428

原子力構造材料の磁性と塑性の相関評価

原子燃料工業(株) 正 〇青木豊和 原子燃料工業(株) 礒部仁博

1. 緒言

原子力プラントの高経年化に伴い、材料劣化評価 手法の開発は今後さらに重要になることが予想さ れる。現在まで各種破壊・非破壊的手法により材料 劣化評価が試みられており^{[1][2]}、磁気的手法も有望視 されている。しかしながら各種磁気的手法を用いて 測定された信号と材料劣化(金属組織変化)との対応 は十分には議論されていないのが現状である。本研 究では超高感度低温 SQUID(Superconducting Quantum Interference Device)磁束計を用いて、原子力構造材の ミクロな金属組織の変化に伴う磁気的物性の変化 を評価した。

2. 実験

本研究で用いた SQUID 磁束計は、磁気シールド を使用せずに測定が可能な1次微分型グラディオメ ータであり、一般に測定時に磁気シールドが必要な マグネトメータではない。1次微分型グラディオメ ータは2個の検出コイル間の磁束の勾配(差分)を 測定するため、遠方で発生した磁場はキャンセルさ れ基本的には出力に影響しない。

SQUID磁束計計測システムの概念図と仕様を図1 及び表1に示す。

Fig. 1 Low Tc SQUID gradiometer system

Table 1 Specification of low Tc SQUID gradiometer system

pick-up coil	first-order gradiometer coil		
	$(6.7 \ \phi \ coil \ +6 \ turn, -6 \ turn)$		
lift off	8 mm		
SQUID sampling rate	100 Hz		
current of	1A ($\sim 1 \times 10^{-4}$ T at 8 mm		
AC superconducting magnet	below AC magnet)		
frequency of	1 Hz		
AC superconducting magnet			

SQUID 磁束計による磁束の測定は、図1のx-yス テージに置いた試験片に対して超伝導マグネット により交流磁場を加えながら行った。測定時の出力 信号の例を図2に示す。図2の横軸は超伝導マグネ ットに流れる交流電流を、縦軸は SQUID 出力電圧 を示すが、磁気的物性評価は図2中のスロープ値の 材料劣化に伴う変化を検出することにより実施し た。このスロープ値は測定中の試験片表面付近にお ける交流磁場が~1×10⁴T程度であるため、初磁化 率に対応するパラメータである。但し縦軸はあくま で1次微分型グラディオメータの出力であるため、 初磁化率そのものではない。

Fig.2 Typical output signal of SQUID gradiometer

なお試験体のSQUID磁束計のスロープ値の変化の 意味については、図3に示す軸対称3次元モデルを用 いて考察した。図中の記号の意味は次の通りである。 D₁: 超伝導マグネット外径、D₂: 超伝導マグネット 内径、C₁: 下部コイル中央の位置、C₂: 上部コイル 中央の位置、I: 超伝導マグネット電流、H: 超伝導 マグネットコイル高さ、L: リフトオフ、T: 試験片 厚み、μ: 透磁率、ρ: 抵抗率。またこのモデルで は試験片はr方向には無限である。図3のモデルを用 いれば、スロープ値は近似的に

スロープ値 = $(B(C_1) - B(C_2)) / I \cdots (1)$ で表すことができる。但し $B(C_1)$ と $B(C_2)$ はそれぞれ C_1, C_2 における磁束密度である。

Fig.3 Geometrical definition of SQUID gradiometer model

このモデルにより強磁性体でないインコネル 600 のような材料が塑性変形を受ける場合、塑性変形に 伴うµの変化は僅かであるため SQUID の出力はほ ぼリニアに変化することが分かっている。

本研究ではインコネル 600 合金の残留歪み、及び

炭素鋼の疲労により発生したミクロな金属組織の 変化に伴う磁気的物性値の変化を SQUID 磁束計で 評価した。

3. 試験結果と考察

3.1 インコネル600材の残留歪みの評価

Ni 基合金であるインコネル 600 材の引張試験片 4 本を焼きなまして転位密度を 10⁸ /cm² のオーダとし、 その後引張試験によりそれぞれ~0.2、2、4、8 %の 残留歪を加え、引張試験前後の SQUID 磁束計スロ ープ値の変化を評価した。その結果を図 4 に示す。

Fig.4 SQUID evaluation of resisual strain of Inconel 600

これより残留歪みの増加に伴いスロープ値が減少 する傾向にあることがわかる。また残留歪みを加え たインコネル合金に対して、破壊試験により転位密 度を測定した結果を図5に示す。

Fig.5 Dislocation density of strained Inconel 600

単結晶強磁性体については転位密度と初磁化率に は以下の関係があることが知られている¹³。即ち転 位密度の増加により磁化率が減少することが知ら れている。

- $\chi_0 \propto 1/\sqrt{D} \cdots (2)$
- **χ**₀:初磁化率
- D :転位密度

(2)式の関係が強磁性体でない多結晶実用材料の インコネル合金に成立するかを評価するために、転 位密度とスローブ値(初磁化率に対応)との関係を グラフに示したものが図6である。これよりスロー ブ値は(転位密度)^{-1/2}と直線関係があり、式(2) の関係が強磁性体でない多結晶材についても成立 する可能性が示唆され、スロープ値の減少傾向には 歪付与による転位密度の増加に伴う、初磁化率の減

Fig.6 Relation between slope value and dislocation density of strained Inconel 600

3.2 炭素鋼の疲労の評価

炭素鋼 S45C 加工材に疲労(応力振幅:17.5 kgf/mm²、 平均応力:17.5 kgf/mm²)を加え、破断に至るまで の間に適時 SQUID 磁束計により物性変化の評価を 行った結果を図7に示す。スロープ値は初期に増加 しその後減少傾向にある。本試験は加工材に対して 実施したものであるため、初期の残留応力緩和、そ の後の歪の蓄積がスロープ値(初磁化率に対応)の 変化の原因となったと考えられる。

Fig. 7 Change in slope value of carbon steel during fatigue

4. まとめ

残留歪み及び疲労を加えた原子力構造材に対して、 超高感度 SQUID 磁束計を用いて磁性と塑性の関係 を評価した。試験結果よりこれまで磁性と塑性の関 係が研究されていた単結晶強磁性体以外の実用材 に対しても転位密度と初磁化率の相関が得られた。

参考文献

- A.J. Allenn, D.J. Buttle, C.F. Coleman, F.A. Smith and R.L. Smith, EPRI NP-5590, Project 2614-9 (1988)
- [2] G. Dobmann, N. Meyendorf and E. Schneider, Nondestructive characterization of materials - A growing demand for describing damage and service-life-relevant aging processes in plant components, Nuclear Engineering and Design Vol.171(1997), pp.95-112.
- [3] H.Kronmuller, Magnetic techniques for the study of dislocations in ferromagnetic materials, International Journal of Nondestructive Testing, Vol.3, (1972), pp.315-350.