307

炭素複合材料の配向関数

日本原研 〇馬場信一

1緒 言

炭素繊維強化炭素複合材料は高強度・耐熱性の観点から原 子カ分野への応用が期待され、実構造物を製作する時の残留 応力除去が課題となっている。ここで炭素複合材料のような 特に異方性の強い材料の残留応力測定の際、基本的な結晶構 造パラメータである無歪み素材の格子面間隔の測定とともに 異方性因子としての配向関数/BAF(Bacon Anisotropy Factor) を把握することが重要であることは言うまでもない。

そこで、本研究では PAN 系炭素繊維及び PAN 系炭素繊維 複合材の配向関数について、X 線及び中性子回折により調べ た。

2 配向関数

残留応力 σ は格子面間隔の変化量 Δd から歪み ε を求め、 材料の特徴に応じて得られる特定の格子面に依存したヤング 率 E 及びポアッソン比 ν により、Hooke の法則から[1]式によ り評価できる。

$\sigma = E \varepsilon / \nu \qquad [1]$

一方ヤング率は、[2]式に示すように平均配向角 φ の関数と して与えられる。

 $1/E = s_{11} + \alpha \cdot s_{44} \cdot \sin^2 \phi \cdot \cos^2 \phi \qquad [2]$

ここで s_{11} 及び s_{44} は弾性コンプライアンス定数である。ま た、 α は0~1 の範囲にあるバラメータで、定応力モデルでは 1、定歪モデルでは 0 となる。Reynolds ら¹⁾ は[2]式で α =1 と仮定し、ヤング率の実測値から配向角 ϕ を求め、その結果 が X 線回折による配向関数の半価幅 ϕ_m とほぼ一致するとし た。Reynolds らによるとヤング率は平均配向角の関数となる が、繊維の引張破断はこの平均角より大きな配向角をもつ結 晶子の短軸方向の剪断破壊によって始まる。これは熱処理温 度の増加による黒鉛化度の進展と関連しているため、炭素複 合材料を構成する炭素繊維単独の評価が重要である。そこで 以下の実験では、配向関数を指標として複合体とともに繊維 単独の評価も行った。

3 実験方法

3.1 供試材

配向関数の測定に使用した PAN 系炭素繊維は、T300-3K(東 レ製)である。製造履歴の詳細は公表されていないが、最終焼 成温度を 1500℃程度と推測し、市販品をヘリウムガス雰囲気 中 2000、2300、2500、2800℃の各温度でそれぞれ 1 時間加熱 処理したものを供試材とした。中性子回折に使用した炭素複 合材料 2D-C/C (2-dimensional carbon/carbon composite,CX-270G, 東洋炭素(株)) である。製造方法は PAN 系炭素繊維の 6K(繊 維束のフィラメント数: 6000) 平織りクロスにフェノール樹

場信一 斎藤 保 皆川宣明 石原正博

脂を塗布し、真空バッグ法によって成型後、熱処理による硬 化を施して炭素繊維強化プラスチック(CFRP)とした。CFRP は不活性ガス雰囲気下、800℃以上の温度に保持して炭素化熱 処理を行い、C/C 化される。最終熱処理温度は~2800℃の非 酸化性雰囲気で行った。供試材の機械的特性は、かさ密度 1.63g/cm3、引張強さ 167MPa、3 点曲げ強さ 133MPa(いずれ も荷重線がクロス積層方向に垂直の場合)、クロスに対して平 行方向の縦弾性係数は 81GPa、層間剪断強さ 5.7MPa である。

3.2 X 線回折実験

X 線回折実験には回転対陰極型回折装置(理学電機製 RU100-PL 及び RINT1500)を使用し、配向関数及び X 線パラ メータを測定した。配向関数 I(φ)は、素材中の結晶子の選択 的配向性を表す Bacon²⁰の定義した関数で、RU100-PL 装置に 繊維試料台を取り付け、繊維軸方向に対する 002 面の法線密 度の分布を測定する方法で求めた。

X線パラメータは粉末法により RINT1500 装置で測定した。 X線の単色化には Ni フィルターを使用し、標準 Si で補正した 002, 100 004 110 回折線から CuK_a1, K_{a2}を分離したのち、網面間隔($d_{002}, d_{004} = c_{0004}/2$)、a 軸方向の格子定数($a_{0(100)}, a_{0(110)}$)、見かけの結晶子径($La_{(100)}, Lc_{(002)}$ 等)及びc 軸方向の結晶格子歪 $\lambda(\delta c)$ を求めた。

3.3 中性子回折実験

中性子回折装置として原研の第3号原子炉(JRR-3M)に付設 されている中性子散乱実験施設の残留応力解析用中性子回折 装置(Diffractometer for the Residual Stress Analysis, RESA)を使 用した。RESA の単色化用単結晶としては、水平垂直集光型 Si(311)結晶及び垂直ベント集光型熱分解黒鉛 PG(002)結晶が 使用されている。入射中性子の波長補正は標準粉末として Si(NBS)を使用し、2=0.182318nm とした。配向角の測定は002 回折角度=31.37858°に設定して 0.5°ステップ間隔で 180° 回転させて強度分布を測定した。配向関数はX線法と同様の 方法により評価した。

4 結果

熱処理による配向関数の変化を Fig.1 に示す I(ϕ)値は、002 回折線の強度分布から求めたもので、横軸 ϕ は繊維軸に対す る結晶子(炭素網面積層)の配向角であり ϕ =0°が繊維軸方向 に相当する。なお 002 回折強度 I₀₀₂ は、繊維軸と直交する方 向で最大となり繊維軸方向で最小になるため、図の配向関数 は X 線回折で得た(I₀₀₂・ ϕ プロット)を横軸方向に 90°ずらせ た結果である。また、I₀₀₂ 強度の測定は ϕ =0~360°の範囲で 行い、バックグラウンド強度(80cps)を補正し、得られた 4 組 の(I₀₀₂・ ϕ プロット)を平均した。配向関数を定量的に比較する ため、I(ϕ)の最大値を 1 とした相対強度を cos^m ϕ で近似した。 m 値は実測曲線の半価幅 Z をもとに 1/2= cos^mZ として求め た。Fig.1 は炭素複合体の近似結果と併せて炭素繊維の結果も

Fig.1 Orientation function of T300-3K fiber and c/c composite calculated from the half width at half maximum of experimental curve.

プロットした。炭素繊維では少なくとも 【 (φ)>0.3 の領域で は実測値とよく一致しているが、複合材では必ずしも一致し ていない。配向関数の熱処理による変化は、熱処理温度の増 加とともに繊維軸に対する炭素網面の選択的配向性が増加し、 半価幅の減少による m 値の増加が認められる。

5 考察

5.1 配向角と結晶子径

加熱処理により繊維軸方向に対する結晶子の配列化が進ん だ。配向関数を相対強度で比較した Fig.1 の結果では、熱処理 温度の増加にともない配向角の大きな結晶子の比率が減り、 平均配向角が減少した。一方、I(φ)強度の実測値を直接比較 すると、配向角がφ>15°の領域では 2800℃で熱処理した試 料と未熱処理試料との強度差が少ない。この原因は、熱処理 後の試料では配向角の大きな結晶子の数は減少するが、個々 の結晶子の黒鉛化が進み回折線強度が高くなったためと考え られる。

5.2 ヤング率と平均配向角

(a) T300-3K

ヤング率を平均配向角の関数とした[2]式で、Reynolds らは 定応カモデルを仮定し、第1近似でパラメータ α=1 としヤン グ率の実測値から平均配向角を求めている。しかし、その方

HTT	E,	E[GPa]		¢[deg]	\$ [deg]	•-
(°C)	[GPa]	av.	atd	(a=1)	(a=0.25)	[deg]
As received	164	182	19	7.68	16.0	172
2000	219	268	27	5.91	12.1	14.0
2300	256	289	25	5.59	31.4	125
2500	285	296	23	5.49	11.2	115
2800	300	273	49	5.83	11.9	11.1
(b) from	average (Reynolds	of IE, -E and Shari	: 27(GPa except	l for 6' value		
Fiber	E	¢ [deg]	¢ [deg]	¢[deg]		
	[GPa]	(cr=1)	(a≈0.25)	(cellulose)	(PAN)	
Туре 🛙	250	6.1	12.7	10.5	15	
Type I	360	4.7	9.5	8	10	
+	570	2.9	5.9	6	6	
	• ; hot st	retched				

Table 1 Young's Modulus and Crystallite Mean Misorientation Angle.

法で彼らの得た平均配向角は X 線回折実験による φ_mの 1/2 程度である。(Table 1(b))さらに今回の T300-3K 繊維について もα=1 とした場合同様の結果が得られており、これらの結果 からαは1 ではなく定応力モデルと定歪みモデルの中間の値 (0<α<1)をもつと考えられる。

理論的な方法で α 値を決めることは困難なため、[2]式で α を変数としてヤング率と配向角の関係を求め、これらの計算曲線と実測値から得た関係とを比較することで α の最適値(0.25)を得た。Fig.2 はその方法を示したもので、図中の実線

Fig.2 Relationship between Young's modulus and crystallite mean misorientation. Solid and dotted lines are calculated moduli from equation

または点線は α 値を 0~1 の範囲で変化させたヤング率の計 算結果で、実測点には今回の T300-3K のほか Reynolds らによ る PAN 繊維の結果も含めた。ヤング率を以上の中間モデルで 計算した結果、T300-3K では実測値との差の平均 27GPa で、 この値は Table 1(a)に示すように実測値の標準偏差の平均 (29GPa)と同程度である。また、[2]式によるヤング率の計算で、 弾性定数は 1/s₁₁=900GPa, 1/s₄₄=4GPa としたが、Kelly³⁾の値か ら計算してもその差は 10%程度であり、最適な α 値も同様に 0.25 であった。

6 結論

PAN 系炭素繊維及び PAN 系炭素複合材の配向関数について、X 線及び中性子回折により調べた結果、以下の結論を得た。

- PAN系炭素繊維の配向関数は熱処理によって、少なくともI(φ)>0.3の領域では実測値とよく一致しているが、複合材では必ずしも一致しない。
- 2) また、熱処理温度の増加にともない配向角の大きな 結晶子の比率が減り、平均配向角が減少した。
- ヤング率と配向関数の関係式中のα値は、実測デー タのフィッティングによる検討の結果α=0.25 とし た場合、よく一致することが分かった。
 参考文献
- 1) W.N.Reynolds and J.V.Sharp, Carbon 12, 103(1974)
- 2) G.E.Bacon, J.App.Chem. 6,477(1956)
- B.T.Kelly, Physics of Graphite, pp.62-147. Applied Science Publishers, London and New Jersey(1981)