419

it-PPフィルム直交二軸延伸に伴う結晶各回折面 の配向挙動とそのシミュレーション

名工大[院]		南条	誠	名工大[院]	学	Ot∏⊞	聡
名工大	ΤĒ	日比	貞雄	名工大		坂本	雄二

1.緒言

結晶性高分子の延伸に伴う分子配向挙動に関し て、これまで様々な機器分析により評価されてい るが、変形機構については、断片的な知見にとど まっている。また、結晶部分の変形機構は、単結 晶の変形機構の研究によりかなり明らかになって きているが、非晶部が存在する高分子材料の変形 機構は、あまり明らかにされていない。

本研究においては立体規則性を有しさらに結晶 高次組織(球晶)を形成する代表的な結晶性高分 子としてアイソタクチックポリプロピレン(以後、 it-PPと略記する。)を選び、直交二軸延伸時にお ける結晶高次構造(球晶)または微結晶の延伸配 向挙動をX線回折により解析を行った。さらに金 属粒子の塑性滑りモデルを応用した Miles ら¹⁾によ るポリオキシメチレンの延伸配向挙動の解析法を 一般化して、it-PPフィルムを多結晶集合体とみな し、塑性変形の主因は結晶の滑りによると考えモ デル設定し、延伸時の微結晶の配向挙動及び結晶 領域での変形機構について調査を行った。

2.it-PPの塑性変形のモデル化

結晶性高分子材料が徐々に外力を加えられた場 合、弾性限界をこえて塑性変形に至る。この塑性 変形を引き起こす要因として微結晶内部の特定結 晶面での滑り変形やへき開、非晶鎖の引き伸ばし などが挙げられている。塑性変形要因の中で、結 晶性高分子の結晶相において、延伸操作などの大 変形に有効な変形機構は結晶の滑り変形である。 巨視的な応力の寄与により塑性変形が生じた場合 の、滑り変形機構を調査することは、延伸高分子 フィルムの成形加工を効率よく行うための指針に なると考えられる。

Natta ら²⁰の報告によれば、it-PP 分子のコンホ メーションはらせん状構造で、単斜晶系の結晶構 造をもち、その結晶単位胞の結晶学的な値は Table I で示される。この it-PP 結晶の原子密度 を考慮すると、多結晶集合体と考える試料を構成 する結晶単位は Table II に示す8種類の滑り機構 を有すると考える。均一応力を付与される滑り変 形は、次のような仮定の下に起こるものとする。

(I)結晶単位の変形は、考えられる滑り機構の中の1つのみが活動することによって実現される。

(Ⅱ)滑りは剪断応力の正の向きに発生し、剪断応 力のなす塑性仕事は常に正である。

(Ⅲ) 滑り面法線と滑り方向の直交性は、変形に際 し維持される。

また、結晶単位の集合体である試料の変形は、多 結晶集合体モデルとして、次のように表されるも のとする。

(IV)外力によって与えられた応力は、集合体内の 各結晶単位に均一に寄与する。

(V) 各結晶単位の変形の和が、集合体のひずみ変 化を与える。

(VI)各結晶単位には非晶部が付随するが、結晶単 位間の相互作用は小さく、無視できる。

(VII)各結晶単位の方位変化は、試料変形に対する 滑り方向ベクトルのアフィン変形によって表される。

3. 実験

 3.1 試料 試料は結晶性高分子である it-PP (チッソ製、Mw=3.57×105、Mn=5.3×104)
を使用した。it-PP はプレス成型法で温度 200℃、 圧力 200kgf/cm²の条件で厚さ 500 µ m のフィ

ルムに成形し、成形 後水中にて急冷し た。成形したフィル ムは 90mm × 90mm の正方形に 切り出し二軸延伸機 を使用して、延伸 温度 160℃、予熱 時間 330sec、延伸 速度 0.1m/s の条 件で延伸加工を

行った。延伸条件

は一軸幅拘束延伸、

同時二軸延伸、逐

次二軸延伸である。

Table I. The cry data of	stallographic it-PP.
a-axis (Å)	6.65
b-axis (Å)	20.96
c-axis (Å)	6.50
β (deg)	99.20

Table II. Slip system of it-PP crystal.

k	Slip plane	Slip direction		
1	(100)	<010>		
2	(100)	<001>		
3	(010)	<100>		
4	(010)	<001>		
5	(110)	<001>		
6	(110)	Transverse <001>		
7	(130)	<001>		
8	(130)	Transverse <001>		

3.2 極点図形 極点図形の測定はX線発生装 置に極点図形回折装置を取り付け、CuK α線を用 いて、電圧 40kV、電流 40mA、スキャンスピー ド 40°/min の条件で測定を行った。

3.3 シミュレーション 初期条件のランダム 配向状態の設定に対し、乱数発生法を導入し、延 伸に伴う塑性変形機構を多結晶集合体モデルによ り評価する。シミュレーションに用いられる滑り 形の選択は、前に示した各滑り系を各変形段階 (以後、step と略記する。)ごとに、それぞれの結 晶単位に1個ずつ最大塑性仕事の原理に従って配 分する。

4. 結果と考察 Fig.1 に 3.0 × 1.0 倍に一軸幅拘束延伸された

it-PP フィルムの広角 X 線回折により得られた結 晶各回折面、(110)、(130)、(040)面の厚さ方向から 見た極点図形を示す。また、Fig.2 に Table Ⅱ に 示した滑り系を用いた複合滑りシミュレーション による、(b)3.0 × 1.0 倍延伸フィルムの結晶各回折 面、(110)、(130)、(040)の極点図形を示す。なおシ ミュレーションでは極点図形を、延伸時のit-PP フィルムの面内対称性を考慮して 1/4 円で表示し

Fig. 2. Pole figures calculated from the slip model simulation. D.E. = 3.0×1.0

た。実測の図から、(040)面は X_1 軸方向(厚さ方 向)、(110)、(130)面は X_1 - X_2 面上に配向する事が理 解できる。この傾向はシミュレーションでも見ら れる。シミュレーションでは、延伸の進展ととも に(110)面は X_1 軸から X_2 軸方向に極角 θ_1 で70~ 80°付近、(130)面は40~50°付近に強く配向を 示す事が確認された。

Fig.3 に複合滑りシミュレーションの(a) 鎖軸方向に垂直な滑り系(以後、横方向滑りと略記する。)、(b) 鎖軸方向に平行な滑り系(以後、鎖軸方

(b) \bigcirc (100)<001> \bigcirc (110)<001> \bigcirc (110)<001> \bigcirc (100)<001> \bigcirc (130)<001>

向滑りと略記する。)の各 step 数における最大塑 性仕事による滑り系の選択比率を示す。この図か ら、step の進行とともに鎖軸方向滑り、特に(130) <001> 滑り系、ついで(010)<001> 滑り系、(110) <001> 滑り系が主に作用していることが分かる。 また、選択率の低い横方向滑りからも(130) Transverse<001> 滑り系、ついで(010)<100> 滑 り系、(110)Transverse<001> 滑り系が主に選択さ れていることが分かる。これらの事実から、(130)、 (010)、(110)面のような原子充填密度の高い面を持 つ滑り系が、優先的に作用していると考えられる。

参考文献

- 1) MJ.Miles and N.Mills, J.Mater.Sci., 10, 2092(1975)
- 2) G.Natta and P.Corradini, Suppl.Nuovo.Cimento, 15, 40(1960)