論文 高性能軽量骨材を使用したコンクリートの破壊時のマイクロ クラック発生挙動に関する研究

柴田 辰正*1・石川 雄康*2・荒井 利奈*3・岡本 享久*4

要旨:近年,絶乾比重が0.8~1.2 で吸水率が非常に小さく,強度特性に優れた高性能軽量骨 材が開発されている。本研究では、この高性能軽量骨材を使用したコンクリートの破壊性状 について、マイクロクラックの発生挙動と破壊エネルギーから実験的および解析的に検討を 加えた。その結果、高性能軽量骨材を使用したコンクリートは、骨材内部および周辺部の応 力状態が普通コンクリートと異なり内部に引張型クラックが発生し、これらとモルタルクラ ックが破壊時に連結し、ぜい性的な破壊をすることがわかった。しかし、粗骨材自体の強度 を増加させることで破壊性状を改善できることが、AE 法や引張軟化挙動から検証できた。 キーワード:高性能軽量骨材,軽量コンクリート,マイクロクラック,破壊エネルギー,引張軟化

1. はじめに

高性能軽量骨材(超軽量骨材¹)は、微細な独立 気孔を有し、従来の膨張頁岩などを主原料にし た人工軽量骨材に比べて吸水率が非常に小さく、 かつ強度特性に優れた高性能な人工軽量骨材の ことをいう。現在、絶乾比重が0.8~1.2 のもの が開発されている。従来の人工軽量骨材は、骨 材の吸水率が高いことからコンクリートに使用 した場合、耐凍害性に劣るものとなり、土木用 途では、極まれに構造部材に使用される程度に とどまっていた。

本研究では、この高性能軽量骨材を使用した 軽量コンクリートの破壊性状について、マイク ロクラックの発生挙動と引張軟化挙動について 実験的および解析的に検討を加えた。コンクリ ートの引張軟化挙動を検討することは、コンク リート構造物の破壊現象を究明することとなり、 新しい軽量コンクリートの構造用コンクリート としての有効性を示すことに役立つと考える。

2.1 使用材料

コンクリートに使用した材料を表1に示す。 セメントには早強ポルトランドセメント,骨材 には軽量細骨材,普通細骨材(砕砂),高性能軽 量粗骨材2種類(0.85品および1.2品)および普通 粗骨材(砕石)を使用した。また,混和剤には高 性能 AE 減水剤ならびに AE 助剤を使用した。

2.2 配合

コンクリートの配合を表2に示す。コンクリ ートの種類は、表に示すように普通コンクリー ト(W/C=60%、35%),軽量1種コンクリート(高 性能軽量粗骨材 0.85 品(HL1)、1.2 品(HL2)をそ れぞれ使用),軽量2種コンクリート、普通モ ルタルおよび軽量モルタルとした。

2.3 圧縮応力下のマイクロクラック進展

圧縮応力下におけるマイクロクラックの測定 は、φ 15×30cmの供試体を用い、JIS A 1108「コ ンクリートの圧縮試験方法」に準じて、高剛性 試験機を使用して行った。実験時には圧縮強度 およびヤング係数、並びに割裂引張強度を JIS に準じて測定した。

2. 実験概要

*1 太平洋セメント(株) 清澄研究所 超軽量コンクリート技術グループ 副主任研究員 工修 (正会員) *2 太平洋セメント(株) 清澄研究所 超軽量コンクリート技術グループ リーダー 工修 (正会員) *3 芝浦工業大学大学院 工学研究科 土木工学専攻

*4 太平洋セメント(株) 清澄研究所 ゼネラル・マネージャー 工博 (正会員)

使用材料	種類	記号	物性または成分				
セメント	早強ポルトランドセメント	С	比重:3.12,比表面積:4490cm²/g				
細骨材	普通細骨材(青梅産砕砂)	S1	表乾比重:2.62,吸水率:1.63%,粗粒率:3.07				
	軽量細骨材	S2	絶乾比重:1.06, 24h 吸水率:12.0%, 粗粒率:3.08				
粗骨材	普通粗骨材(青梅産砕石)	G1	表乾比重: 2.64, 吸水率: 0.74%, 粗粒率 6.51, 最大寸法:15mm				
	高性能軽量粗骨材	HL1	絶乾比重:0.86, 24h 吸水率:4.08%, 粗粒率:6.44,				
			最大寸法:15mm, 圧壊強度 ¹⁾ :1120N				
	高性能軽量粗骨材	HL2	絶乾比重:1.19, 24h 吸水率:1.80%, 粗粒率:6.45,				
			最大寸法:15mm, 圧壞強度 ¹⁾ :1610N				
泪和刻	高性能 AE 減水剤	SP	主成分:ポリカルボン酸エーテル系複合体				
/#C111/A11	AE 助剤	AE	主成分:変性アルキルカルボン酸化合物				

表 1 使用材料

[注]1)圧壊荷重とは、直径 14mm の骨材の 1 軸載荷試験時の破断荷重

表2 コンクリートの配合

コンクリート	記号	比重	W/C	S/a	空気量	単位量(kg/m ³)							SP	AE
の種類			(%)	(%)	(%)	W	С	S1	S2	G1	HL1	HL2	(C × %)	(C × %)
普通モルタル	NM	2.3	60	-	5.0	283	471	1279	+	-	_	-	1.05	0.002
普通	N35	2.3	35	46.0	5.0	150	429	799	1	945	-	1	1.05	0.002
	N60	2.3	60	46.5	5.0	181	302	819		950	Ι	-	1.05	0.002
軽量1種	L35	1.8	35	46.0	5.0	150	429	799	-	+	1	422	0.8	0.002
	L08	1.7	42	47.0	5.0	165	389	813	-	-	301	-	0.8	0.002
	L12	1.8	42	47.0	5.0	165	389	813	-	1	-	414	0.8	0.002
軽量モルタル	LM	1.5	32	-	5.0	232	726	_	485	—	—	-	1.5	0
軽量2種	L2	1.2	32	46.0	5.0	151	472	-	316	_	311	-	1.5	0

[注]なお, 軽量骨材は 24 時間吸水させて使用。

なお,載荷試験時には AE(アコースティック エミッション)法によりAE波形の測定を行った。 AE センサーは 150kHz 共振型を使用し、図1に 示すようにコンクリート供試体に取り付けた。 AE 波形は、AE 波形収録装置を用いて6チャン ネル同時に収録し、収録した波形からモーメン トテンソル解析²⁾を実施し,AE発生位置および ひび割れのタイプを求めた。AE はしきい値を 60dB としてデータの収録を行った。

2.4 破壊エネルギーの測定試験

(1)試験の概要

破壊エネルギーの測定は, RILEM の「切欠き 梁の3点曲げ試験によるモルタルならびにコン クリートの破壊エネルギーの測定」に準じて実 施した。

供試体は、図2に示すような中央部に切欠き がある梁状供試体とした。供試体の大きさは、 高さ 200×幅 100×長さ 1200mm で、中央部に の実験室にて湿封養生を実施した。 100mmの深さの切欠きを有するものである。載 荷スパンは 1130mm とし、切欠き上部から載荷

図1圧縮試験時の AE センサ位置

図2試験体および載荷試験の概要

を実施した。

供試体は脱型後,曲げ試験直前まで 20±2℃

(2)載荷方法および測定方法

載荷は、変位制御型のアクチュエータを有す

コンクリートの種類(記号)	NM	N35	N60	L35	L08	L12	LM	L2
比重	2.33	2.44	2.38	1.85	1.73	1.87	1.52	1.31
圧縮強度(N/mm²)	72.2	96.4	42.5	59.4	43.0	56.9	42.3	36.6
引張強度(N/mm²)	4.3	6.7	3.5	4.1	2.3	3.6	3.5	2.2
ヤング係数 (kN/mm ²)	31.0	39.1	33.3	23.2	17.7	21.9	15.4	13.1
脆度係数(圧縮強度/引張強度)	16.8	14.3	12.2	14.5	18.9	15.9	12.0	16.6
最大曲げ荷重 (N)	-	4231	2221	2116	1641	1871	-	1194
破断時の変位 (mm)	-	0.90	1.41	0.52	0.46	0.52	_	0.22
破壊エネルギー (N/m)	-	149.7	163.9	54.2	43.3	52.9	-	19.7

表3 各コンクリートの力学的性状

る試験機を用いて3点曲げ載荷を実施した。

また,載荷時には圧縮試験時と同様に AE 法 によるモーメントテンソル解析により,発生す る AE 波形からひび割れの発生位置,ひび割れ のタイプおよび発生パターンを同定した。測定 時の AE センサーの配置位置は,切欠き上部付 近を囲む形で配置した。

(3)破壊エネルギー

破壊エネルギーは式(1)を用いて計算した。

$$G_F = \frac{W_0 + mg \cdot \delta_0}{A_{lig}} \quad (N/m) \tag{1}$$

ここで、 G_F :破壊エネルギー(N/m)、 W_0 :荷 重変位曲線下の面積(N·m)、m:支点間の梁の重 さ(kg)、梁重量に載荷スパンと供試体の長さの 比をかけて計算、g:重力加速度(m/sec²)、 δ_0 : 梁の破断時の変位(m)、 A_{lig} :はりの破断部分の 面積(m^2)。

(4)引張軟化曲線

引張軟化曲線は, RILEM の破壊エネルギー 試験を実施する際に測定した荷重-開口変位関 係を用いて, 試験体中央に仮想ひび割れモデル を組み込んだ有限要素用いた多直線近似解析 ^{3),4)}により推定した。

3. 実験結果および考察

3.1 高性能軽量骨材を使用した軽量コンクリ ートのカ学特性

表3は、今回実施した軽量コンクリートの力 学的物性をまとめたものである。普通コンクリ ートの脆度係数が12程度であるのに対し、高性 能軽量コンクリートは16~19と大きい値とな

った。このように、高強度な軽量コンクリート になると、引張強度は圧縮強度に比例して増大 せず, 頭打ちの状態になることが一般的に知ら れている う。また、圧縮強度試験および引張強 度試験を行った供試体の破断面を観察すると, 普通コンクリートの場合では破壊がモルタル自 体ならびにモルタル部と粗骨材の界面に発生す るひび割れから生じるのに対し、軽量コンクリ ートの場合はモルタル部だけでなく粗骨材自体 にもひび割れが発生し, それらが連結して破壊 に至ることがわかった。すなわち、図3⁰⁰に示 すような応力状態となり, 粗骨材自体に引張応 力が生じ,破壊を起こしている。しかし,この 傾向は同じ高性能軽量骨材でも比重 1.2 の HL2 を使用した場合、すなわち骨材自体の強度が増 大すれば改善されている。すなわち、比重 0.85 のHL1を使用したコンクリートでは、ほぼ100% の粗骨材が破断時に割裂しているが, HL2 を使 用した場合には約40%の粗骨材が破断せずに、 ひび割れが骨材を迂回していることが観察され た。これに伴い、圧縮強度も増大している。

次にヤング係数であるが、コンクリートのヤ

図5 モーメントテンソル解析結果(圧縮)

ング係数は,圧縮強度および比重の関数である といえ,高性能軽量コンクリートにおいてもこ の関係がほぼ成立し、ヤング係数は比重の低下 とともに低下する。

3.2 圧縮応力下のマイクロクラック進展

圧縮応力下における AE ヒット数と応力の関 係を図4に示す。普通コンクリートでは最大応 力付近まではほとんど AE が発生せず,その後 急激にヒット数の増加がみられるのに対して, 軽量コンクリートでは初期から多くの AE が発 生していることがわかる。

図5は,AEモーメントテンソル解析による ひび割れのタイプとひび割れ発生位置の推定結 果を示したものである。図中の●は引張クラッ ク(引張成分60%以上),+はせん断クラック(せ ん断成分60%以上),□は混合クラック(引張お よびせん断成分40~60%)を示す。普通コンク リートでは、応力50%付近まででは、ほとんど AE が測定されず、最終的にはせん断クラック が50%以上観察されている。これに対して、軽 量コンクリートでは,初期から多くの引張クラ ックが発生し,最終的には引張クラックが 50% 以上観察された。この傾向は,HL2を使用した 場合よりも HL1 を使用した場合のほうが顕著 に現れている。すなわち,図3に示すようなコ ンクリート中における骨材周辺の応力状態の違 いによる結果が現れている。これは,破断面の 骨材の破損状況からもわかる。

3.3 RILEM の破壊エネルギー試験

RILEM の破壊エネルギー試験による結果を 表3 に併記した。普通コンクリートに比べて、 軽量コンクリートでは、破断時の変位および破 壊エネルギーの値は、普通コンクリートの値と 比較して小さく破壊エネルギーは 1/4~1/6 の値 となった。高性能軽量粗骨材を使用したコンク リートでは、コンクリートの比重レベルが異な っても破壊エネルギーがほとんど増加せず、骨 材の破壊が、破壊エネルギーの値に大きく影響 を及ぼしていると考えられる。

図6および図7は試験時に測定した荷重-た

わみ曲線および荷重-開口変位曲線を示したも のである。普通コンクリートでは、荷重ーたわ み曲線、荷重-開口変位曲線ともに既往の研究 ⁷⁾で測定されているものと同様の結果が得られ た。すなわち、普通骨材を使用したコンクリー トと軽量骨材を使用したコンクリートでは、破 壊のメカニズムが違うことが考えられる。普通 粗骨材を使用した場合には、引張応力を受ける とマイクロクラックのほとんどはモルタル部分 あるいは骨材との界面に発生し、粗骨材を迂回 する形でひび割れが進展する。これに対して, 軽量粗骨材を使用した場合には、粗骨材自体が 割裂し、モルタル部分と粗骨材部分に貫通した 破壊となる。L12(HL2 使用)で破壊エネルギ ーが大きくなるのは、骨材強度の増加のため、 破断面の30%の粗骨材付近においてひび割れが 骨材を貫通せずに迂回しているためである。

 張クラック(引張成分 60%以上), +はせん断ク ラック(せん断成分 60%以上), □は混合クラッ ク(引張およびせん断成分 40~60%)を示す。

普通コンクリートの場合には、切欠き上部か らはり上端部まで断面全体にわたってマイクロ クラックの発生が観察され、切欠き上部に塑性 域が形成されていることがわかる。これに対し て、高性能軽量骨材を使用したコンクリートで は、より軽量な粗骨材を使用したものほど切欠 き直上部にマイクロクラックの発生が集中して いる。これは、延性破壊を示すものは AE をよ く検出することができるが、ぜい性破壊を示す 材料では AE の発生頻度はかなり少なくなる²⁾ からである。このことから、引張応力下におい ては、普通コンクリートではマイクロクラック が粗骨材を迂回して分散して発生するのに対し て、高性能軽量骨材を使用したコンクリートで は、最大荷重に達する直前から急激にマイクロ クラックの発生が始まり、骨材とモルタル部分 のクラックが一気に連結して破壊に至ったこと

が確認することができた。

3.5 引張軟化挙動

図9は、多直線近似法により推定した引張軟 化曲線の一例である。引張軟化挙動には軽量骨 材の強度がそのまま影響を及ぼし、強度の高い ものほど優れた軟化挙動を示すことがわかる。

図10は、引張軟化曲線を無次元化したもので ある。普通および軽量1種コンクリートでは推 定した引張軟化曲線は1/4モデルに近い形を示 したが、軽量2種コンクリートでは、直線モデ ルに近い形となった。

一般にコンクリートのひび割れ発生挙動は, 破壊のメカニズムすなわち,ひび割れが骨材を 迂回しながら進むのかあるいは骨材を貫通しな がら進むのかによって大きく異なることが知ら れている。今回使用した軽量骨材についても同 じことが言える。すなわち,比重 0.85 の HL1 を使用した場合に比較して,比重 1.2 の HL2 を 使用した場合には,破壊に関する結果すべてに おいて優れていることからもわかる。破壊性状 は,粗骨材の強度性状が良くなることで改善さ れている。

今後も軽量コンクリートの引張軟化挙動につ いては検討を深め、コンクリート構造物の破壊、 特にせん断破壊に対して引張軟化挙動の検討の ような破壊力学を適用していくことはせん断破 壊の理論的定式化に対して非常に重要なことで あると考える。

4. まとめ

本研究で得られた結果を以下にまとめる。 (1)高性能軽量骨材を使用したコンクリートは,

図 10 無次元化した引張軟化曲線

普通コンクリートと比較して圧縮応力下に おいて骨材内部および周辺における応力状 態が異なり,骨材内部に引張型のマイクロク ラックが発生し,これらとモルタルクラック が破壊時に連結してぜい性的な破壊をする。

- (2)高性能軽量骨材を使用したコンクリートは, 普通コンクリートと比べ破壊エネルギーが 低下する。
- (3)これらの傾向は,比重 1.2 の高性能軽量粗骨 材を使用することで改善され,破壊性状に優 れた構造用コンクリートとして適用できる 可能性がある。

参考文献

- 1)岡本享久, 早野博幸, 柴田辰正: 超軽量コン クリート, コンクリート工学, Vol.36, No.1, pp.48-52, 1998.1
- 2)大津政康:アコースティックエミッションの 特性と理論, 1988
- 3)橘高義典,上村克郎,中村成春:コンクリートの引張軟化曲線の多直線近似解析,日本建築学会構造系論文報告集,No.453, pp.15-25, 1993.11
- 4)栗原哲彦,安藤貴宏,国枝稔,内田裕市,六 郷恵哲:多直線近似法による引張軟化曲線の 推定と短繊維補強コンクリートの曲げ性状, 土木学会論文集,No.532/V-30, pp.119-129, 1996.2
- 5)西岡思郎, 江口勇, 国本公瑞: 軽量骨材を用 いたコンクリートの研究, セメント技術年報, 18, pp.478-486, 1964
- 6)岡田清編:最新コンクリート工学,オーム社, 1986
- 7)破壊力学の応用研究委員会報告書,日本コン クリート工学協会,1993.10