103

ショットピーニングによる被加工面の温度変化

岐阜大地域 長谷川典彦 東洋精鋼㈱ 〇服部兼久 渡邊吉弘

岐阜科搜研 福山邦男

1. はじめに

ショットピーニングは球形のショット粒を秒速数 十メートルから百数十メートルの速度で部材表面に 投射することにより部材表面に塑性変形を起こす冷 間加工方法とされるが、近年、ショットピーニン グ加工時の被加工面の温度がAa変態点を超える との指摘がなされている''。しかしながら、ショ ットピーニング加工時の被加工面の温度を実際に 測定した例は報告されておらず、また、温度上昇 に必要なショットピーニングの諸条件も明らかに なっていない。本研究では熱電対式温度計でショ ットピーニング被加工面の温度を測定し、これま でに得られているサーモグラフィー (赤外線熱画 像装置)の測定結果と比較した。また、ショット ピーニング加工後の部材について削食量、X線残 留応力測定で得られる2 θ - sin² ϕ 線図から温度 変化に関する検証を行った。

2. 実験方法

2・1 試験片 ショットピーニング加工に供す る円筒試験片は硬度の異なる2種類を用意した。 低硬度試験片は機械構造用炭素鋼S48Cを873Kで 焼鈍したもの(以下S48C焼鈍材と呼ぶ)、高硬度 試験片は肌焼き鋼SCM420に浸炭処理を施したも の(以下SCM420浸炭材と呼ぶ)を用意した。熱 処理後の試験片品質を表1に示す。

Table 1 WORKTIECC						
	Surface	Core	Effective			
	(HV)	(HV)	Depth(mm)			
S48C						
Annealed	220	240				
SCM420						
Carburized	720	300	0.62			

Table 1 Work Piece

2・2 ショットピーニング条件 ショットピ ーニング加工装置は直圧式のエアノズルタイプを 使用した。表2にショットピーニング条件を、表 3にはショット粒の種類、粒径、硬さおよびアー クハイト値(投射圧0.5MPa時)を示す。なお、 本研究のショットピーニングは被加工面の温度測 定を目的としているため、被加工面の温度上昇を 検知しやすいように試験片は回転させず、同一箇 所に連続して投射した。

2・3 温度測定方法 図1に熱電対による温度測 定の概要を示す。熱電対は被加工面の反対側から所 定の深さに埋め込み、銀ペーストで固定した。そし て1回60秒のショットピーニングを繰り返し行 い、熱電対が損傷して測定不能となるまで続けた。

Table 2 Shotpe	ening Conditions
----------------	------------------

Peening Time	ousec	
Injecting Volume	10kg/min	
Diameter of Nozzle	9.0mm	
Distance	110mm	

Table 3 Shot Media

		Hardness	Dia	Arc Height
	Туре	(HV)	(mm)	(mmA)
1	Rounded Cut Wire	820	0.62	0.65
2	Rounded Cut Wire	820	0.25	0.24
3	Steel Beads	840	0.15	0.12
4	Stainless Beads	240	0.15	0.065

測定結果は熱電対がダメージを受ける前までの最も 温度が上昇した値を採用した。熱電対にショット粒 が直接衝突した場合は温度変化もそれまでと異なる 挙動を示すことから、別途、熱電対に直接ショット ピーニングを施し、その温度変化挙動を観察した。

Fig.1 Outline for temperature measurement 3. 実験結果

3・1 温度測定結果 温度測定結果は最大変化 量をパラメータとして図2に示す。なお、2つの 測定方法の間では較正を行っている。すべての条 件において昇温量は熱電対の結果がサーモグラフ ィーを上回った。またサーモグラフィーによるS CM420浸炭材の温度測定結果は温度上昇がほと んど認められず、逆にわずかながら温度の低下が 認められるものもあった。これはショットピーニ ング加工中、被加工面にはショット粒が投射され ると同時に常に空気が吹き付けられ表面が冷却さ ていることを示しており、ショットピーニング加 工による温度上昇のピーク位置は最表面よりやや 内部に存在すると推察される。

Fig.2 Comparison of the maximum temperature change

3・2 熱電対への直接ショットピーニング 熱 電対を150HVのニッケル合金で測温接点を囲ん だ部材と考え、熱電対に直接ショットピーニング を施し温度を測定した。結果を図3に示す。

Fig.3 Temperature mesurement result in case of shotpeening to themocouples

熱電対に直接ショットピーニングした場合の温 度測定結果は他の部材の温度測定結果に比べ高い 値を示した。投射圧0.5MPaで約220℃まで温度 が上昇し、投射材による差は認められなかった。 3・3 削食量 S48C焼鈍材とSCM420浸炭材 において、温度変化量の他に部材表面の被削食量 にも大きな差が認められる。最大削食深さをパラ メータとして図4に示す。削食量と温度変化量に は明確な相関は認められないが、個々の投射材で は削食量の増加に伴い昇温量が増加する。被加工 面の温度上昇は削食によるところが大きいと考え られる。

3・4 2 θ -sin² ϕ 線図のゆがみ 冷間圧延し た材料表面は塑性変形により結晶方位分布が著し く偏って異方性を有しており、X線応力測定に際 して 2 θ -sin² ϕ 線図が多項次曲線になることが 知られている。今回のショットピーニングは同一 箇所に連続して 60 秒間の投射を行ったため被加

工面では冷間圧延に相当する塑性変形が起こって いるか、もしくはA₃変態点を超える発熱のため 異方性は解消され 2 θ -sin² ϕ 線図のゆがみは 小さくなると考えられる.よって、被加工面の 2 θ -sin² ϕ 線図のゆがみを調べることで、ショ ットピーニング加工中の温度上昇を推測すること ができる。図 5 にSCM420浸炭材の 2 θ -sin² ϕ 線図を最小自乗法で直線近似したときの標準偏差 をゆがみを表す代表値として、その深さ分布を示 した。Steel beads(840HV, ϕ 0.15mm)および

Fig.5 Standard deviation of $2\theta - \sin^2 \psi$ Rounded cut wire(820HV, ϕ 0.25mm)の標準偏 差は表面で最も大きい。内部ほどゆがみは改善さ れるがその傾きは粒径との相関があり塑性変形域 深さが粒径によって決まることを示している。こ れは冷間加工の特徴であり、ピーニング被加工面 の温度がA₃変態点を超えることは無いと考えら れる。

参考文献

1) 製法特許第1594395号