子集合体の 力学特性を求め、セメント系材料のフレッシュ 時の粘弾性応力限界について考察した。

Fig. 1 Mechanical model of cementitious material in fresh state

2. 粒子集合体の構造と応力状態

2.1 粒子集合体の構造

練混ぜ直後のセメント系材料を、不規則な形 状・寸法をもつ剛体粒子によって構成された粒 子集合体とみなし、各粒子は互いに点で接触し ているものと仮定する。Fig.2に示すように、最 大せん断面(以下、MS-面と略称)に沿って存在す る1個の静止粒子iに注目すると、この粒子は MS-面の上方に存在する隣接粒子と幾つかの接点 を通じて粒子間力を受け、MS-面の下方にある2 接点A、Bによって支持されている。せん断力が 増加して粒子間力fiが大きくなると、Fig.2の紙面 上にのみ粒子が移動すると考えれば、粒子iは点 線の位置から実線の位置に移動する。このと

- *1 名古屋大学大学院 工学研究科建築学専攻 (正会員)
- *2 名古屋大学教授 工学研究科建築学専攻 工博 (正会員)
- *3 名古屋大学助教授 工学研究科建築学専攻 工博 (正会員)
- *4 名古屋大学助手 工学研究科建築学専攻 工修 (正会員)

き、接点Bでの接触は断たれ、接点Aのみで接し て粒子jの表面に沿って動く。ここでは接点A、B をそれぞれ滑動接点、離脱接点と称する。滑動 接点は動態時にみられる接点であって、考察の 便宜上1粒子につき1点と仮定するが、もし2点以 上存在する場合にはそれらの挙動を合成した仮 想の1点滑動接点とする。したがって、滑動接点 数と粒子数は同一となる。

粒子間力fiの方向とMS-面の法線とのなす角を βとし、粒子間力方向角と呼ぶ。粒子が接して滑 動する下方粒子の表面がMS-面に対して上向きに 成す傾斜角を粒子接点角と呼び、θiと記する。θi は粒子ごとに異なるが、それらは粒子集合体の 状態に応じた正規分布を示し、単位面積におけ る各粒子接点角の平均値θmは、単位面積が十分 に大きければ、一定値であると考えられる。滑 動斜面と粒子との摩擦角、すなわち粒子間摩擦 角φiは、粒子の材料や表面状態によって異なる が、それらの平均値φmを一定とする。粘性を持 たない粒子が滑るときの抵抗は、(θi+φi)の傾斜角 をもつ摩擦のない斜面を滑り上がるときの抵抗 に等しいため、角(θi+φi)を滑動接点の滑動抵抗角 と呼ぶこととする。

骨材粒子は、式(1)に示すCoulombの固体摩擦法 則のみを満たせば滑るが、セメント粒子には、 摩擦抵抗だけではなく、粒子表面の電荷特性^{5~}" に起因する粒子間の相互作用によって、粘性抵 抗も同時に作用すると考えられる。

 $\theta_i + \varphi_i \leq \beta_i$

(1)

2.2 粘弾性状態に関する微視的考察

外力を受ける前の初期状態では、試料中の粒子は自重および繰返しの締固め応力に対抗できる位置に移動・配向し、ついにこの締固め応力 によってそれ以上の粒子移動・配向が生じない 安定な粒子配列を形成する。

粒子集合体が外力を受けると、外力に対抗す るため、その中に移動粒子群が生じ、集合体に マクロなひずみが現れる。移動粒子群にある程 度以上の変位が生じると、初期状態の粒子配列 が壊されて、外力に対抗できる新たな粒子配列

Fig. 2 Contact point and contact slant of particle

が再形成される。応力が増え続ければ、粒子配 列が変化していき、粒子集合体の内部摩擦角が 一定である場合には、全粒子の平均粒子接点角 が大きくなる。

粘弾性限界 な以下の外力を加えると、粒子集合体中の一部の粒子は隣接粒子の表面を滑動し始める。これらの粒子を滑動粒子と呼ぶことにする。除荷時に、残留ひずみが生じない条件を満たすためには、滑動粒子の移動範囲は、除荷時に元の位置に戻れる位置までに限られる。したがって、微視的観点から定義すると、粘弾性状態とは、粒子集合体がせん断力を受けた場合、構成粒子の一部が隣接粒子の表面上を滑っても、粒子の相互配列に変化が生じない状態のことである。このため、粘弾性限界は初期の粒子配列に支配され、初期状態を形成する繰返し締固め応力によって決定されることになる。

3. 粘弾性限界値に関する理論的考察

粒子集合体中の粒子に作用する応力は、3次元 空間で互いに直交する有効主応力の、のおよび の。に分けられる。3つの有効主応力は一般には等 しくないが、ここでは、の>の2=の3の2次元応力-ひずみ状態として考える。このとき、粒子集合 体中の最大せん断応力面(MS-面)に作用する垂直 応力すなわち平均主応力をのm、せん断応力をτと 記し、MS-面上の単位面積あたりの粒子総数をN 個とする。MS-面状上に存在する1個の粒子に注 目すると、その滑動接点には、のm、てによって、

Fig. 3 Interparticle force at contact point

その左側および上方からの粒子間力fmi, fsiがFig.3 に示すように発生し、その合力はfiとなる。N個 の粒子のfmi, fsiをFig.4のようにベクトルとして順 次加え合わせた合力は、単位面積の大きさが十 分大きければ、それぞれMS-面上のomおよびrと 大きさ、方向ともに一致するはずである。

 f_{ni} , f_{si} の合力ベクトルをNで割って得られた平 均粒子間力をそれぞれ f_{n} , f_{s} とすれば、 f_{n} , f_{s} はそ れぞれ σ_{m} , τ と方向が同じで、大きさは式(2)に示 すように σ_{m} /N, τ /Nに等しい。したがって、N個 の粒子のFig. 3に示す角 δ_{i} (f_{ni} が滑り斜面の法線と なす角)、 α_{i} (f_{si} が滑り斜面となす角)の平均値 δ_{m} , α_{m} は、それぞれこれらの粒子の平均粒子接点角 θ_{m} に等しい。

$$f_{n} = \frac{1}{N} \sum_{i=1}^{N} \{f_{ni} \cos(\hat{f}_{ni} \sigma_{m})\} = \sigma_{m}/N ,$$

$$f_{s} = \frac{1}{N} \sum_{i=1}^{N} \{f_{si} \cos(\hat{f}_{si} \tau)\} = \tau/N ,$$

$$\delta_{m} = \frac{1}{N} \sum_{i=1}^{N} \delta_{i} = \theta_{m} , \quad \alpha_{m} = \frac{1}{N} \sum_{i=1}^{N} \alpha_{i} = \theta_{m}$$
(2)

ここに、 $(\hat{f}_{ni} \sigma_m)$: f_{ni} とMS-面の法線方向となす

角、 $(\hat{f}_{si} \tau)$: f_{si} とMS-面の方向となす角

Fig. 3に示す静止している粒子iが受けている外 カの、滑り斜面(接点Aの接平面)方向における釣 合い条件から、式(3)が得られる。

 $f_{si} \cos \alpha_i = (f_{ni} \cos \delta_i + f_{si} \sin \alpha_i) \tan \varphi_i + f_{ni} \sin \delta_i$

(3)

MS-面上のいずれの粒子も式(3)に示すような力 学的な釣合い状態にあるため、N個の粒子の力学 的な釣合い式を累加すると、式(4)が得られる。

Fig. 4 Vector cumulating of interparticle force of N particles

$$\sum_{i=1}^{N} f_{si} \cos \alpha_{i} = \sum_{i=1}^{N} f_{ni} \cos \delta_{i} \tan \varphi_{i}$$
$$+ \sum_{i=1}^{N} f_{si} \sin \alpha_{i} \tan \varphi_{i} + \sum_{i=1}^{N} f_{ni} \sin \delta_{i}$$
(4)

上式を式(5)のように変形する。

$$N\left[\frac{1}{N}\sum_{i=1}^{N} f_{si}\cos\alpha_{i}\right] = N\left[\frac{1}{N}\sum_{i=1}^{N} f_{ni}\cos\delta_{i}\tan\varphi_{i}\right]$$
$$+ \frac{1}{N}\sum_{i=1}^{N} f_{si}\sin\alpha_{i}\tan\varphi_{i} + \frac{1}{N}\sum_{i=1}^{N} f_{ni}\sin\delta_{i}\right]$$
(5)

 $f_{ni}, f_{si}, \delta_i, \alpha_i の間には相関がなく、それぞれ$ 独立した変数である。このように互いに独立な幾つかの変数の積の平均値は、それぞれの平均値の積に等しい。したがって、式(2)を式(5)に代入すると、式(6)および式(7)が得られる。

 $Nf_s\cos\theta_m = N[f_n\cos\theta_m\tan\varphi_m]$

 $+f_s \sin \theta_m \tan \varphi_m + f_n \sin \theta_m$] (6)

 $\tau(\cos\theta_m - \sin\theta_m \tan\varphi_m) =$

$$\sigma_m(\cos\theta_m\tan\varphi_m + \sin\theta_m) \tag{7}$$

式(7)の両辺を $\cos \theta_m$ で除する。また、 θ_m , φ_m が 比較的小さいことから^{2),3)}、(1-tan θ_m tan φ_m)の値を1 と近似して、式(8)を得る。

$$\tau = \sigma_m \tan(\varphi_m + \theta_m) \tag{8}$$

粒子集合体が破壊状態に至るまで、平均主応 力が一定である場合には、式(8)に示すように、 せん断応力の増加に伴って、平均粒子接点角は 大きくなる。粘弾性限界は、すべての粒子が静 止し、粘性抵抗がセメント粒子に作用しない状 態の試料、すなわち変形が終息した試料が粘弾 塑性状態となるときの外力の最小値である。粘 弾性限界に対応する平均粒子接点角をのと記す れば、式(8)より次式が得られる。

$$\tau_{el} = \sigma_m \tan(\varphi_m + \theta_{el}) \tag{9}$$

本研究では、締固めとは、ある大きさの応力 を試料に繰り返し加えて、一定のひずみを生じ させ、除荷すれば残留ひずみが生じない状態に 至るまでの載荷・除荷の過程を指すこととす る。粘弾性状態の微視的考察によれば、粘弾性 限界は初期の粒子配列と相関があるため、載荷 時と締固め時の最大せん断応力面が一様である と仮定すると、 θeiは、粒子群が締固め応力に対 抗して移動し、安定な位置に至るときの平均粒 子接点角&と等しくなる。

したがって、*θe*iは、式(10)に示すように、締固 め応力の関数として求められる。

 $\tan(\varphi_{\rm m} + \theta_{\rm el}) = \tan(\varphi_{\rm m} + \theta_{\rm c}) = \tau_{\rm c} / \sigma_{\rm cm}$ (10)

ここに、τc、σcm: それぞれ繰返し締固め時の最 大せん断応力面上のせん断応力と垂直 応力

式(10)を式(9)に代入すると、粘弾性限界telは式(11)で表される。

$$\tau_{el} = \sigma_m \, \tau_c / \sigma_{cm} \tag{11}$$

上式によれば、同じ試料に対しても粘弾性限 界は締固め応力に依存し、定数とはならない。 締め固めるときは、一定のひずみのみが生じ、 また除荷するときは、残留ひずみが生じないと いう初期状態を作り出すことができるため、締 固め応力には上限値が存在することが予想され る。載荷されるとき、外力がこの上限値を超え ると、永久変形が生じて、破壊状態に至る。こ の場合に、この上限値の締固め応力で作られた 試料の粘弾性限界ではその破壊強度なと等しい。 したがって、粘弾性限界は0~なの範囲に存在す る。高流動モルタルまたは高流動コンクリート の締固め応力の上限値は粘弾性限界はゼロと近 似できるため、その粘弾性限界はゼロであると 考えられる。

4. 粘弾性限界に関する実験的考察

Fig. 5 Device of shearing test

 Table 1 Mix proportion and measured consistency

Mortar No.	W/C	S/C	Dmax (mm)	<i>mSl.</i> (mm)	<i>mSf.</i> (mm)	mLts-10 (s)
I	0.62	15	0.6	100	155	œ
II	0.66	1.5		120	190	~~~~
III	0.65	1.4		120	215	0.22
VI	0.05	1.8		55	100	∞

[Notes] W/C: Water-cement ratio, S/C: Sand-cement ratio, Dmax: Maximum diameter of sand, mSl.: 1/2-Size slump value, mSf.: 1/2-Size slump-flow value, mLts-10: 1/2-Size L-flow time.

本研究では、せん断試験装置を試作し、Table 1に示すフレッシュモルタルを試料として粘弾性 限界を測定し、前述の理論的考察結果の妥当性 を検証した。

4.1 実験概要

Fig. 5にせん断試験装置を示す。ポリスチレン フォーム板Beの上に置いた底がない型枠に、練混 ぜ直後のモルタルを満たして、上面を平らにし た後、型枠を取り去る。所定のおもりをかけて 一旦締め固めた後、試料の厚さを測り、板Buと おもりWv(総荷重Pv)を載せた状態で、おもりWh (荷重Ph)によって水平方向に載荷した。変位は レーザ変位計によって60msごと測定した。Table 2に示した平均主応力 σ_m 値に応じて P_v を一定と し、Phを所定の増分量だけ時間間隔Atで階段的に 加えてクリープさせる。せん断応力(増分量の合 計値とPv/2で計算)と各階段クリープ終了時のせ ん断ひずみの関係をプロットして、始めの数点 を結ぶと、直線関係が得られた。実験値が直線 から逸脱するときのせん断応力の値が粘弾性限 界に相当し、これをtmelと記する。

4.2 実験結果および考察

Table 2に実験結果を示す。以下に各要因が粘

弾性限界に及ぼす影響を検討する。

(1) 試料の調合の影響

締固め応力で、 tcm が同じであるシリーズ M1-1とM1-4~6で、粘弾性限界の実測値 tmel とフレッシュモルタルのミニスランプ値mS L、ミニスランプフロー値mSfの関係は、Fi g.6のようになる。この図に示すように、4 種の調合のフレッシュモルタルに対して、 粘弾性限界の各実測値の差はすべて15Pa以 下であり、粘弾性限界が試料の軟らかさに かかわらず一定値であることが認められ た。

(2) 締固め応力の影響

Fig. 7(a)および(b)に、シリーズM1-1~6の 粘弾性限界の実測値 τ meiと、締固め応力の 関数として求めた粘弾性限界の計算値 τ cei の関係、および11シリーズの粘弾性限界の 実測値 τ meiと計算値 τ ceiの比をそれぞれ示 す。これらの図によれば、粘弾性限界の実 測値は計算値とよく一致しており、また締固め 応力と強い相関性が認められる。なお、実測値 は計算値よりも5%程度大きい値を示している が、これは、測定装置機構の摩擦抵抗の影響で あると考えられる。

(3) 平均主応力の影響

Fig. 8に、2Pa/sの載荷速度で測定した粘弾性限 界と平均主応力の関係を示す。粘弾性限界の実 測値τ melは平均主応力σmの増加とともに直線的に

Table 2 Loading parameters and test results

Series	Mortar No.	σm (Pa)	τς, σcm (Pa)	Vi (Pa/s)	τ cel (Pa)	t mel (Pa)	Tmel/Tcel ratio
M1-1	Т	303	908, 454	2.0	605.3	635.5	1.050
M1-2			757, 303		756.7	772.0	1.020
M1-3	II					787.0	1.040
M1-4			908, 454		605.3	650.5	1.075
M1-5						635.5	1.050
M1-6	VI					640.0	1.025
M2-1 M2-2	Ι	303	908, 454	2.0	605.3	635.5	1.050
				3.0		620.5	1.025
		378		2.0	756.7	802.0	1.060
				3.0		817.0	1.080
M2-3		454		2.0	908.0	938.0	1.033
				3.0		940.0	1.034
M2-4 M2-5				2.0	1 059.4	1 135.0	1.071
		530		3.0		1 074.5	1.014
		605		2.0	1 210.7	1 250.5	1.033
				3.0		1 271.0	1.050

[Notes] σ_m : Mean principal stress in loading state (Pa), σ_{cm} : Mean principal stress in compacting state (Pa), τ_c : Maximum shearing stress in compacting state (Pa), V_i : Rate of loading (Pa/s), τ_{cel} : Calculated visco-elastic limit (Pa), τ_{mel} : Measured visco-elastic limit (Pa).

大きくなり、理論的考察結果とよく一致した。

(4) 載荷速度の影響

同一試料に対して、2水準の載荷速度で測定し た粘弾性限界値をFig.9に示す。粘弾性限界と平 均主応力の関係は載荷速度にほとんど影響を受 けず、粘弾性限界と載荷速度の間には相関性が 認められない。

5. 結論

Fig. 6 Experimental relationship between measured visco-elastic limit *Timel* and consistency

- 665 -

ついてミクロな立場から理論的に考察した上、 実験によって理論的考察結果の検証を行った。 得られた結論を以下に要約する。

- (1) セメント系材料の粘弾性限界は、試料の初期 状態に依存し、締固め応力の関数となる。
- (3) 粘弾性限界は、平均主応力の増加に伴って直 線的に増加する。
- (4) 載荷速度が粘弾性限界値に与える影響は認め られない。

参考文献

- 日本コンクリート工学協会:フレッシュコンク リートの力学モデル研究委員会報告書, pp.55-62, 1996.4.
- 2)森 博嗣:フレッシュコンクリートの流動解析法 に関する研究,名古屋大学博士論文,pp.69-98, 1989.10.
- 3) 李柱国·谷川恭雄·森 博嗣·黒川善幸: 粒子集

Fig. 9 Measured visco-elastic limit *tmel* at different rate of loading Vi

合体を用いたフレッシュモルタルの構成則に関 する研究,日本建築学会構造系論文集, No.523, 1999.9(印刷中)

- 4) 李柱国・谷川恭雄・森 博嗣・黒川善幸:フレッシュコンクリートの力学モデルに関する基礎的 考察(その1、その2),日本建築学会東海支部研究報 告集, No. 36, pp.1-8, 1998.2.
- 5) 緑川猛彦, 丸山久一のほか: 凝集状態を考慮した粉 体の保水能力の評価, コンクリート工学年次論文 報告集, Vol.19, No.1, pp.43-48, 1997
- Yong, R.N and B.P. Warkentin: Introduction to Soil Behavior, Macmillam Company, p.56, 1966
- 7) 深谷泰文: セメントコンクリートの流動特性, セメ
 - ント・コンクリート, No.540, pp.30-39, 1997.2
- 8) 村山朔郎:土の力学挙動の理論, 技報堂出版, pp.34-36, 1990.10.