633

エネルギ分散型 X 線応力測定法による 多結晶体 AI の疲労損傷評価

1. はじめに

機械構造物の破壊事故原因の多くは疲労破壊であり、 その破壊は繰返し負荷荷重により部材内に導入される 損傷の蓄積がき裂を誘起し、それが進展することによ り生じるとされている。したがって、これら破壊事故 の防止には、き裂発生に至るまでの損傷を非破壊的に 検出することが重要課題となる。従来、その手段とし て磁気、超音波、X線法などの非破壊的損傷検出手法 が提案されている。中でも、X線回折法は、結晶性材 料の変形にともなう微視組織や格子ひずみの変化を非 破壊的に検出できることから、古くから各種損傷評価 法として広く利用されている。しかし、従来の手法で は、特性X線を使用するため、その波長の長さから表 面層のみの情報しか得られないといった問題を有して いる。

最近、共同研究者ら^{1,2)}は、連続 X 線を用い、回折 X 線のエネルギ値変化よりひずみ測定を行うエネルギ分 散型 X 線応力測定法を提案し、その手法により残留応 力の内部方向分布が非破壊的に測定できることを明ら かにした。そこで、本研究では、冷間圧延による残留 応力を有する多結晶体アルミニウム板に、板厚方向に 勾配を有する曲げ応力を繰返し負荷し、その各段階で 上記手法を適用し、その時の深さ方向残留応力や半価 幅変化を測定し、それらの変化から疲労損傷が検出で きるか、否かを検討した。

2.実験方法

2.1 試験片ならびに疲労試験 試験片は板厚 5[mm]の 市販の冷間圧延した工業用純アルミニウム (98.79[wt%])の平滑平面曲げ疲労試験片で、最小断面幅 8[mm]のものである。疲労試験は面外曲げで、応力比 は R=-1、応力繰返し速度は 27[Hz]、負荷応力振幅は 92,101,122[MPa]で行った。

2.2 X線応力測定法 本実験では、疲労にともなう残 留応力変化を表面から深さ方向の各部にわたって評価 するために、エネルギ分散型X線応力測定法を用いた。 測定法は sin² Ψ法で、側傾法により行った。測定条件 は表 1 に示す通りであるが、試験片には圧延による集 合組織が存在するために、入射角によって十分な回折 強度が得られなかった。そのため、ここでは回折ピー ク強度値が 5000[cps]以上となる入射角 Ψを用いて sin² Ψ線図を求めた。図1はエネルギ分散型 X線応力測定 装置を模式的に示したものであるが、特に、本測定装 置では、プリアンプやマルチチャンネルアナライザ (MCA)などのX線計測部の温度変動が直接回折X線エ 滋賀県大工 三好 良夫 高松 徹 田邉 裕貴 岡本 〇小谷 英生 堀場製作所 大堀 謙一 大澤 澄人 エックスレイプレシジョン 細川 好則

ネルギ値に影響を及ぼすため、それらを恒温槽内に収納しその内部温度を 40.0℃±0.1℃に制御した。なお、残留応力値 σ_L は、次式 ³⁾により算出した。

$$\sigma_L = -\frac{E}{1+\nu} \cdot \frac{1}{E_{n0}} \cdot \frac{\partial(E_n)}{\partial(\sin^2 \psi)}$$
(1)

ここで、応力値の算出に用いた弾性定数 E、ポアソン比 ν はそれぞれ 70.3[GPa]、0.345 で、 E_{n0} は無ひずみ状態のエネルギ値、 $\partial(E_n)/\partial(\sin^2 \Psi)$ は $E_n-\sin^2 \Psi$ 線図の勾配である。

Table 1 Conditions of X-ray stress measurem

Using X-ray	Continuous X-ray (Mo target)	
Diffraction plane	Al 111, 222, 511/333	
Tube voltage	55[kV]	
Tube current	74[mA]	
Bragg's angle, θ	16.5°	
Fixed time	2000[sec/Ψangle]	
Incident angle, Ψ	18.4°,20.7°,22.8°,24.7°,26.6°,	
	28.3°, 30.0°, 31.6°, 33.2°	
v axis Diffraction angle θ Goniometer Specimen v angle Collimeter		

Fig.1 Schematic of energy dispersive stress measurement system.

3.実験結果ならび に 考 察

3.1 疲労過程の表面組織変化 図2は、疲労にともな う試験片表面の光学顕微鏡写真を応力振幅 92[MPa]に 関して示したものである。観察位置は、X線応力測定 時の照射域である。図2(a)は疲労初期のものであるが、 光学的には、未だ繰返し応力によるすべり線やすべり 帯などは認められていない。図2(b)は疲労中期のそれ であるが、この段階においても、まだ光学的な変化は 観察されない。しかし、疲労後期になると、試験片表 面に図2(c)に認められるような、数[µm]~100[µm]程 度の微視き裂の発生が観察される。さらに、繰返し数 を増すと、図2(d)のように、先に発生した微視き裂が さらに発達し、その長さを増すとともにその密度も高 くなり、観察視野全域に認められるようになる。しか し、これらは、まだ巨視き裂までには至っていないが、 試験片の最小断面部の端部には、巨視き裂の発生と、 僅かな進展が観察された。

Fig.2 Change of surface structure in fatigue process.

3.2 疲労過程の残留応力の変化 図3は、エネルギ分 散型X線応力測定法により求めた疲労過程の残留応力 σ_{L} と繰返し数Nの関係の一例を応力振幅92[MPa]につ いて示したものである。ここでは、特に、表面から深 さ方向の残留応力変化を調べるために、X線の侵入深 さが異なり、かつ互いに平行な同族回折面である 111, 222, 511/333 面に注目した。なお、各回折面の有効 X線侵入深さは図中に示した。図3より、用いた試験 片の表層部には圧縮の、また内部には引張の初期残留 応力が存在していることがわかる。ここで、疲労に伴 うそれらの残留応力変化を見ると、表層部である 111 面のそれは、繰返し数の増加に伴い初期の圧縮残留応 力は一旦増加した後、その圧縮残留応力が減少して、 引張側に移行する。さらに、繰返し数を増すと、その 残留応力は再び圧縮側への移行と引張側への移行を繰 返しながら、残留応力自身は全体的に引張側に移行す る傾向にある。しかし、最終的には初期残留応力自身 は減少し、引張側に移行する。その繰返し数は、光学 的に微視き裂が試験片表面で認められる時期にほぼ一 致しているようである。このような疲労に伴う残留応 力の変化傾向は、青山ら4、児玉5の結果とも一致する 傾向にある。ここで、同じ繰返し数における残留応力 の変化量を深さの異なる111,511/333面について比較す ると、表層部の 111 面のその変化量の方が深層の 511/333 面のそれより大きく、その変化傾向も明確なも のとなっている。これは、負荷応力が表面から深さ方 向に勾配を有する面外曲げ疲労であるため、受ける損 傷の度合いが表面ほど大きくなっているためと考えら れる。

3.3 疲労過程の半価幅比の変化 図4は、残留応力測 定時に得たX線入射角Ψ=22.8°の回折強度分布曲線 の半価幅 b と繰返し数 N の関係の一例を応力振幅 92[MPa]について示したものである。ここでも、残留応 カと同様にX線侵入深さの異なる 111,222,511/333 面に 注目した。図4より、初期の半価幅値は回折面によっ て異なることがわかる。これは、用いた試験片が圧延 加工材であるため、その圧下率が板厚方向で異なるた めとも考えられる。図4において、疲労に伴うこれら の半価幅値を各回折面で比較すると、111 面の半価幅値 は繰返し数が増加してもほとんど変化せず、ある繰返 し数では若干増加した後、減少する傾向にある。 511/333 面の半価幅値の変化傾向も 111 面とほぼ同じ傾 向にあるが、111 面ほど明確ではない。

以上のように、疲労に伴う半価幅値の変化は、残留 応力の変化に比べて小さくために、半価幅変化により 疲労損傷評価をすることは困難のようである。

Fig.3 Relationship between number of cycles and residual stresses.

Fig.4 Relationship between number of cycles and half value breadths.

4. まとめ

以上、エネルギ分散型X線応力測定法を用い、多結 晶体 Al の曲げ疲労過程における初期残留応力ならび にその深さ方向の変化を調べた。その結果、試験片表 面ならびに内部の残留応力変化が評価できることから その損傷評価の可能性が示唆された。

参考文献

 1)細川・大澤・大谷・阪野・三好,材料,43,766-771(1994).
2)細川・大澤・大谷・阪野・三好,材料,日本材料学会第29回 X線材料強度に関するシンポジウム講演論文集,86(1993).
3)長尾・楠本,材料,26,576(1977).
4)青山・並川,材料,13,98 (1964).
5)児玉,日本機械学会誌,75,1026(1972).