高精度 3D レーザースキャニングシステムを用いた

岩盤斜面の安定性評価手法

大阪大学(D上野陽平	大阪大学院	谷本親伯	大阪大学院	小泉圭吾
ハイテック	朴春澤	旭地研	岩田修一		
敦煌研究院	Li Zuixiong	敦煌研究院	Wang Xudon	g 敦煌研究院	Li Weitang

Application of 3D Laser Scanning Systems to Rock Slope Stability Assessment Yohei UENO, Chikaosa TANIMOTO, Keigo KOIZUMI, Chunze PIAO, Syuichi IWATA, Zuixiong LI, Xudong WANG and Weitang LI

1 緒 言

岩盤斜面の崩壊は、周辺に大きな被害をもたらすこと もあり、崩壊の危険性の高い斜面を事前に把握しておく ことは、防災の観点から重要となる.本研究では、岩盤 斜面における災害のソフト面の対策として、測量機器で ある高精度 3D レーザースキャナーを用い、中国敦煌莫 高窟における急崖の安定性評価を行った.

2 レーザースキャニングシステム概要

3D レーザースキャニングシステムは、レーザー光線で 対象物をスキャンし、得られる点群の3次元座標データ から3次元 CAD モデルを生成するシステムである.道 路、橋梁、トンネルなどの現況図を高精度で効率的に作 成して、保管管理、改造・更新計画に利用できるだけで なく、遺跡や文化財、森林や岩肌などを3次元 CAD モ デル化してコンピュータに取り込めるので、維持管理, 防災計画等に活用することが可能である. Fig.1 に莫高 窟の3D データを示す.

3D レーザースキャナーシステムを導入する最も大き な利点は、対象範囲を面的に高精度3次元点群データと して記録することが可能なことが挙げられる.これまで の測量機器では、計測したい点に対し、計測者が1点、1 点計測を行う必要があったが、HDS3000を用いることに より、水平360°,鉛直270°のエリアに対し、自動的に1 秒間に1800点の3次元点群データを取得することが可能 となった.この結果、これまで点として認識されていた データが面のデータとしても利用できることとなり、例 えば、対象物の表面形状のモデリング作成などを容易に 行うことができる.また、対象物体の断面図などの作成 を行う際には、データを取り込んだパソコン上で、任意 にその地点を指定するだけで、断面形状を確認すること が可能である.

Fig.1 3D-data of Mougao Grottoes 3 研究の概要

3.1 莫高窟における岩盤斜面 莫高窟は中華人民共和 国・甘粛省・敦煌市南東に位置する. 莫高窟は,河川に よって形成された堆積層を,大泉河が侵食してできた急 崖の西側に,高さ50m,南北約2kmにわたって掘削さ れた大規模な石窟群である. この堆積層は堆積状況によ って,砂礫岩層である下部のQ2層と,砂礫層である上部 のQ3層に分けられる (Fig.2). また,下部のQ2層はさ らに、堆積年代によって、上か ら A 層、B 層、C 層、D 層に分 けられる. 窟は比較的固結度の 高い Q_2 層に掘られている¹⁾.こ の岩盤斜面である急崖を研究 対象として、安定性評価を行っ た.

3.2 評価範囲 研究の対象範 囲は莫高窟のうち,72 窟~108 窟間であり,南北間距離は約 230m である.この対象範囲を 10 分割し,相対的に崩壊にた

Fig.2 Geological layer of Mougao Grottoes

いする危険性を評価する. of Mougao Grottoes 3.3 評価指標 莫高窟における現地調査の結果,莫高窟 崖面には,崖面に鉛直に発生したき裂と共に,崖面に平 行に発生したき裂も数多く確認された.莫高窟では,崖 面に平行に発生したき裂によって,大規模な崖面崩落が 繰り返され,現在のような垂直に近い崖面が形成された と考えられている³.現地調査においても,対象範囲内 で大規模な崩落跡が確認された.そこで,本研究では, 崖面崩壊の一形態である,崩落に対して安定性評価を行 うとともに,岩盤斜面の安定性評価手法を新たに提案す る.評価指標としては,崩落の前兆現象である,き裂, オーバーハング地形,遷急線を用いる³.これらの評価 指標を,3Dデータを独自に加工することによって定量化 し,安定性評価に用いた.

4 各評価指標の抽出

4.1 抽出方法 評価指標のうち,き裂は,発生位置,発生本数,連続性を示すトレース長を現地で 3D データ上に付加した.また,オーバーハング地形,遷急線は,3D データから作成した断面図より,対象地形を抽出した. Fig.3 に断面図の例を示す.3D レーザースキャナーシステムの特性を活かすことで,対象範囲の任意点で断面図 を作成することが可能であり,パソコン上で対象地形を容易に抽出することが可能である.

Fig.3 Sample of Section view

4.2.1 き裂 き裂が発生し、伸展していくと、崖面にゆ るみが生じる.そのため、崖面崩壊には、き裂の発生と 伸展が大きく関係してくる³⁾.そこで、き裂の発生本数 と、連続性を示すトレース長の両方を利用して、き裂頻 度を算出する.式(1)に、き裂頻度の算出式を示す.

き裂頻度 =
$$\frac{a+b}{x \times y}$$
 $\left(\frac{1}{m}\right)$ ……式(1)

ここで、き裂頻度とは、き裂の総トレース長を面積で除した値とする. Fig.4 にき裂頻度の概念図を示す. き裂頻度を算出する範囲の横・縦幅をそれぞれ x ど y とする. また、き裂のトレース長を a と b とする. Fig.4 に示すように、範囲内に始点と終点の両方を持つき裂だけでなく、

終点を範囲外に持つき裂 も算出の対象とする.また, 連続性を考慮することか ら,終点が範囲外にあって も,始点から終点までのト レース長を計算に用いる. トレース長は,解析ソフト を用いると,パソコン上で 3D データから容易に抽出 可能である.

cracks(Basic concept)

4.2.2 オーバーハング地形 オーバーハング地形におい て崖面から突出している部分(以後,オーバーハングブ ロックとする.)は、下部の浸食が進むことと、背後のき 裂の伸展によってゆるみが進行することにより崩落する³⁾.これは自重によるモーメントの作用が大きく関わっ ていると考えられる.オーバーハングブロック下部の浸 食が進行すると、自重によるモーメントの作用が大きく なる.また、断面2次モーメントの概念から、オーバー ハングブロックを正面から見た断面積が横長であるほど、 自重によるモーメントの作用が大きくなる.よって、以 下の式(2)、式(3)によりオーバーハングブロック崩落の 危険性を定量化する.

下部の浸食の程度を考慮した体積(V)

 $V = \frac{a}{c} \times V \quad (m^3) \cdots \exists (2)$

ただし a:奥行き(m) c:高さ(m) 断面2次モーメントを考慮した体積(V)

 $\mathbf{V} = \frac{b}{c} \times \mathbf{V} \quad (\mathbf{m}^3) \cdots \vec{\mathbf{x}} (3)$

ただし b:幅(m) c:高さ(m)

3D レーザースキャニングシステムから得られる 3D デー タの利点は、解析ソフトを用いてオーバーハングブロッ クの体積を算出できることである.このことにより、こ れまでの評価手法とは異なり、体積を安定性評価に用い ることが可能となる.

4.2.3 遷急線 遷急線は、斜面の傾斜が急に変化して、 下側が急傾斜となる境界を表す遷急点を結んだ線を指す. 遷急線は連続性が発達するほど、崩壊に対する危険地域 を拡大させることから、崖面を不安定化させる.また、 連続性と同様に、崖面を不安定化させる遷急線の特徴と して、上部・下部斜面の傾斜が考えられる.斜面は水平 であれば最も安定であり、傾斜が鉛直に近づく程不安定 であるため、斜面崩壊は急傾斜であるほど発生し易いこ とから、崖面の崩落に対する安定性を評価する指標とし て、トレース長、遷急線上部の傾斜角度、遷急点におけ る傾斜角の変化量を抽出する.また、斜面の限界傾斜角 度は地質によって異なるため、同じ傾斜角でも地質によ り崩壊の危険性は異なる.よって、Fig.2 を参考に遷急線 を地質によって3種に分類する.

遷急線 Q₃: 遷急線の上部・下部斜面が共に Q₃層
遷急線 Q₂: 遷急線の上部・下部斜面が共に Q₂層
遷急線 Q₂₃: 遷急線の上部が Q₃層・下部が Q₂層
5 崩壊危険箇所の抽出

5.1 方法 3 指標共, 値の大きな方が崩落に対する危険 性が大きなことを示すため,下式を用いて無次元化を行 い,評価値を求める.

$$x = \frac{Ai - A\min}{A\max - A\min}$$

ただしx:評価値 A:評価指標の値

この式で無次元化すると、各値を相対的な大きさを示す、 0から1までの値に変換できる.1は、相対的危険度が最 も大きいことを示す評価値であり、0は、相対的危険度 が最も小さいことを示す評価値である.

5.2 結果 この評価値を、72~108 窟間を 10 分割した評価範囲毎に算出し、崩壊危険箇所を抽出する. 結果を Fig.5 にレーダーグラフで示す. レーダーグラフの項目は、 1 き裂頻度、2 オーバーハング地形、3 遷急線Q3、4 遷急線Q2.3、5 遷急線Q2.0の各評価値示す. グラフより、研究対象範囲の中央付近に、岩盤斜面を不安定化する要素が集中していることが分かる. 大規模な崩落跡が残っている箇所も、72 窟~108 窟間の中央付近であり、崩落危険箇所の抽出結果としては、ある程度の信頼性はあると考えられる.

Fig.5 Profile

6 結 言

本研究では、測量システムである 3D レーザースキャ ニングシステムから作成された 3 次元データを利用した、 急崖部の崩壊に対する安定性評価を行う手法を提案した. HDS3000 を用いることで、南北幅 230m、高さ60m の対 象崖面を、座標精度 6mm、点と点の間隔約 3cm の点群デ ータとして、4 日間で測量し、データ化することができ た.従来の測量技術では、この期間で、同量の形状デー タを得ることは不可能である.

また、3 次元データは断面図の作成が任意点で可能で あることが、従来の測量技術とは異なる大きな利点であ った. さらに、体積や距離が計測できることから、安定 性評価方法として新たな手法を考案できると考えられる. このシステムを用いた崖面の安定性評価は初の試みであ り、まだ基礎段階ではあるが、今回の評価方法により、 岩盤斜面の安定性に対し、一定の評価を行うことができ た. 今後はこの評価方法を発展させることにより、様々 な岩盤斜面の危険地判読に応用できると考えられる.

参考文献

- 計春澤:衛星データによる敦煌莫高窟周辺地質および 水分移動の調査,大阪大学大学院工学研究科地球総合 工学専攻 平成12年度修士論文,2001.
- 2) 谷本親伯・朴春澤・小泉圭吾・岩田修一・舛屋直・李 最雄・王旭東:敦煌,莫高窟周辺の水文-リモートセ ンシングと断層調査,材料 別冊 第52巻 第5号
- 3) 土木学会: 岩盤斜面の調査と対策, 土木学会, 1999.