論文 高強度鉄筋 SD490の重ね継手のフック効果に関する実験研究

西浦範昭*1・三浦誠司*2・高 洪*3・田中礼治*4

要旨:近年,鉄筋コンクリート構造の高層化並びに大型化などに伴い使用する鉄筋も高強度 化する傾向にある。高強度鉄筋を使用する場合,鉄筋継手が必要である。本研究は鉄筋継 手として重ね継手を取り上げ検討している。高強度鉄筋の重ね継手長さを短くする方法の 一つに,フックを利用する方法がある。高強度鉄筋の重ね継手に関する既往の研究"が少な いと同時にフック効果についても不明な点が多く充分に解明されていないのが現状である。 そこで本報では高強度鉄筋SD490の重ね継手の強度および靱性などに及ぼすフック効果に ついて実験的に究明することを目的としている。

キーワード:高強度鉄筋, SD490, 重ね継手, フック効果

1. 目的

近年,鉄筋コンクリート構造(以下, RC構 造)による建築物は、高層化、大型化する傾向が 見られる。それに伴ない使用鉄筋もより降伏点 の高いものが用いられるようになっている。そ の主な理由は、高強度鉄筋を用いることによっ て部材の高密度配筋を防止することなどが可能 となるからである。高強度鉄筋SD490は現在JIS 規格化されているが、日本建築学会「鉄筋コン クリート構造計算規準·同解説」2)(以下, RC規 準)では規定外となっている。高強度鉄筋SD490 を実用化する場合、鉄筋継手が必要となる。鉄筋 の継手方法には種々あるが本研究では重ね継手 を取り上げ検討している。高強度鉄筋SD490に 重ね継手を利用しようとすれば、他の条件が同 一であれば重ね継手長さは普通強度鉄筋のそれ より当然のこととして長くなる。そこで、高強 度鉄筋SD490を用いた重ね継手長さを短くする 方法の一つとして鉄筋末端にフックを設けるこ とが考えられる。高強度鉄筋を用いた重ね継手 のフック効果に関する力学的性状は、不明な点 が多く充分に解明されているとは言えない。

*1 西松建設㈱技術研究所研究部原子力課 工修(正会員) *2 東北工業大学大学院 工学部建築学科

*3 (株)構造ソフト 工修

*4 東北工業大学教授 工学部建築学科 工博(正会員)

そこで本報では、高強度鉄筋SD490の重ね継手 の強度および靱性などに及ぼすフック効果につ いて実験的に究明することを目的としている。

2. 試験体概要

2.1 試験体種別

試験体種別を表-1に示した。試験体は全部で 13体である。変動因子はフック形状と重ね継 手長さの2種である。試験体は重ね継手の末端 のフックの有無および形状によって、フックな しシリーズ(4体)、180°フックシリーズ(4体)、 90°フックシリーズ(4体)と3シリーズに大別 されている。各シリーズの変動因子は全シリー ズとも重ね継手長さ(10d, 20d, 30d, 40d)のみ である。また、比較用として重ね継手のない試 験体(1体)についても実験を行った。

2.2 試験体の形状, 寸法, および配筋

試験体の形状, 寸法, および配筋の一例を図 -1に示した。形状, 寸法は全試験体とも同一で, はりせいD=18cm, はり幅B=15cm, 純曲げ区間 (試験体区間)1=60cmである。重ね継手は全試

験体とも下端筋のみとし純曲げ区間に設置され ている。断面配筋の詳細を図-2に示した。主筋 は3-D10,あばら筋は純曲げ区間では2-40@50, それ以外の区間では3-60@30とし,全試験体 とも共通である。フック形状の詳細を図-3に示 した。フックの折り曲げ内法直径並びに余長は

図-4 重ね継手長さの定義

R C 規準の「付19.配筋標準」の規定に従い 180°フック,90°フックでそれぞれ折り曲げ内 法直径は5d,4dとし,余長は4d,8dとした。ま た,重ね継手長さの定義を図-4に示した。定義 はR C 規準と同様なものとし,重ね継手起点か らフック起点間での長さとした。

2.3 使用材料

使用コンクリートは普通コンクリートを用い た。全試験体とも同一バッチのレディミクスト コンクリートを用い重ね継手が下端筋となるよ うに縦打ちで打設した。実験時のコンクリート 強度は $\sigma_{B}=22.8$ N/mm²であり,ヤング係数は Ec=2.29×10⁴N/mm²であった。使用鉄筋は全試 験体とも共通で主筋はSD490のD10を用いた。 主筋の応力度-ひずみ度曲線(以下, $\sigma - \varepsilon$ 曲 線)を図-5に示した。主筋は明確な降伏点を有 するものであり降伏点は $\sigma_{s}=527.6$ N/mm²であっ た。ヤング係数はE=1.92×10⁵N/mm²であった。 あばら筋はSR235の4 ϕ ,6 ϕ を用いた。

2.4 加力および変位測定方法

加力装置を図-6に示した。加力は2点集中の 単純ばり形式である。部材中央部のたわみ量の 変形制御により一方向繰り返し載荷を行った。 変位測定方法を図-7に示した。変位は中央たわ み,純曲げ区間の相対たわみ、および重ね継手 区間の相対たわみを変位計で測定した。鉄筋の ひずみはワイヤーストレインゲージ(ゲージ長 2mm)で測定した。また,重ね継手を含む純曲 げ区間のコンクリートひずみをコンタクトゲー ジ(測定ピッチ10cm)で測定した。

3. 実験結果および検討

3.1 最大荷重およびひび割れ状況

各試験体の最大荷重と破壊形式を表-2に示し た。最大荷重は各シリーズとも重ね継手長さが 大きくなるほど増大する傾向にあった。重ね継 手を持つ試験体の破壊形式は、主筋の曲げ降伏 以前の継手破壊(L型)、主筋の曲げ降伏後の継 手破壊(FL型)、継手破壊せず主筋の曲げ降伏 後にコンクリートの圧壊による耐力低下(FC 型)の3種が認められた。重ね継手のない比較用 のLPS-N試験体は、主筋の曲げ降伏後も荷重の 低下は見られなかった(FN型)。破壊形式L型、 FL型は重ね継手長さの短い試験体および重ね

表-2 各試験体の最大荷重と破壊形式

シリーズ	No.	試験体名	最大荷重	破壞形式
			(kN)	
フック	1	LPS-10-NF	23.5	L
なし	2	LPS-20-NF	43.2	L
シリーズ	3	LPS-30-NF	58.9	FL
	4	LPS-40-NF	67.7	FL
180°	5	LPS-10-F180	48.1	L
フック	6	LPS-20-F180	62.8	L
シリーズ	7	LPS-30-F180	70.6	FC
	8	LPS-40-F180	72.6	FC
90°	9	LPS-10-F90	46.1	L
フック	10	LPS-20-F90	57.9	L
シリーズ	11	LPS-30-F90	70.6	FC
	12	LPS-40-F90	70.6	FC
継手なし	13	LPS-N	65.7	FN
1.降伏以前に継手破壊 日.降伏後に継手破壊				

FC:降伏後に曲げ破壊 FN:降伏後も曲げ破壊せず

継手末端にフックのない試験体で多く生じる傾向にあった。破壊形式FC型は重ね継手末端にフックを有し、重ね継手長さの大きい試験体で 生じた。主筋の曲げ降伏後にも耐力が低下せず 朝性に富んだ性状を示した。重ね継手を持つ試 験体の最大荷重時のひび割れ状況の一例として 重ね継手長さ30dのものをフックの形状別に図 -8に示した。各試験体の破壊経過としてフック なし(LPS-30-NF)試験体は、P=56.9kNで重ね継 手部分に沿った付着割裂ひび割れが発生し、最 大荷重時には継手末端の曲げひび割れが大きく 進展し継手部での付着割裂ひび割れが多数発生 した。また、主筋の曲げ降伏直後に重ね継手部 の破壊が生じ急激な耐力低下を示した。フック

-279-

あり(LPS-30-F180,LPS-30-F90)の両試験体はと もにP=60.8kNで主筋が降伏した。主筋の曲げ 降伏以後も耐力の低下は見られず,たわみの増 大につれフック部分の曲げひび割れ幅が大きく なり,重ね継手部の主筋に沿った付着割裂ひび 割れが進展した。フック側面のかぶりコンクリ ートに多数ひび割れが発生し,その後耐力が低 下した。その他の重ね継手長さの試験体も類似 した破壊経過であった。

3.2 荷重-相対たわみ曲線に及ぼすフックの影響

荷重-相対たわみ曲線(P-δ曲線)に及ぼすフ ックの影響の一例として重ね継手長さ30dのも のを図-9に示した。相対たわみとは図-7に示 した純曲げ区間のたわみ量である。図-9から分 かるように曲げ降伏以前のP-δ曲線は全試験体 とも近似しており,曲げ剛性に及ぼすフックの 影響は特に見られない。また、曲げ降伏も全試 験体ともほぼ同一たわみで生じており、降伏時 変形に対してもフックの影響は見られない。フ ックのない試験体(LPS-30-NF)は降伏直後に耐 力が急激に低下したが、フックのある試験体 (LPS-30-F180, LPS-30-F90)は降伏後も耐力低 下することなく荷重を維持して変形が増大し、 曲げ降伏後の曲げ変形能力に対してはフックの 影響が大きいことが認められた。フック形状の 違いでは180°フックの方が、90°フックより大 きなたわみ量まで荷重低下が生じなかった。

3.3 長期荷重時の最大曲げひび割れ幅に及ぼす フックの影響

図-10は各試験体の長期荷重時の最大曲げひび 割れ幅を比較したものである。長期荷重時は、 RC規準に従い純曲げ区間の応力がM=afi (f=215.7N/mm², j=7/8d)に達したときの荷重と 定義している。曲げひび割れ幅はコンタクトゲ ージで測定した各測定区間でのコンクリートひ ずみを測定区間内で発生したひび割れ本数で除 して算出したものである。フックあり試験体で は180°,90°フックの場合ともフック位置近傍 の曲げひび割れ幅が最大曲げひび割れ幅となっ た。全試験体とも長期荷重時の最大曲げひび割 れ幅は、0.15mm以下であった。また、図-10よ り、長期荷重時の最大曲げひび割れ幅は、フッ クあり、なしとも近似した値を示しており、フ ックの効果は顕著には見られなかった。また, 180°,90°フックのフック形状の違いに関して も特に差は見られなかった。

及ぼすフックの影響

3.4 最大荷重に及ぼすフック効果

図-11は最大荷重をフックの有無で比較した ものである。フックの有無に関わらず重ね継手 長さが大きいほど最大荷重が増大する傾向が認 められた。重ね継手長さが同一であれば,最大 荷重はフックのある方がフックがないものに比 べ大きくなる。フックなしの最大荷重を基準と し180°フック,90°フックの最大荷重の比率を 示したのが図-12である。重ね継手長さが短い ほど最大荷重に及ぼすフック効果が大きいこと

がわかる。例えば、重ね継手長さ10dでは、フ ックなしに比べ約2倍程度,20dでは約1.4倍程 度とフック効果が顕著に認められた。しかし、 重ね継手長さが大きくなるほど最大荷重に及ぼ すフック効果は減少する。例えば、重ね継手長 さ40dではフック効果は非常に小さくなってい る。このことは重ね継手長さ40dの場合、フッ クなし試験体の主筋が降伏しているためと考え られる。現行のRC規準では、フックは重ね長 さに関係なく継手起点応力の1/3を負担するこ とが規定されている。しかし、最大荷重に対す るフック効果は明らかに重ね継手長さに応じて 異なることから、現行RC規準でのフック効果 の規定については見直しの必要があるものと考 えられる。なお、最大荷重に関しては180°フッ クと90°フックでは顕著な差は認められなかった。

3.5 曲げ靱性に及ぼすフック効果

曲げ降伏した試験体について,破壊荷重時の 塑性率を図-13に示した。破壊荷重は最大荷重 後の耐力が最大荷重の80%まで低下したときの 荷重と定義した。なお,破壊荷重時の塑性率μ

は式(1)より求めた。

μ = δ_u / δ_y (1)
δ_u: 破壊荷重時の相対たわみ
δ_y: 曲げ降伏時相対たわみ

図-13より、重ね継手長さが同一ならフックあ りの方がフックなしより塑性率が大きく、曲げ 靱性に及ぼすフック効果の大きいことが認めら れた。フックの形状については180°フックの方 が90°フックより塑性率が大きいことが認めら れた。高強度鉄筋SD490の場合,重ね継手末端 にフックを設け、重ね継手長さを30d,40d確保 すれば靱性に富んだ性状が得られることが分か った。重ね継手長さが同一の場合、フックあり の方がフックなしに比べ塑性率が大きくなる理 由は、曲げ降伏後の重ね継手強度の保持にフッ ク部分が大きく寄与しているためと考えられる。 そこで、フック部分が負担する応力の変化を相 対たわみとの関係で示した一例が図-14である。 図-14は重ね継手長さ20d, 30d, 40dで90°フッ クの例である。図中には実験より求めた重ね継 手起点の応力(σ_i),フック起点の応力(σ_i), 並びに重ね継手直線分の負担応力を($\sigma_1 - \sigma_1$) として求めた曲線を示している。重ね継手起点 およびフック起点の応力は図-15の各起点に貼 付けたワイヤーゲージの値を用いて図-5の $\sigma - \epsilon$ 曲線より求めた。但し、降伏後の $\sigma - \epsilon$ 曲線は 処女曲線と初期弾性係数の勾配を持つ直線部分 より構成されるものと仮定した。重ね継手部分

の負担応力分布は図-15のように仮定してい る。図-14より次のことが認められる。曲げ 降伏しない試験体(重ね長さ20d)では、フック 起点の応力(フックの負担応力)σ₁は荷重の上昇 とともに増加し、最大荷重時に最大値に達する。 それに対し、曲げ降伏するもの(重ね長さ30d、 40d)では、降伏後相対たわみが増大してもフッ クの応力はほぼ一定値を保ち、直線部分の負担 応力が低下するにつれフックの負担応力が増加 し、重ね継手強度保持に寄与するとともに、塑 性率の増大にフックが有効に働いていることが 分かる。以上の挙動から次のようなことが考え られる。フックが塑性率の増大に有効に作用す るためには、曲げ降伏以前にフックの抵抗能力 の大部分を伝いはたすような重ね継手のメカニ ズムではなく、曲げ降伏後のフックの抵抗能力 を発揮できる程度に重ね継手の直線部分の抵抗 能力を設計しておく必要がある。即ち、フック を塑性率の増大に有効に利用するための、重ね 継手長さの設計が必要であることが分かる。

4. まとめ

高強度鉄筋SD490の重ね継手の強度,剛性, および靱性に及ぼすフック効果に関してはり型 部材による一方向繰り返し載荷実験を行った結 果,次のことが認められた。

①曲げ降伏以前の部材の曲げ剛性、曲げ降伏時 変形,および長期荷重時最大ひび割れ幅に関し てはフックの有無並びにフック形状(90°および 180°フック)による影響は特に認められなかった。 ②最大荷重に及ぼすフック効果は重ね長さが短 いほど大きかった。このことは、重ね長さの大 きさによってフック効果に差がでることを示し ており、現行RC規準の重ね長さに関わらずフ ック効果を一律にしている規定について見直し の必要がある。また、最大荷重に関してはフッ ク形状による顕著な違いは見られなかった。 ③曲げ降伏後の塑性率を増大させるのにフック は有効である。但し、フックを塑性率の増大に 寄与させるためには、ある程度の重ね継手長さ を確保し、フックの抵抗能力を曲げ降伏後発揮 させるような工夫が必要である。

【参考文献】

- 1) 田中礼治,但木幸男,大芳賀義喜:高強度鉄筋SD50の重 ね継手に関する実験研究,日本建築学会構造系論文報 告集,pp19-29.1989
- 2)日本建築学会:鉄筋コンクリート構造計算規準・同解 説,1991