134

# 浸炭焼入れ薄肉対称ウェブ構造歯車の 残留応力と曲げ疲労強度

| 鳥取大学    | 宮近幸逸  | 鳥取大学[院] | 薛 衛東 |  |
|---------|-------|---------|------|--|
| 鳥取大学[院] | 〇吉川智也 | 鳥取大学    | 小出隆夫 |  |
| 福山大学    | 小田 哲  | 鳥取大学    | 難波千秋 |  |

1 緒

言

本報では、薄肉対称ウェブ構造歯車の浸炭焼入れ過程の温 度・応力を三次元 FEM による熱伝導解析、弾塑性応力解析 法<sup>1)</sup>を用いて計算し、残留応力を求めるとともに、曲げ疲労 試験を行って、残留応力に及ぼす浸炭時間(硬化層厚さ)、浸 炭部(歯面、歯車側面、リム内周、ウェブ表面)、リム厚さの 影響、曲げ疲労強度に及ぼす浸炭時間、浸炭部などの影響に ついて明らかにするとともに、これらの結果と一体歯車の場 合との比較検討を行っている。

#### 2 三次元 FEM による温度・応力の計算

本計算に用いた薄肉対称ウェブ構造歯車の寸法・形状を Fig.1 に示す. それらの主諸元は、モジュールm=4、歯数z=36、 基準圧力角 $\alpha_0=20$ 、歯幅b=20 mm、ウェブ厚さ $b_w=5$  mm ( $b_w$ /b=0.25)、リム厚さ $l_w=2m$  (m:モジュール) である. 歯車 材料は SNC815 で、浸炭時間 $t_c$ としては、 $t_c=0.75$ 、3.25、8.5 h の 3 種類を用いた. これらの $t_c$ に対する有効硬化層厚さは、 ビッカース硬さ 550HV でそれぞれ 0.4、0.8、1.4 mm 程度<sup>11</sup> になる. 本解析では、歯車形状の対称性および熱処理条件の 円周方向における一様性を考慮して、歯および歯幅の 1/2 に 対して四面体要素を用いて要素分割を行った. 浸炭部として は、Fig.2 に示すように、歯面のみから浸炭される場合をケー ス T、歯面、リム内周、ウェブ表面から浸炭される場合(歯 車側面浸炭防止)をケース TRW、歯面、歯車側面、リム内周、 ウェブ表面から浸炭される場合(浸炭防止なし)をケース TSRW とした.



## 3 実験方法および実験装置

3.1 試験歯車 曲げ疲労試験に用いた歯車は、一体歯車 GA, GB, GC と Fig.1 に示す形状・寸法をもつ薄肉対称ウェブ 構造歯車 GD, GE で、それらの主諸元、歯車記号および硬化 層厚さなどを Table I に示す. Table I 中の浸炭時間 t<sub>c</sub>が 2 章の 場合と異なるのは、浸炭雰囲気が異なることによる.

**3.2 曲げ疲労試験** Table I に示す試験歯車に対して,油圧式 パルセータ試験機<sup>20</sup>を用いて曲げ疲労試験を行った.

#### 4 計算・実験結果および考察

4.1 残留応力に及ぼす浸炭部の影響 Fig.3 は、リム厚さ *l*<sub>w</sub>= 2*m*、ウェブ厚さ *b*<sub>w</sub>/*b*=0.25、浸炭時間 *t*<sub>c</sub>=8.5h、浸炭部ケース T(歯面のみ浸炭)、TRW(歯車側面浸炭防止)、TSRW(浸炭 防止なし)の場合の歯面およびリム内周の残留応力分布を示 す. Fig.3 中の歯面の応力は、歯形に沿って生じる歯たけ方向 の主応力値を歯面垂直方向に、リム内周の応力は円周方向の 主応力値をリム内周に垂直方向にとったもので、符号①、〇は それぞれ引張、圧縮応力を表す。Fig.3 より、歯底付近の圧縮 残留応力は、リム内周およびウェブ表面を浸炭することによ って減少すること、また、歯車側面を浸炭することによって 歯幅端歯先付近の圧縮残留応力が減少することがわかる.

Fig.4 は、Fig.3 の結果から求めた接線角度 $\theta$ =30°( $\theta$ : 歯形 中心線と歯元すみ肉曲線の接線のなす角)の Hofer の危険断 面位置の残留応力 $\sigma^*_{\theta 30°}$ を示す。Fig.4 より $\sigma^*_{\theta 30°}$ は、ケース TSRW、TRW、T の順に大きくなることより、歯車側面、リ ム内周、ウェブ表面を浸炭防止することによって増大させる ことできると考えられる。

**4.2** 残留応力に及ぼす浸炭時間(硬化層厚さ)の影響 Fig.5 は、*l<sub>w</sub>=2m、b<sub>w</sub>/b*=0.25、*t<sub>c</sub>*=0.75、3.25、8.5h、ケース TRW (歯車側面浸炭防止)の場合の歯面およびリム内周の残留応 力分布を示す. Fig.5 より浸炭時間の増加とともに歯底付近 の圧縮残留応力が減少することがわかる.

Fig.6 は、Fig.5 の結果から求めた $\sigma^*_{\theta 30}$ を示す。Fig.6 より、  $t_c$ =8.5h の場合の $\sigma^*_{\theta 30}$ は、 $t_c$ =0.75、8.5h の場合に比べてかな

|                   |                |       |       | 0    |           |      |  |
|-------------------|----------------|-------|-------|------|-----------|------|--|
| Gear sign         |                | GA    | GB    | GC   | GD        | GE   |  |
| Gear structure    |                |       | Solid |      | Symmetric |      |  |
| Module            | т              | 4     |       |      |           |      |  |
| Pressure angle    | $\alpha_0$     | 20°   |       |      |           |      |  |
| Number of teeth   | Ze             | 36    |       |      |           |      |  |
| Face width        | b              | 20 mm |       |      |           |      |  |
| Web thickness     | $b_w$          |       |       |      | 5 mm      |      |  |
| Rim thickness     | l <sub>w</sub> | 00    |       | 2 m  |           |      |  |
| Corburizing time  | t <sub>c</sub> | 110   | 270   | 840  | 270       | 840  |  |
| Cal building time |                | min   | min   | min  | min       | min  |  |
| Case death        | de             | 0.40  | 0.65  | 1.15 | 0.65      | 1.15 |  |
| Case deput        |                | mm    | mm    | mm   | mm        | mm   |  |

Table I Dimensions of test gears



り小さいことがわかる.

**4.3** 曲**げ疲労強度** Fig.7 は, Table I に示す試験歯車 GD, GE の曲げ疲労試験結果を示す.

Fig.8 は、Table I に示す試験歯車の曲げ疲労限度荷重  $P_{nu}$ を示す. Fig.8 より  $P_{nu}$ は、一体歯車では GA のケース TS の場合 が最も大きく、薄肉対称ウェブ構造歯車では GD のケース TRW、TSRW の場合が最も大きく、これらの  $P_{nu}$ は一体歯車 と薄肉対称ウェブ構造歯車の場合でほぼ同じになることがわ かる.

### 5 結 言

(1) 浸炭焼入れによる薄肉対称ウェブ構造歯車の歯面の圧縮 残留応力は、リム内周およびウェブ表面を浸炭焼入れするこ とによって歯底付近で減少し、歯車側面を浸炭焼入れするこ とによって歯車側面歯先付近で減少する.また、それらの減 少の程度は浸炭時間 t<sub>c</sub>の増加につれて増大する.

(2) 浸炭焼入れによる薄肉対称ウェブ構造歯車の圧縮残留応 力は、リム厚さにかかわらず、浸炭時間が長すぎる場合には、





Bending fatigue limit load P<sub>nu</sub> kN

Fig.8 Bending fatigue limit loads

適切な浸炭時間の場合に比べて、歯車側面歯先付近でかなり 小さくなる。

(3) 浸炭焼入れによる薄肉対称ウェブ構造歯車の Hofer の危険断面位置 [接線角度 $\theta$ =30°の位置( $\theta$ :歯形中心線と歯元すみ肉曲線の接線のなす角)]の歯たけの方向の圧縮残留応力 $\sigma^*_{\theta=30^\circ}$ はリム厚さにかかわらず、歯車側面、リム内周、およびウェブ表面を浸炭防止することによって増大する.また、その増大の程度は浸炭時間  $t_c$ の増加につれて増大する.

(4) 薄肉対称ウェブ構造歯車の曲げ疲労限度荷重  $P_{m}$ は,有効 硬化層厚さ  $d_e$ = 0.65 mm 程度で,浸炭防止なしの場合,側面の み浸炭防止した場合に最も大きく,この  $P_{m}$ は一体歯車の場 合とほぼ同じである.

## 参考文献

宮近・他5名,日本機械学会論文集(C編),67-658,1980 (2001).
小田・他2名,日本機械学会論文集(C編),45-393,575(1979).

25