217

7475 系高力 Al 合金の変形強度と時効の影響

崇城大学[院]	〇松下大輔	崇城大学[学]	松山裕哉	崇城大学	小野長門
(株)神戸製鋼	江藤武比古	崇城大学	三浦 精		

1緒 言

車両・航空機材料として実用化されている 7000 系 Al-Zn-Mg-Cu 合金は、溶体化処理後の人工時効 T6 処理による 析出強化で非常に高い強度が得られることが一般に知られて いる。しかし、この合金系の降伏挙動における強化機構の定 量的解釈は完全に解決されたとは云えず、さらに系統的な実 験事実の蓄積が必要である。

本研究では、溶体化処理した 7475 合金を用いて 393K で 86.4ksのT6時効とその後 433K で各時効時間での過時効処理 を施した試料を作製し、293K で各試験をした。この結果から、 まず各時効試料のビッカース硬さでのHall-Petch 関係の妥当 性やその傾きと切片硬さについて検討した。さらに、導電率 の測定を行い、時効による析出の様相を考察し、律速機構に ついても検討した。

2 試料および実験方法

本研究では、スカイアルミニウム(株)から提供された Tablel に示す 7475 合金圧延板を用いて、まず平行部寸法が (0.5,1)mm×5mm×50mm の板状試験片を切り出した。次に、 Table2 に示す条件での 753K で 1.1ks および 7.2ks の溶体化処 理後、393K で 86.4ks の T6 時効処理とその後 433K で各時間 の過時効処理を行い、平均粒径 27~283µm の範囲にある試料 を作製した。引張試験は、島津製作所製オートグラフ AGS-500B を用いて 293K で常に 1.7×10⁴s⁻¹のひずみ速度で行 った。導電率については (株)神戸製鋼にて行った。試料は 50mm 四方の正方形状に切り出し溶体化処理(753k,1.1ks),溶体 化処理後 2.5%引張試験時効処理(T6 処理、過時効処理)の 2 種 類の試料を作製した。ビッカース硬さ試験は電解研磨後、明 石製作所(株) 製マイクロビッカース硬さ試験機 MVK-G2 を 使用して行った。

3.1 Hall-Petch 関係の検討

多結晶金属の降伏応力と平均粒径の間には、軟鋼の下降伏 応力に関して提唱された Hall-Petch 関係¹⁾²⁾が成立すると考 えられている。Fig.1 は、各粒径ごとの溶体化試料、T6 時効 試料、過時効処理 30h を施した試料のビッカース硬さの関係 である。なお、各図のプロット点は 10 回測定した平均値であ る。ビッカース硬さと粒径はすべての時効時間において直線 関係が認められ、Hall-Petch 関係を満足する。各直線の傾き *k*, 値は、過時効処理したものだけ他より低い値を示した。これ は、時効の進行に伴って Al 母相中に析出する整合中間物が過 時効で安定相に変化するため、*k*,値は低下すると考えられる。 また、T6 時効処理でおよそ最大であった切片硬さも過時効処 理により低下する。また、引張試験での結果も同様な結果を 示した。 Table 1 Chemical compositions of 7475 alloys (mass%).

No.	Zn	Mg	Cu	Fe	Si	Mn	Cr	Ti	Al
1	5.35	2.18	1.45	0.05	0.04	Tr.	Tr.	Tr.	Bal.
2	5.39	2.19	1.46	0.05	0.04	Tr.	0.05	Tr.	Bal.
3	5.39	2.21	1.46	0.06	0.04	Tr.	Tr.	Tr.	Bal.

Table 2 Relation between the heat treatment condition and the average grain size in specimens.

Solid solution time at 753K(ks)	Aging time at 393K(ks)	Overaging time at 433K(ks)	Grain size (μm)
			27
1.1			48
	86.4	108	83
7.2			152
1.1*1			283
1.1*2	86.4		59

*¹ After elongation to $\epsilon_E = 2.5\%$, specimens were solution treated at 753K for 1.1ks.

*² The average grain size when a thickness is 0.5mm.

Fig. 1 Relation between the Vickers hardness and inverse square root of the average grain size in specimens overaged for 30h.

3.2 時効による内部析出物の検討

微小な析出粒子と転位の相互作用については、析出粒子を せん断する機構と転位が粒子を迂回する機構に大別される³)。 いずれの機構も従来からいくつかの理論が提唱されており、 Al-Zn-Mg 合金⁴⁾や Al-Zn 合金³⁾では比較的析出粒子の小さい ときには転位が粒子をせん断する機構により降伏応力が決ま り、大きいときには Orowan 機構により降伏応力が決まると 報告されている。また、長村⁵)や小野ら⁶)は Al-Zn-Mg-Cu 合金の 2 つの機構の主な理論と実験値について報告しており、 微視的な律速機構を検討している。ここでは、内部析出物の 違いから検討する。

溶質原子は侵入型、置換型を問わず、電気的に溶質原子の 周りには乱れが生じている。ここで、時効硬化に有効な GP 帯の生成はコットレルの雰囲気に近似しており、ミスフィッ ト歪は電気的に大きな影響を与える。

Fig.2 は、時効時間ごとの伝導率の測定結果である。この値 は、低くなるほど電気抵抗が大きくなる。この図では、時効 が進むにつれ導電率が上昇し、T6時効後の過時効で更に大き くなっている。この結果から、析出初期に生成される GP帯 により電気抵抗は上昇し、時効の進行によって安定相に変化 するにつれ、整合性がなくなり伝導率が上昇したと考えられ る。また、溶体化処理後による2種類の試料の結果はほぼ同 じ結果を示した。この結果から時効析出に対して塑性ひずみ、 すなわち転位の存在は優先析出場所になりにくく、ほとんど 影響をしないと考えられる。

Fig. 2 Relation between the electrical conductivity and overaging time.

次に時効時間ごとのビッカース硬さの結果をFig.3 に示した。この図では、溶体化試料で最小の硬さとなり T6 時効試料 で最大となった。その後、過時効の進行に伴って硬さが低下 している。この結果から、析出初期に生成される GP帯から 時効の進行によって準安定相(半整合物)へ変化する過程で硬 さが最大となり、さらに過時効が進行すると安定相(非整合物) へ変化し、ミスフィットひずみの減少に伴って低下すると考 えられる。また、溶体化処理後による2種類の試料の結果から、導電率と同様の結果を示した。この結果から、溶体化処 理後塑性ひずみ与えても硬度にはほとんど影響を与えないと 考えられる。

4 結 言

(1)溶体化試料から過時効試料でのビッカース硬さと粒径の間 には、すべて Hall-Petch 関係が成立する。この溶体化試料の 傾き & 値は T6 時効試料ではほとんど変わらないが、過時効 状態では低下する。これは Al 母相中に析出する整合中間物が 過時効で安定相に変化するため、低下すると考えられる。ま た、T6 時効試料でおよそ最大であった切片硬さも、過時効処 理により低下する。

(2)導電率の測定結果から、溶体化試料から時効が進むにつれ 導電率が上昇している。また、過時効の進行によって安定相 に変化するにつれ、整合性がなくなり伝導率が上昇したと考 えられる。また、溶体化処理後の塑性ひずみは優先析出場所 になりにくく、時効過程に影響を与えない。

(3)ビッカース硬さの測定結果から、溶体化試料で最小の硬さ となり T6 時効試料で最大となった。その後、過時効の進行に 伴って硬さが低下した。この結果から、析出初期に生成され る GP 帯から時効の進行によって準安定相へ変化する過程で 硬さが最大となり、さらに過時効が進行すると安定相へ変化 し低下すると考えられる。また、導電率の結果と同様に溶体 化処理後、塑性ひずみ与えても時効硬化にほとんど影響を与 えなかった。

参考文献

- 1) E.O.Hall, Proc.Phys.Soc.London, 64B (1951), 747.
- 2) N.J.Petch, J.Iron Steel Inst., 174 (1953), 25.
- 3) 幸田成康,松浦圭助,転位論,日本金属学会編(丸善), (1971),323.
- 4) 吉田英雄, 京都大学学位論文(1991).
- 5) 長村光造, 落合庄治郎, 上原利弘, 軽金属, 34-9(1984), 517.
- 小野長門, 合谷仁, 三浦精, 日本機械学会論文集, 68, 671,(2001)1136.