論文 主筋後挿入方式の PCa 梁用の主筋の重ね継手の性能に 関する研究

山梨 敏数"・今井 弘"

要旨:プレキャストコンクリート梁にシース管を利用した重ね継手と、従来の一体打ち工法の 重ね継手の強度を、両引き試験によって調べた。いくつかの変動因子による影響に関して、特 に、シース管の有無による違いは確認されなかった。また、従来の付着割裂強度式による計算 値と実験値はよく適合した。増分解析法による計算結果は、実験結果をほぼよく再現しており、 本報で提案する簡易モデルの妥当性と解析結果の信頼性が確認された。 キーワード:重ね継手、重ね長さ、シース、継手強度、付着強度

1. はじめに

プレキャストコンクリート(以下 PCa)工法に おいて部材の接合部は重要であり,高い構造性能 と生産性を兼ね備えた工法として,主筋後挿入方 式が提案されている。この方式にでは,主筋の重 ね継手の位置は,コンクリートの接合部の位置は 部材端であるが,地震時の応力の小さい各部材の 中央部とすることができる。

本研究では、梁の PCa 部材にシース管を利用 した主筋後挿入方式の重ね継手と、従来の一体打 ち工法の重ね継手の強度を、両引き試験により調 べ、その結果を増分解析法による計算結果と比較、 検討する。

2. 試験体概要

試験体の概要と特 徴を,図−1 と表−1 に示す。試験体は, 重ね継手のある梁の 一部を取り出したも ので,シース管を配 した試験体 (PCa 梁) と,配していない試 験体 (一体打ち梁) を,重ね長さを変え

表-1 試験体概要				
試験体 名	重ね長さ (mm)	<u>ب-</u> ز		
10d-SA	290			
15d-SA	435			
20d-SA	580	5		
25d-SA	725	1 T		
30d-SA	870			
35d-SA	1015			
10d-SN	290			
15d-SN	435			
20d-SN	580	фт.		
25d-SN	725	無		
30d-SN	870			
35d-SN	1015			

て、各2体ずつ計24体製作した。その断面は 510mm×600mmで、かぶり厚さは40mm、主筋 間隔は120mmである。また、主筋と添筋にはD29 (SD490)のネジ節鉄筋、横補強筋にはD10 (SD295A)の溶接閉鎖型鉄筋、シース管には内 径47mm、山高さ2mm、厚さ0.2mmの薄いスパ

*1 筑波大学大学院 理工学研究科 構造工学専攻(正会員)

*2 筑波大学助教授 構造工学系 工博(正会員)

イラル管を使用した。

試験体の製作では、まず、シースの両側より 2 本の主筋をシース中央で向かい合うように挿入し. シースの片側をゴムキャップでふさいだ後、シー スを鉛直にして上から高強度モルタルを静かに注 入した。この際シース内の空隙は、あらかじめポ リュタレンフォームを接着することにより設けた。

これらを横補

強筋と共に配

独肋と共に配	表-2 材料試験結果					
筋し打設した。	コンクリート	(kgf/cm ²)				
表-2 にコ	試験体	圧縮強度		割裂強度		
ンクリート	10d~25d	354		27.5		
ゲラウト 乃	30d•35d	340		25.6		
	グ ラウト		(kgf/cm ²)			
び鉄筋の材料	材令		E	圧縮強度		
試験結果を示	7日	7日		627		
す。なお、コ	28 日		780			
ンクリートと	36 日		814			
グラウトの設	鉄筋	跌筋 (tonf/cm ²)				
計圧縮強度は	径 (規格)	ヤング 率	降強	伏度	最大 強度	
それそれ 300kgf/cm ² と	D10 (SD295A)	1910	3.	72	5.24	
600kgf/cm ² で	D29 (SD490)	2050	5.	11	6.76	

3. 実験方法

加力方法を図-2 に示す。試験体は下端筋を上 にした状態で、試験体の両側に油圧ジャッキを各 4基ずつ計8基を固定した。それぞれの油圧ジャ ッキに D32 (SD390) のネジ節鉄筋を接続し, 試

験体の主筋とカップラーで連結して、各主筋に等 しい引張力を与えることにより、各試験体を両引 き加力した。

荷重は、試験体を加力している油圧ジャッキと 同圧力のジャッキにロードセルを取り付けて測定 した。

変位の測定は、4本の主筋のうち、内外各1本 について行った。図-2に示すように、両側の主 筋にゴムリングを介してナットで固定し、変位計 (CDP:精度1/500mm)を用いてそれぞれ上下2 カ所計測した。鉄筋芯位置での変形量は、外挿補 間により算出した。

4. 破壞性状

シースを用いた試験体では、主筋、シース、グ ラウトは一体として挙動した。実験終了時の試験 体は、図-3(a)及び図-3(b)に示すような主 に2種類の終局状況であった。それらは、重ね長 さによって分けられ、シースの有無による影響は ほとんど確認されなかった。

図-3(a)は、重ね長さ 25d 以下の試験体にみ られた終局状況で、端部で付着割裂破壊が起きて いた。サイドスプリット型の付着破壊が先行して

(a) 重ね長さ:25d 以下

図-3 破壊状況

おり,鉄筋が降伏する前に最終的にコーナー型の 付着破壊に至った。

一方,図-3 (b)は、重ね長さ 30d 以上の試験 体においてみられた終局状況でり、端部が割裂破 壊するばかりでなく、試験体中央部付近のひび割 れ幅が大きく広がっていた。これは、主筋の応力 を伝達する添筋が降伏したためである。

また,初期ひび割れは,全試験体において約 P=6tonf(最外縁応力が約 25kgf/cm² に達する時の 値)で発生した。

5. 実験結果の考察

5.1 重ね長さ・シースの有無による影響

重ね長さに対応する最大耐力時(主筋の応力 σ で表示した継手強度)と,両端の鉄筋間の平均歪

図-4 最大強度と変形

ε (平均歪は変位を試験部分で除した値)を,そ れぞれ図-4 (a)と,図-4 (b)に示す。

図-4 (a) では、重ね長さ 30d 以上で D29 (SD490)の規格降伏強度である 5.1tonf/cm² に達 するまでは、重ね長さと継手強度は比例関係にあ る。

重ね長さが 30d 以上で鉄筋が降伏歪以上に達し ていることは、図-4(b) にも表れており、30d 以上で平均歪が増加している。また、シースの有 無による影響は確認されなかった。

5.2 付着強度式との対応

実験値と付着強度式から得られた値とを比較した。付着強度式には、既往の付着割裂強度算定式である藤井・森田式¹⁾,角式²⁾,及び重ね継手の強度算定式である Orangun-Jirsa-Breen 式³⁾を用いた。

シリーズ1の実験値を付着応力度に換算して図 -5 に示す。便宜のため、図の縦軸は、コンクリ ートの圧縮強度の平方根で除した値で示されてい る。この図からもシースの有無による違いはみら れない。全体的には藤井・森田式がよい対応を示 している。Orangun 式は、15d 以下の重ね長さを 適用範囲に含んでいないためか、15d 以下では過 大評価となる。また、角式は全体的に過大評価を 示している。

図-5 付着強度式との対応

6. 簡易モデルの提案

重ね継手の機構を簡単に表した解析モデルを図 -6に示す。この簡易モデルは図-1に示す重ね 継手の1組であり、上下を逆に表示してある。試 験体は左右対称なので、半分をモデル化する。

簡易モデルの上部水平方向要素は主筋,下部水 平方向要素は添筋である。主筋と添筋は同位置で 結ばれるものとし,その鉛直方向要素は主筋と添 筋の間にあるコンクリートの付着を表している。 節点は鉛直方向には変位せず,水平方向にのみ変 位する。モデルのコンクリート断面は主筋と添筋 の接する点から上下と左右に60mmの領域とする。

図-6 簡易モデル

7. 復元力曲線の仮定

各要素に仮定した復元力曲線を図-7の(a) から(d)に示す。

(a) は主筋または添筋と、そのまわりのコン クリートの影響を受ける要素に対するものであり、 節点番号 x₃から x_{2n+1}までと x₂から x_{2n+2}までの水 平要素にあたる。第1折れ点はひび割れに相当し、 第2折れ点は主筋の降伏に相当する。降伏後の剛 性は初期剛性 K の 1/1000 倍とする。

(b) は主筋要素に対するものであり、節点番号 x_{2n+1}と x_{2n+3}間の要素にあたる。折れ点は主筋の降伏に相当し、降伏後の剛性は初期剛性 K₂の1/1000 倍とする。

(c) はコンク リートのみの要素 に対する曲線で節 点番号 x, と x, 間の ものにあたる。第 1折れ点は引張ひ び割れに相当する。 引張応力下ではあ るが、最大強度後 も耐力を保持しな がら下降するもの とし, その傾きは Park 等の提案 %に よるコンクリート の応力ーひずみ曲。 線を参考に仮定し た。最大荷重後は、 N,の20%まで下降, その後は、初期剛 性K.の-1/1000倍 の傾きとする。 最後に(d)は 付着の要素に対す るものであり, 節 点番号 x₃から x_{2n+2} の鉛直要素にあた る。まず, 第2折 れ点にあたる最大 荷重は $\tau_{\mu}\phi$ 」と仮 定する。ここで, φはシースの周長

を、1 は要素の長さを示し、 τ_{12} は藤井・森田式 による計算値を用いた。これは、実験値との比較 で最もよい対応を示していたためである。次に、 第 1 折れ点にあたるひび割れ荷重を $\tau_{12}\phi$ 1 と仮 定する。ここで、 $\tau_{12}=\tau_{22}$ とする。これは、藤井・ 森田式内のコンクリートの項のみを用いた値であ る。また、最大荷重後は、 $\tau_{12}\phi$ 1 の 0.2 倍の荷重 になるまで下降するものとし、その後の剛性 K₁₂ は K₁₂= τ_{12}/γ_{y} の-1/1000 倍とする。一方、ひず

み γ は、図-8 に示すように考 え、 $\gamma = (d^2 + l^9)$ ・ $\epsilon/dl と 仮定する。$ その第1折れ点はコンクリートのひび割れに関低 しているとし、 $ひずみ <math>\epsilon_a \epsilon$ 、 第2所代に関係 しているとし、 ひずみ $\epsilon_y \epsilon$ 用 いる。

8. 実験結果との比較

図-9 に各重ね長さの解析値と実験値を示す。 解析は実験値をよく再現しているが、全体を通し て、重ね長さの大きい方が実験値に近い値が得ら れた。重ね長さ 20d 以下では、解析値の最大荷重 の方が高め、25d 以上では、実験値の方が高めに

でる傾向にあった。

9. 解析結果の考察

図-10(a) 及び(b) には,それぞれ,20d 及 び 35d の試験体中央部から端部(加力部分)にか けての応力分布の推移を表している。それぞれ,

(I)は主筋部材,(Ⅱ)は添筋部材,(Ⅲ)は付 着部材を示す。主筋部材では中央部から端部に進 むにつれ,応力が大きくなっているのに対し,添 筋部材では中央部から端部に進むにつれ,応力が 小さくなっている。この勾配が付着応力に相当し, 最初に端部と中央部に応力が集中し,それぞれで 最大応力に達すると,負の剛性になるために,応 力が内部(端部と中央部の間)に向かって集中し てくることが認められる。

付着部材にのみ着目する。図-11 は、図-10 に示す重ね長さ 20d の付着部材応力のうち a 要素, b 要素,及び重ね長さ 35d の a 要素, b 要素の履

-287-

歴曲線である。

荷重が加わった時,重ね長さ 20d では,a,b 要素の応力にあまり差はみられない。また,図-10 に示されるように,終局時にはほとんどの付 着要素が最大応力に達している。これは,その破 壊形式が付着破壊であることを示しており,実験 終了時の試験体の状況と一致する。

これに対して重ね長さ 35d では, a'要素と b' 要素の応力には大きな差が見られ, 終局時に最大 応力に達している付着要素もほぼ半数ではある。 したがって, その破壊形式を付着破壊のみとは認 められない。しかし, 終了時の主筋部材, 添筋部 材では降伏強度に達している要素がみられる。こ れらのことから, 終局状況は付着破壊, 及び主筋, 添筋の降伏による破壊であることが認められる。 これも, 実験終了時の試験体と一致する。

本解析を行うことにより,実験終了時の破壊形 式を明らかにすることができた。また,付着部材 の剛性が,全体の剛性に及ぼしている影響が非常 に大きいことが確認された。

図-11 付着要素の履歴曲線

10. まとめ

D29 を用いた主筋後挿入方式の重ね継手の引張 試験を行い、次のような結果を得た。

- (1) シースの有無による影響はなく、一体打ち
 梁とプレキャスト梁の重ね継手の性能は、
 ほぼ同等であることが確認された。
- (2) 主筋,シース,グラウトは一体となって挙 動した。
- (3) 規格降伏強度5000kgf/cm²の鉄筋,設計圧縮 強度300kgf/cm²のコンクリートを用いた重ね継手で は,重ね長さ30d以上で降伏強度の応力伝達 が認められた。
- (4) 付着強度式は,藤井・森田式が最もよい適 合性を示したが,重ね長さ20d以上では Orangun式でもよく評価できた。

本研究で提案した簡易モデルにより,次の結果を 得た。

- (5) 計算による破壊形式は,実験の破壊形式と 一致した。
- (6) 簡易モデルで、重ね継手の破壊の推移を理 解することができる。
- (7) 付着部材の剛性が,全体の剛性に及ぼして いる影響が非常に大きい。

参考文献

- 藤井 栄,森田 司郎: 異形鉄筋の付着割 裂強度に関する研究(第2報 付着割裂強 度算定式の提案),日本建築学会論文報告 集,第324号,pp.45-52,昭和58年2月
- 2) 角 徹三:サイドスプリット型付着割裂破 壊するRC部材の付着強度式,日本建築学 会大会学術講演概集(関東),pp.225-226, 1993年9月
- 3) Orangun, C. O., Jirsa, J. O., Breen, J. E. : A Re-evaluation of Test Data on Development Length and Splices, ACI Journal, Vol. 74, pp.114-122., March 1977
- Kent D. C. and Park R. : Flexural Members with Confined Concrete ,Proc. of ASCE, Vol. 97, No.ST7 July 1971