論文 スラブ付き柱 RC・梁 S 混合構造接合部に関する解析的研究

内田和弘*1·野口 博*2

要旨:スラブを有し,柱 RC 梁 S から成る混合構造柱梁接合部試験体を対象として,スラ ブ幅をパラメータとした 3 次元非線形有限要素解析を行い,最大耐力,スラブのコンクリ ートや鉄筋の応力,ひずみを検討した。スラブ幅の異なる解析結果の比較より,コンクリ ートは,ほぼ日本建築学会 RC 規準のスラブ有効幅の範囲が圧縮で有効であり,スラブ筋 は,引張側でほぼスラブ全幅にわたって有効であった。最大耐力に関してもスラブ幅の影 響は小さく,RCS 構造のスラブの有効幅として RC 規準の有効幅程度が妥当であると考え られる。

キーワード:柱 RC・梁 S 混合構造, 柱梁接合部, スラブ, 3 次元 FEM 解析

1. はじめに

柱 RC・梁 S 混合構造(RCS 構造)の設計に おいて,梁降伏型の崩壊メカニズムを計画する 場合,柱や柱梁接合部などの非降伏ヒンジ部位 には,スラブの合成効果や動的な効果を考慮し て耐力余裕度が考慮される。ハイブリッド構造 に関する日米共同研究で作成された RCS 構造 柱梁接合部の実験データベース ¹によれば,436 体の柱梁接合部実験の内,スラブ付き試験体は 23 体と少なく,スラブの効果に関する検討は 解析的には殆どなく,実験的にも不足している。

本研究では,既往のスラブ付き柱 RC 梁 S 接 合部試験体を対象とした解析を行い,スラブが 取り付いた場合の接合部の挙動を調べると共に, スラブ幅を大きくした仮想試験体の解析を行い, スラブの有効幅を解析的に検討する。

2. 解析計画

解析対象試験体として,坂口ら²⁾が実施した No.13 試験体を選定した。同試験体は,日本建 築学会 RC 規準³⁾の有効幅程度のデッキスラブ を有する実物大寸法試験体である。破壊モード は梁降伏型である。柱梁接合部のディテールは,

*1 ㈱フジタ技術研究所構造研究部主任研究員(前千葉大学大学院) 博士(工学)(正会員) *2 千葉大学教授 工学部デザイン工学科・建築系 工博 (正会員)

梁貫通型のふさぎ板補強である。試験体の形状 を図-1 に, 接合部形状を図-2 に文献 2 より引 用して示す。柱断面は、DcxBc=1000x800(mm) で,梁断面は,H-750x250x14x25 である。接合 部はふさぎ板(縞付き鋼板 CH-PL-6) で覆われ ている。また, デッキスラブ (BLD-12, 厚さ 155mm)が1640mmの幅で取り付けられている。 スタッドコネクタは**6-19**(H=130@230)が1列 である。No.13 試験体の柱せん断力-層間変形 角関係を図-3 に文献2より引用して示す。実 験値と各部(接合部,柱,梁)の計算値の比較 を表-1に示す。計算値の比較では、S梁の全塑 性モーメントに対して, RC 柱の曲げ耐力は 1.58 倍, 柱梁接合部のせん断耐力は, 1.3 倍(日米 RCS 式¹⁾)および 1.67 倍(坂口式²⁾),実験 値は、1.4 倍である。実験値は、日米 RCS 式に よるせん断耐力を上回っているが、破壊モード は, 接合部降伏後の梁崩壊型であったと報告さ れている。文献2では No.13 試験体で想定して いる直交梁のスパンは明記されていないが、梁 スパンが 640cm, 柱せいと幅の比 (Dc/Bc) が 1.25 であることから, 直交梁スパンを 480cm 程度と想定し、2種類の解析ケースを設定した。 Case1: No.13 試験体 (RC 規準のスラブ有効 幅相当(164cm)をモデル化)

Case2:仮想試験体(スラブ全幅(480cm) をモデル化)

3. 合成梁の予備解析

3 次元 FEM 解析でスラブをモデル化する場 合, コンクリート立方体要素と鉄筋線要素の組 み合わせを用いる方法と鉄筋コンリートシェル 要素を用いる方法があるが,本解析では,前者 を用いる。立方体要素を用いて曲げ問題を解析 するには,剛性が高くなるなどの種々の問題が 知られているが,柱梁接合部の解析を行う際に は,スラブのみを細かく要素分割することは難 しい。そこで,No.13 試験体の解析に先立ち, 合成梁の曲げ試験の予備解析を行い,適用性を 検討する。解析対象は,平野らが実施した合成

図-3 柱せん断カー層間変形角関係 (No.13 (坂口ら ²⁾))

表-1 実験値と各部の計算値の比較

(耐力は、柱せん断力(kN)で表示)

		耐力	S梁単体の曲げ 耐力に対する比率					
J	ミ験値²⁾							
_		2030.0	1.40					
F	EM解析值							
	CASE1	2038.8	1.41					
	CASE2	2083.9	1.44					
Ā	+算値							
	柱梁接合部せん断耐力							
	日米RCS式 ¹⁾	1882.5	1.30					
	坂口式2)	2419.2	1.67					
-	RC柱曲げ耐力							
_	AIJ終局強度型 ⁶⁾	2285.2	1.58					
	<u>S梁曲げ耐力</u>							
	S梁全塑性	1447.2	1.00					
	合成梁(限界状態 ⁷⁾)							
	正曲げ	2183.3	1.51					
	負曲げ	1470.8	1.02					
		1827.0	1.26					
	合成梁(各種合成	しまた。 した。 した。 した。 した。 した。 した。 した。 し						
	正曲げ	2066.6	1.43					
	負曲げ	1470.8	1.02					
	平均	1768.7	1.22					
	合成梁(各種合成	合成梁(各種合成構造 ⁸⁾ :幅=480cm)						
	正曲げ	2566.0	1.77					
	負曲げ	1529.8	1.06					
	<u>平</u> 均	2047.9	1.42					

(合成梁曲げ試験 (平野ら4)))

--- 992 ---

梁の単純梁形式の正曲げ(スラブ圧縮)、負曲 げ (スラブ引張)実験 ∜である。曲げ試験の概 要を図-4 に示す。要素分割にあたっては、ス ラブ付き柱梁接合部の解析の場合と同程度の要 素寸法比になるようにした。図-5 に、荷重-変形関係の比較を示す。同図中には、平野らが 実施した2次元 FEM 解析結果⁴も併せて示す。 平野らの解析では、スラブとS梁の相対ずれが 接触面における仮想要素により考慮されている が、本解析モデルではスラブとS梁の境界面で 節点を共有し、考慮していない。正曲げに関し ては. 初期剛性がかなり高いが, 最大荷重に関 しては、実験結果と良い対応を示す。負曲げに 関しては,剛性はほぼ一致し,最大荷重は実験 結果よりやや低いものの、平野らの解析結果と 対応している。

予備解析の結果から,正曲げの剛性が高いと いう点が明らかになったが,耐力評価ではほぼ 妥当な結果が得られた。

4. 解析モデル

図-6 に、Case1、Case2の要素分割図を示す。 鉄骨梁ウェブ面での対称条件を利用して、全体の 1/2 をモデル化した。コンクリートには 8 節 点立方体要素、鉄骨には 4 節点シェル要素、鉄 筋には 2 節点線要素を用いた。柱主筋とコンク

コンクリート					
*** /	圧縮強度	圧縮強度	圧壊後の	ヤング係	引張強度
即辽	(MPa)	時の歪	収敷歪	数(MPa)	(MPa)
桂	26.5	0.00252	0.194	20496	2.3
接合部	28.3	0.00211	0.170	22359	2.1
细材					
	部位		降伏強度	ヤング係	
			(MPa)	数(MPa)	
鉄筋					
D32	主筋		391.3	192210	
D13	帯筋.ス	ラブ筋	349.1	186326	
任日					
25mm	塗フランジ	"	357.0	210843	
14mm	梁ウェブ		363.8	203978	
6mm	ふさぎ板		334.4	195152	
12mm	デッキ		258.9	205940	
鉄筋とコンク	リートの作				
	部位	付着強度	初期剛性		
		(MPa)	(N/mm ³)		
	林主筋		3.7	98.1	
	接合部主	筋	5.7	98.1	
鉄骨とコンク	リート間の	D特性			
			水平方向	鉛直方向	引張強度
	郡位		(MPa)	(MPa)	(MPa)
	共通		9.8	98067	1,1

表-2 解析に用いた材料定数

図-5 荷重一変形関係の比較 (合成梁の予備解析)

Case1:スラブ幅=164cm

リート間にはすべてボンドリンク要素を用い, 接合部内で鉄骨とコンクリートが接する部分に はすべて接合要素を設けた。デッキプレートは, シェル要素を用い,凹凸の間隔は,柱近傍では 実際の間隔に合わせている。スラブとS梁間の ずれやスタッドはモデル化していない。Casel と Case2 は;スラブ幅を変えるためにスラブの 座標位置のみが異なり,スラブ筋比,材料デー タは同じである。解析に用いた材料定数を表-2 に示す。材料モデルは文献5に示すモデルを用 いている。

境界条件は,対称面において,全節点の対称 面直交方向(Y方向)変位,シェル要素の節点 の対称面内2軸(X,Z軸)の回転変位を拘束 した。軸力導入時には,試験体脚部の柱のZ方 向変位を,水平荷重時には,試験体の頂部およ び脚部のX方向変位を拘束した。加力は,軸 力2648kNを載荷した後,梁端に強制変位を与 え,変位制御で加力を行った。

5. 荷重一变形関係

実験結果と解析結果の柱せん断カー層間変形 角関係の比較を図-7 に示す。実験結果、解析 結果および各計算値との比較を表-1 に示す。 Case1 と Case2 を比較すると、Case2 の方がわ ずかに剛性、最大耐力とも大きいが、その差は 非常に小さい。実験結果と解析結果を比較する と, R=10(x10⁻³rad.)までは, 良好な対応を示す。 R=10(x10⁻³rad.)以降,解析結果の方が剛性低下 が少なく実験結果より荷重が高いが、最大荷重 はほぼ一致している。表-1 に示すように、合 成梁としての曲げ耐力計算値は、S梁単体の曲 げ耐力計算値の 1.3 倍程度(正負平均)である が,実験結果および解析結果(Casel)の最大耐 力は 1.4 倍程度まで上昇している。ただし、 R=20(x10⁻³rad.)では、実験値は 1.23 倍,解析値 は1.35 倍であり、S 梁単体の曲げ耐力に対する 余裕度として 1.4 倍程度が下限であると考えら れる。また, RC 規準のスラブ有効幅に相当す る Casel とスラブ全幅をモデル化した Case2 で

図-7 柱せん断カー層間変形角関係の比較

図-8 スラブ断面の圧縮主応カコンター図

図-10 スラブ上面の圧縮主応カベクトル図

は、最大耐力に殆ど差が見られないことから、 RC 規準の有効幅の仮定が RCS 構造の有効幅と しても妥当であると考えられる。

6. スラブの応力, ひずみ性状

図-8 に圧縮側スラブの柱フェイス位置断面 のコンクリートの圧縮主応力コンター図を、図 -9 にスラブ上面位置のコンクリートの圧縮主 応力コンター図を、図-10 にスラブのコンクリ ートの圧縮主応力ベクトル図をそれぞれ示す。 いずれも、層間変形角が、R=20x10⁻³rad.時のも のである。図-11 に,スラブ筋のひずみ分布を 示す。

Casel と Case2 のコンター図を比較すると、ス ラブ幅の広い Case2 の方が圧縮主応力が 35MPa 以上の領域がやや広い。しかし、スラブ幅方向 の分布に関しては、Case2 においても Case1 の 有効幅に相当する位置より外側では応力は小さ くなっている。ベクトル図に関しても、Casel と Case2 の有効幅内の応力の流れ方に顕著な違 いは見られない。これらのことから、コンクリ ートに関しては、スラブの有効幅の範囲内で,

0.003

0.002

100.00

0.000

-0.001

0.003

0.002

0.000

-0.001

Strair 0.001

主に応力伝達が行われていることが分かる。 スラブ筋のひずみ分布をみると、引張側ではス ラブ幅の広い Case2 においても, R=46(x10-3rad.) では、全域のひずみが 0.0015 以上に達してお り、有効幅を超える範囲でスラブ筋が有効に働 いていたと考えられる。一方, 圧縮側では, Case2 で圧縮ひずみとなっている領域は、Casel の幅 とほぼ同様の範囲であり、その範囲の外側では、 引張ひずみとなっている。ただし、耐力の評価 においては、スラブ筋が全幅有効に働いたとし ても、中立軸位置の変動の少ない負曲げでの耐 力上昇は、正曲げに比べ小さい(特に、スラブ 配筋の少ないデッキスラブの場合)ので, RCS

図-11 スラブ筋のひずみ分布

図-12 柱梁接合部の圧縮主応カベクトル図

構造のスラブの有効幅としては, コンクリート の負担領域と対応する RC 規準の有効幅程度を 考慮すればよいと考えられる。

7. 接合部の応力分布

図-12 に柱梁接合部の圧縮主応力ベクトル図 を示す。同図は,梁フランジ内位置の要素の積 分点の主応カベクトルを示す。接合部内の応力 の流れにも,スラブ幅の影響は見られない。

8. まとめ

スラブ付きの RCS 構造柱梁接合部の FEM 解 析結果より得られた知見をまとめて示す。

- (1) RC 規準の有効幅相当のスラブを持つ柱梁 接合部試験体のシミュレーション解析では, 初期剛性,最大耐力に関して実験結果とよ い対応が得られた。
- (2) スラブ幅の異なる 2 つの解析結果の最大耐 力に顕著な違いは見られず、S 梁の全塑性 モーメントの 1.4 倍程度であった。
- (3) コンクリートの応力分布より、コンクリートに関しては、ほぼ有効幅程度が圧縮で有効であり、スラブ筋のひずみ分布より、スラブ筋は、引張側でほぼ全幅にわたって有効であることがわかった。
- (4) RCS 構造のスラブの有効幅としては、コン 同解説、19
 クリートの圧縮応力の負担領域と対応する 8) 日本建築学
 RC 規準の有効幅程度を考慮すればよいと考 解説、1985

えられる。

謝辞

本研究は,ハイブリッド構造に関する日米共 同構造実験研究(委員長:青山博之東京大学名 誉教授)の一環として行われました。

参考文献

- 建築業協会:ハイブリッド構造に関する日 米共同構造実験研究 柱 RC 梁 S 構造データ ベース検討結果最終報告書, 1998.9
- 2) 坂口 昇:鉄筋コンクリート柱と鉄骨梁で 構成される架構の力学的性状に関する研究, 京都大学学位論文,1992.2
- 3)日本建築学会:鉄筋コンクリート構造計算 規準・同解説,1991
- 4) 平野道勝,石川孝重:有限要素法による合 成梁の弾塑性解析,第2回電算機利用シン ポジウム,pp.259-263,1980.3
- 5)内田和弘,野口 博:梁貫通型接合部を有 する柱 RC 梁 S 構造 2 層 2 スパン架構の力 学的挙動に関する解析的研究,日本建築学 会構造系論文集,No.514, pp.207-214, 1998.12
- 6)日本建築学会:鉄筋コンクリート造建物の 終局強度型耐震設計指針・同解説,1990
- 7)日本建築学会:鋼構造限界状態設計指針・ 同解説,1998
- 8) 日本建築学会:各種合成構造設計指針・同 解説,1985

- 996 -