127

析出硬化系ステンレス鋼の腐食疲労特性 に及ぼす組織と欠陥の影響

1. はじめに

析出硬化系ステンレス鋼である 17-4PH ステンレ ス鋼は圧縮機等の回転機器によく使用される。こ れらの機器が塩化物や硫化物を含む腐食環境中で 使用される場合には供用中に腐食ピットや粒界腐 食が発生する場合があるため、微小な腐食性欠陥 に対する耐疲労性の確保が必要となる。特に回転 による遠心力に振動応力が重畳するため高応力比 での耐久性が重要となる。

本研究では、17-4PH ステンレス鋼について耐食 性改善のための熱処理条件を探索し、更に環境中 での疲労および疲労き裂伝ば特性に及ぼす組織、 欠陥、応力比の影響について検討した。

2. 実験

2.1 材料および試験片

表1に示す化学成分の17-4PH ステンレス鋼鍛造 材(150 ø 丸棒)を供試材とした。表 2 に示すように 溶体化温度、時効温度/時間を変化させた。疲労 およびき裂伝ば試験片は素材の半径方向が引張方 向となるように採取した。引張性質を表3に示す。

	lable l		Chemical composition (wt %)						
С	Si	Mn	Р	S	Ni	Cr	Cu	Nb	
.05	.32	.87	.036	.004	4.33	15.7	3.34	.34	

Table 2 Heat treatment

A (Standard):

 $1038^{\circ}C \times 0.5$ hr WQ + $580^{\circ}C \times 4$ hr WQ $1038^{\circ}C \times 0.5$ hr WQ + $580^{\circ}C \times 8$ hr WQ B (Long aging time): $1038^{\circ}C \times 0.5$ hr WQ + $538^{\circ}C \times 4$ hr WQ C (Low aging temp.):

D (High solution temp. & long aging time) :

1050°C×5.5hr WO+595°C×7.5 hr WO

... /

Table 3 Tensile properties									
Material	YS (MPa)	TS (MPa)	Elong. (%)	RA (%)					
A	1032	1092	16.2	55					
В	99 0	1057	16	48					
С	1083	1140	15.8	50					
D	1043	1159	17.8	46					

2.2 試験方法

㈱コベルコ科研 正 横幕 俊典 ㈱神戸製鋼所 仲山 善裕

硫酸・硫酸銅腐食試験を行い試料 (1) 腐食特性 表面の粒界腐食深さを顕微鏡観察により測定した。 (2) 高サイクル疲労試験

平滑材と人工微小欠陥(深さ a=0.05mm のドリ ル孔) 材を用いて回転曲げ(R=-1) 及び軸力疲労 試験(R=0.7)を行った。回転曲げ試験片は 8mm φ、軸力試験片は10mm×6mmの断面形状とした。 回転曲げ試験(57Hz)では試験片表面に腐食液

(23.7%NaCl + 4.65%Na₂SO₄ + H₂O, 30℃)を連続 的に垂らし、軸力試験(30Hz)では試験片を腐食液 中に浸漬した。

(3) 疲労き裂伝ば試験

コンパクト試験片(W=50mm, t=12.7mm)を前記 溶液に浸漬してき裂伝ば試験を実施した。応力比 一定(R=0.05)条件でのΔK 一定及びΔK 減少試 験に加えて、最高荷重 Pmr を一定にしたまま応力 比を漸増するΔK減少試験を実施した。

3. 結果および考察

3.1 腐食特性

溶体化温度・時効温度の上昇、時効時間の増大 によって粒界周辺への炭化物析出量が増え、その 結果粒界腐食感受性が増大した(図1)。

3.2 高サイクル疲労特性

大気および腐食環境中での高サイクル疲労特性 には上記熱処理条件の影響はほとんど現れなかっ た。そこで以下では標準熱処理材(A 材)につい てのみ結果を示す。図2に応力比R=-1におけるS-N 線図を示す。環境中での平滑材の疲労限度は大気 中での約 60%となっている。一方、a=0.05mmの人 工微小欠陥材については大気中では平滑材に比べ て大きな強度低下があるのに対し、環境中では平 滑材の疲労強度と大差ない。本材には a=0.05mm 程度の介在物が存在し、環境中ではこの介在物が

疲労破壊の起点になるため平滑材と人工欠陥材に 差異が現れなかったと考えられる。すなわち大気 中では問題にならない微小欠陥が、腐食環境中で は疲労強度を著しく低下させることを示している。 応力比 R=0.7 についても同様の結果が得られた。

3.2 疲労き裂伝ば特性

図 3 に巨視き裂および微小き裂の伝ば特性 ($da/dN-\Delta K$)を示す。巨視き裂については R=0.05 では大気中と腐食液中でき裂伝ば特性に差がない が、 P_{max} 一定条件では腐食液中でのき裂伝ば速度 が大気中に比べてかなり速かった。なお、 P_{max} 一 定下の ΔK 減少試験ではき裂伝ぱ下限界(ΔK_{th}) 付近で R=0.8 程度の高応力比となった。

微小欠陥材については応力比 R=-1 の結果を示し たが、R=0.05 での巨視き裂の特性に接近しており、 同応力比で比較すれば微小き裂が巨視き裂に比べ て高速で伝ばすることがわかる。図 3 中には疲労 限度から推定される微小欠陥材のΔK_bも記入した。

図4 に巨視き裂と微小き裂に対する ΔK_{th} の応力 比依存性を比較した。本図から応力比が同じであ れば巨視き裂の下限界特性には環境の影響は現れ ないと判断される。また、a=0.05mmの微小欠陥材 に対する ΔK_{th} は、大気中では巨視き裂のそれに比 べて 15%程度の低下を示すに過ぎないのに対し、 腐食環境中では約 50%まで低下する。環境の如何 を問わず ΔK_{th} は次式で表される。

 $\Delta K_{th} = \{ 1/(1-R) \}^{-\gamma} \cdot \Delta K_{th,0}$ (1) $\gamma = 0.55$ $\Delta K_{th,0} = 6.5 \text{ MPa} \sqrt{m} [巨視き裂 (大気中,液中)]$

=5.5 MPa√m [a=0.05mm 微小き裂 (大気中)] =3.2 MPa√m [a=0.05mm 微小き裂 (液中)]

図4中の曲線は(1)式による計算値である。

微小欠陥に対する ΔK_{th} の欠陥寸法依存性は村上 ら¹⁾の実用的な実験式($\Delta K_{th} \propto (\sqrt{area})^{1/3}$)や Haddad らの式²⁾等が提案されているが、腐食環境中での 定式化も望まれ、これは今後の課題としたい。

4. 結言 (省略)

参考文献

- 村上,金属疲労 微小欠陥と介在物の影響,養 賢堂,(1993)
- 2. El Haddad et al., Eng. Fract. Mech. 11, 573 (1979)

Fig. 2 S-N curves of smooth and small-defect specimens

