影響関数法による複数き裂の応力拡大係数の解析とその応用

横浜国立大学 日本海事協会

学 〇吉川直紀 横浜国立大学 白鳥正樹 会 松田 宏之 日本海事協会 松下 久雄

1 緒 言

構造物の安全性を評価するためには、疲労き裂進展寿命 を正確に求めることが極めて重要である。その際、一般に、 き裂近傍における力学的パラメータである応力拡大係数(K 値)が用いられる。そこで著者らは、3次元表面き裂の深さ 方向及び幅方向に分布する任意の応力分布に対して、影響関 数法によりき裂前縁のK値を効果的に評価する方法を提案し、 平板中の半楕円表面き裂、丸棒中の半楕円表面き裂などに対 してき裂のK値の影響係数Kijを求めてきた。^{10,91}しかし、こ れらのデータも現場の技術者に対し使いやすい形に整備され ていなければ、有効に活用されない。そこで、白鳥研究室で は、今まで求められてきた影響係数Kijを有効に活用し、パソ コン上で簡単に3次元表面き裂のK値を求め、併せて疲労き 裂伝播のシミュレーションが行えるシステム"SCAN" (Surface Crack Analysis)を開発した。

本報では、この"SCAN"の内、平板に同一面上の複数き裂(2 個)がある場合のき裂伝播解析ソフトを示すとともに、YP40 鋼と A533B・1 鋼を用いた疲労実験との比較検討結果を報告 する。

2 "SCAN" について

"SCAN"は、影響関数法の一部であり、それに包括される ものである。ユーザは、一般的な FEM 解析ツールを用いて、 き裂のない部材の解析を行い、き裂を想定する部位における 応力分布を求め、"SCAN"に入力する事が必要とされる。

"SCAN"の最大の特徴は、従来、エンジニアリングワーク ステーション (EWS) 級以上のコンピュータで解析していた き裂のK値が、影響係数 K_{ij}を有効に活用することでパーソナ ルコンピュータ (パソコン)上で簡単に精度良く求められる ことである。

現在、"SCAN"に組み込まれているき裂の影響係数 K_iデー タベースは、表面き裂の応力拡大係数の算出及びき裂進展シ ミュレーションができるものとして、平板中の半楕円表面き 裂とコーナーき裂、丸棒中の半楕円表面き裂、ロータ中の軸 方向内側半楕円表面き裂、パイプ中の軸方向内側半楕円表面 き裂と周方向内側及び外側表面き裂があり、表面き裂の応力 拡大係数の算出のみ有効なものとして、ノズルコーナき裂、 内部き裂が組み込まれている。

"SCAN"は、この影響係数 K_{ij}データベースとユーザが入力した任意の応力分布により求められる σjを用い、影響関数法の 重ね合わせの原理により、き裂のK 値を求めることができる。 その流れを、Fig.1 に示す。

Flow of the K-analysis and fatigue crack propagation based upon the proposed influence function method

Fig.1 Flow of influence function method

3 疲労き裂伝播試験

供試材は造船用 YP40 鋼(σu:540Mpa,σy:415 MPa)であ る。1CT(板厚 10mm)試験片を用いた疲労き裂伝播試験結果 から得られた疲労き裂伝搬則のC値,m値は、C=4.23×10⁻¹², m=3.00 (SI 単位) である。

Table.1 に示すような,試験片中央部の同一平面上に2個の半 円形または楕円形表面切欠き(放電加工,幅0.3mm)を有す る平板の引張試験片を製作した。なお,試験片加工による残 留応力はなかった。10ton 疲労試験機を用い,常温で繰り返 し速度 10Hz で疲労試験を行った。応力比は0.1 である。

Table.1 Specimen dimensions

Test No.	- 1	2	3	4	5
t(mm)	5.000	5.000	3.000	42.00	40.60
a1(mm)	1.670	1.390	1.220	5.00	5.00
c1(mm)	1.850	1.365	1.340	5.00	5.00
s(mm)	0.260	1.270	1.150	10.00	30.00
a2(mm)	1.750	1.260	1.240	10.00	10.00
c2(mm)	1.805	1.335	1.355	5.00	5.00
σ(最大)(Mpa)	332	332	333	218	218
σ(最小)(Mpa)	32	32	33	.22	22
C	4.23x10^-12			2.07x10^-12	
m	3			3.17	

"SCAN (DOUBLE CRACK Version)"の概要

"SCAN"による K 値解析の応用例として、同一面上に2個 のき裂を有する平板での複数表面き裂の伝播解析例を以下に 示す。Fig.2 に、複数き裂が進展していくモデルを図示した。

-321-

ASME コードに定められている複数き裂の伝播合体の定義 は、"2個の表面き裂は独立して伝播し、お互いのき裂が接触 しした時点で2個のき裂は1個のき裂に置き換えて考える" というものである。この定義を用いると、解析上、き裂は片 個のき裂面のみに着目すればよい。その形状は平板中の楕円 き裂と同じであるため、SCAN では平板中の楕円き裂の K_{ij} データベースを用いて、2個の表面き裂を独立して伝播させ、 2個のき裂間距離 s がゼロになった時に単一き裂に置き換え て解析する。さらに引き続き a/t = 0.8 になるまで合体後の き裂進展シミュレーションを実行する。

ここで、各パラメータは、合体前のき裂探さ:aı, a₂, 合 体前のき裂幅:cı, c₂, 板厚:t, き裂間距離:s, 合体後の き裂深さ:aASME, 合体後のき裂幅:cASME である。

Fig.2 Progress of double crack 5 SCAN の解析結果と実験結果の比較

a1=0.002, a2=0.003, c1=0.003, c2=0.004, t=0.01, s=0.002 (単位 m)のパラメータにおける SCAN を用いた 解析結果を Fig.3 に示す。

Fig.3 Flow of influence function method

result and analysis result by SCAN

Table.2 Experiment result and analysis result by SCAN

Tesy No.	1	2	3	4	5
Exp(Nf)	58494	89935	32910	144170	161830
SCAN(Nfs)	34400	64200	40900	182400	206400
Nf/Nfs	1.700	1.401	0.805	0.790	0.784

2組の切欠き部疲労き裂伝搬状況を SCAN 解析結果と対応させて Fig.4 に示す。図中矢印は初期き裂を示す。尚、Test No.4, 5 は、井野博士の実験データ³³(A533B-1 鋼、 C=2.07x10¹²,m=3.17 (SI 単位))である。

これらの図から分かるように、同じ形状及び寸法の2個の き裂だけでなく、寸法が異なる2個のき裂の場合でも、SCAN を用いた疲労き裂伝搬形状の解析結果は、実験結果をほぼ近 似していることが分かる。

しかし、Table.2 に示したように、SCAN による疲労寿命 の解析結果は、実験結果より長めに推定することが分かる。 っまり ASME コードに定められている複数き裂の伝播合体 の定義は、"2個の表面き裂は独立して伝播し、お互いのき裂 が接触した時点で2個のき裂は1個のき裂に置き換えて考え る"というものが必ずしも安全側に評価されないということ が分かった。そこで、常に安全側に寿命を評価できるように、 ASME コードを見直す必要があることが分かる。

そして、新たに見直した基準でSCANの改良を行う必要がある。

5 枯減

同一平面上にある2個のき裂が合体成長し板厚を貫通する まで(板厚の8割まで)の疲労き裂伝播形状や疲労寿命を ASME 基準で解析する解析ソフト "SCAN (DOUBLE CRACK Version)"を新たに開発した。しかし、このソフト は実験結果より長い寿命を取ることが分かったため、ASME 基準は必ずしも安全側ではないということが分かり、新たな 検討が必要であることがわかった。

参考文献

白鳥,他2名,機論,51-467(昭60-7),1828.
白鳥,他2名,機論,52-474(昭61-2),390.
井野幸雄博士論文「疲労表面き裂の伝播解析とその応用に関する研究」

- 322 -