303 粉末ターゲットを用いたスパッタリング法で生成した

GaN 膜の残留応力評価

徳島大工 〇日下一也,英 崇夫,富永喜久雄

1. 緒 言

III-V属化合物半導体である窒化ガリウム(GaN)は、 直接遷移型のバンド構造を持ち、そのバンドギャップが 室温で約3.39 eV と近紫外光領域にあるため、アクセプ タ不純物の関与する発光を利用した青色発光ダイオード への応用が行われている¹⁾.一般に GaN は、化学的気相 蒸着(CVD)の一つである有機金属気相成長法(Metalorganic Vapor Phase Epitaxy: MOVPE)により1000℃以上の 高温でサファイア基板上に堆積される²⁾.一方、物理的 気相蒸着(PVD)の一つであるスパッタリングは低温での 蒸着が可能であり^{3,4},液晶上の薄膜トランジスタ (TFTs) への応用が期待される.

p型半導体を作るためには、GaN 中に Mg や Zn などの p型不純物を、n型の場合は Si や Ge などの n型不純物 を混入する必要があり、粉末ターゲットを使用するとこ れらの不純物のドープが容易に行える。

本研究では、良質な単結晶 GaN 膜を形成することを目 的とし、GaN 粉末ターゲットを用いてサファイア基板上 に GaN 膜を堆積させた.スパッタリングガスとして窒素 とアルゴンの混合ガスを用い、窒素濃度を変化させた. 得られた膜の結晶配向性と残留応力をX線回折により評 価した.

2. c軸配向膜のX線的応力解析法^{3.4}

GaN の結晶はウルツ鉱型稠密六方構造であり, それぞれの格子定数は a=0.31892 nm および c=0.51850 nm^{5, の}である.また, スパッタリング法により単結晶サファイア 基板上に堆積された GaN 膜は, 結晶の c 軸が基板面法線 方向に一致した結晶構造を有している.

測定される膜の状態として、(1) 応力状態は等方平面 応力状態であること、(2) GaN 膜はその c 軸を基板面法 線方向に優先配向する微細結晶の集合体であり、その面 内方位は c 軸のまわりに 2πの回転自由度をもつものと 仮定すると、格子ひずみ ⁴33 と応力σの関係は

$$\epsilon^{L}_{33(hk,l)} = (s^{*}_{11} + s^{*}_{12} - 2s^{*}_{31}) \sin^{2} \psi_{hk,l} \sigma$$

$$+ 2s^{*}_{31} \sigma,$$
(1)

で表現され、 $\epsilon^{l}_{33(hl,l)}$ は $\sin^{2}\psi_{hl,l}$ に対して一本の直線上に整理されることが分かる.

sin²ψ線図の直線の勾配は,

$$\frac{\partial \varepsilon^{L}_{33(hk\cdot l)}}{\partial \sin^{2} \psi} = (s_{11}^{*} + s_{12}^{*} - 2s_{31}^{*})\sigma, \qquad (2)$$

であるから、 $s_{11}^*+s_{12}^*-2s_{31}^*$ の値を知れば、実際的に求めた 直線の勾配より膜の面内応力 σ を求めることができる. ここで GaN の弾性コンプライアンスとしては、 $s_{11}^*=5.10$ ×10³ GPa⁻¹、 $s_{12}^*=0.92 \times 10^3$ GPa⁻¹および $s_{31}^*=-2.48 \times 10^3$ GPa⁻¹を使用した⁷.本応力測定では低角度の回折線も使 用するので、測定精度を確保することを目的に、標準物 質として GaN 粉末を用い、次式により格子ひずみを計算 した.

$$\varepsilon(hk \cdot l) = \frac{d(hk \cdot l) - d_0(hk \cdot l)}{d_0(hk \cdot l)}, \qquad (3)$$

ここで *d*(*hk* ·*l*)は GaN 膜の格子面間隔, *d*₀(*hk* ·*l*)は GaN 粉 末の格子面間隔である. 使用した回折線は 00・4, 10・1, 10・2 および 10・3 である.

3. 実験方法

3.1. GaN 膜の作製 GaN 膜は, Fig.1 に示す従来型の高 周波(RF)プレーナ・マグネトロン・スパッタリング装置 を用いて単結晶サファイア基板上に堆積させた. 雰囲気 ガスとして N₂と Ar の混合ガスを使用した. ターゲット 材料には粒径約 1µm, 純度 99.999%の GaN 粉末を用い, 中央にくぼみのあるステンレス皿に固めて使用した. タ ーゲットの背後には同心円状の永久磁石が内蔵され,発 生するプラズマをターゲット表面に閉じこめてプラズマ の基板への直接衝突を防ぐように構成されている.

成膜条件として,スパッタガス圧を0.27Pa,基板温度 を600℃,入力電力を200W,堆積時間を120分に保持し,

Fig.1 Schematic diagram of the RF magnetron sputtering system with powder target.

-63-

Fig.2 Effect of nitrogen concentration on film thickness.

Fig.3 Effect of nitrogen concentration on c-axis orientation and intensity of 00.2 diffraction line

スパッタガス中の窒素濃度(C_{N2})を 0, 20, 50, 100%と変化 させた.

4. 実験結果

4・1 **膜厚の窒素濃度依存性** GaN 膜厚は表面粗さ試験 機で測定した. Fig.2 に GaN の膜厚と窒素濃度 C_{N2} の関 係を示す. 膜厚は窒素濃度 C_{N2} の増加とともに減少する. 堆積率は低窒素濃度領域($C_{N2} \leq 20\%$)で 6.7nm/min, 高窒素 濃度領域($C_{N2} \leq 50\%$)で 1.9nm/min であった.

4・2 c軸配向性および回折線強度の窒素濃度依存性 GaN00・2 回折線を用いて c 軸配向性と回折線強度を調 べた. c 軸配向性はロッキング曲線の半価幅と定義した. Fig.3 に c 軸配向性および 00・2 回折線強度の窒素濃度依 存性を示す. $C_{N2}=20\%$ のとき, c 軸配向性が最も良く, 回折線強度が最も大きくなった. したがって, $C_{N2}=20\%$ の条件で成膜すると,構造的に最も良い GaN 膜が形成さ れる.

4・3 GaN 膜の残留応力の窒素濃度依存性 Fig.4 に GaN 膜 の残留応力と窒素濃度 C_{N2} の関係を示す. 低窒素濃度領 域($C_{N2} \leq 20\%$)では引張残留応力が発生し, 高窒素濃度領 域($C_{N2} \leq 50\%$)では-1GPa を超える大きな圧縮残留応力が 発生した. また, サファイア基板と GaN 膜の熱収縮差に より発生する熱残留応力は約 34MPa であった.

5. 考察

アルゴンイオンの質量は窒素イオンの質量の 2.6 倍あ るので、スパッタ効率はアルゴンガスを用いたほうが高 くなる.したがって、窒素濃度が増加するに従い、スパ

Fig.5 Effect of nitrogen concentration on residual stress in GaN film.

ッタ効率は低くなり、膜厚が減少する.

窒素濃度が低い場合には窒素不測の GaN 膜が形成され、窒素濃度が高い場合には窒素過剰の GaN 膜が形成されると考えられる.本実験では、C_{N2}=20%で成膜を行うとガリウムと窒素の成分比が 1:1 になり、構造的に最も良い膜が形成されると考えられる.

スパッタ原子の平均自由行程(mean free path: *MFP*)は 次式で計算される.

$$MFP = \frac{W_{\rm G}}{d_{G(p,T)} \times 2\pi \left(r_{\rm T} + r_{\rm G}\right)^2},$$
 (4)

ここで W_G および d_G はそれぞれ雰囲気ガス分子の質量および密度, r_T および r_G はそれぞれターゲット原子および 雰囲気ガス分子の半径を示す.雰囲気ガス分子の密度 d_G はガス圧pと温度Tに依存する.

低窒素濃度(C_{N2} =0%)の場合,粉末ターゲットからスパッタされた Ga およびN原子の*MFP* はそれぞれ 48.6mm および 84.6mm であり,窒素濃度の増加とともに増加する.高窒素濃度(C_{N2} =100%)の場合には,Ga およびN原子の*MFP* はそれぞれ 80.8mm および 180mm となる.

低窒素濃度(C_{N2}≤20%)の場合,MFP は短く,スパッタ リング原子は雰囲気ガス分子に衝突散乱して運動エネル ギが失われる.それに対して,高窒素濃度(C_{N2}≤50%)の 場合,MFP は長いので,スパッタリング原子は高い運動 エネルギを保持したまま基板に到達する.基板上に堆積 した膜は,高エネルギを持ったスパッタリング原子に衝 突されることでピーニングが起こり,圧縮残留応力が発 生したと考えられる^{8,9}.

まとめ

本研究は、GaN 粉末ターゲットを用いて単結晶サファ イア基板上に GaN を作製した. 雰囲気ガスとして Ar お よび窒素の混合ガスを用い、結晶配向性および残留応力 の窒素濃度依存性を調べた. 窒素濃度 C_{N2} が 20%で成膜 した場合、構造的に最も良い GaN 膜が形成された.

「参考文献」は頁の都合上省略する.