206

SUS304 ステンレスワイヤ素線の引張り疲労特性に関する研究

立命館大学 酒井達雄 立命館大学[院] ○笠原雅司 明石高専 境田彰芳 日本航空 齊藤正光 立命館大学[院] 田中良憲

A Study on Fatigue Properties of SUS304 Stainless Wire Rope Tatsuo SAKAI, Masashi KASAHARA, Akiyoshi SAKAIDA, Masamitsu SAITO and Yoshinori TANAKA

1緒言

ステンレス製ワイヤロープは、耐食、耐熱、耐低温性 に優れるという特性をもっているため、各分野で幅広く 使用されるようになった.極めて細い金属線を束ね合わ せたミニチュアワイヤロープが、安全にその機能を十分 発揮するためには長期使用に耐える疲労強度を備えてい なければならない.そのためには疲労特性の解明と疲労 強度に影響を及ぼす諸因子を系統的に調べる必要がある. しかし、これまでのミニチュアワイヤロープの疲労特性 の報告は繰返し曲げによるものが多いのが現状である.

以上の観点から,本研究では SUS304 ステンレスワイヤ ロープの素線を用い,片振り軸荷重下での疲労試験を実施 し,その S-N 特性を明らかにした.また,疲労破面の SEM 観察を行い,フラクトグラフィの立場からステンレスワイ ヤロープの疲労破壊機構について考察を加えた.

2 供試材

本研究で使用した供試材は、オーステナイト系ステン レス鋼線(SUS304)である.ステンレス鋼線SUS304-W1 (JIS G 4309)を連続伸線加工機により伸線加工した後、 メタノールで表面に脱脂処理を施したものである.素線 の断面直径は d=0.10mm である.実験に用いられる試験 片は、品質の均一化のため同一のドラムから切り出す. Table.1 にステンレス鋼線(SUS304)の化学成分表を示す. 本研究室で引張り試験を30本について行った結果,引張 り強度の平均値は2416MPaであった.

Table.1 Chemical composition of SUS304.(wt%)

С	Si	Mn	Р	S	Ni	Cr
≦0.08	≦1.00	≦2.00	≦0.045	≦0.030	8.00~10.50	18.00~20.00

3 実験方法

試験機には、本研究室で開発した電磁式小型軸荷重疲 労試験機を用いた.試験片長さにあたるチャック間距離 は100mmとした.金属細線に圧縮荷重を負荷すると、 座屈が発生してしまうため、平均荷重を負荷した状態で R=0.10の片振り疲労試験を行った.実験環境は室温・大 気中で試験を実施し、破断した試験片について SEM を 用いて破面の特徴を調べた.

4 実験結果

4.1 性能検証試験 実験に用いた試験機は新たに開発したものであるため,疲労試験機として十分な機能を備えて

いるかどうかの性能検証試験を行った.性能検証試験中に いくつか問題点が発覚したため,試験機を改良した.その ため試験速度が,2007年の性能検証試験では40Hz,2008 年の本試験では50Hzと異なっている.性能検証試験と本 試験の疲労試験の結果から,日本材料学会標準の*S-N*曲線 回帰法に従い得られた*S-N*特性をFig.1に示す.

性能検証試験の結果では、繰返し数10⁷回の手前付近 で破断した試験片が数本見られ、破断した箇所にはいず れも褐色の錆が確認された.この錆はフレッティングに よる磨耗の特徴の一つである.フレッティング磨耗を伴 った破壊データを含めずに解析した結果、疲労限度は ow=489.5MPaとわかった.本試験の結果では、S-N線図 は明確な疲労限度は現れず、連続低下型になった.また、 性能検証試験時には見られたフレッティング磨耗を伴っ た破壊は一つも現れなかった.

二つの S-N 曲線を比較したところ, 高応力域はほぼ同様の特徴を示したが, 低応力域では顕著な違いが見られた.より理想的な荷重を負荷できた本試験の試験結果の 方が疲労寿命が低下している.

4.2 比較試験 性能検証試験と本試験の*S-N*線図に前節のような顕著な違い現れた理由として,以下のような原因が考えられる.

(1)試験機の仕様変更による負荷荷重波形および周波数 の変化. (2)試験を行った環境(室温・湿度・その他時節 による環境)が異なったこと. (3)試験片の品質の違い.

今回はこの中で可能性として一番大きいと考えた(3)の 検証実験を行った.試験片の品質にばらつきがあるとは 言え、隣接した試験片同士での品質に大きな差はないと 考えられる. 試験条件は同一としながら、便宜的に試験 片を連続した 10 本ごとにグループ分けをし、各グループ にそれぞれ S-N線図を作成する. 各グループは実験を行 った順に、グループ A、グループ B、グループ C と呼称 する.

グループ A は本試験と同じく明確な疲労限度が現れず, 連続低下型の形状を示した. グループ B・C は,明確な疲 労限度が現れ,疲労限度は σ_W =628MPa, 629MPa となっ た. グループ B・C では応力繰返し数 10^7 回付近でフレッ ティング磨耗をともなった疲労破壊が見られた.

本試験とグループ A, グループ B・C で類似した特徴 となった.またグループ B・C は,フレッティング 磨耗 が発生した点,疲労限度が現れた点で特徴が共通してい る.これは,性能検証試験でも見られた特徴である.

以上の理由から 原因としては(2) 試験を行った環境が 異なったこと,(3) 試験片の品質の違いと考えられ,現時 点でどちらが原因とは言い切れない.しかしながら,試 験片の多くが表面の介在物を起点としたものであるため, その介在物の残存量の違いが疲労強度に影響を与えてい るのではないかと考えられる.

4.3 考察 本試験およびグループA・B・Cのデータを 統合した *S-N* 線図を Fig. 2 に示す.

S-N線図に明確な疲労限度は現れず,連続低下型の形 状を呈した.高応力域はデータのばらつきが少ないが, 低応力域では非常にばらつきの多い結果となった.また, 700MPaから550MPaの応力域では,通常の表面起点型破 壊とフレッティングを伴った破壊に大きく分かれている. フレッティング磨耗を伴った破壊データにも,応力振幅 と疲労寿命の間に相関関係が見られ,二種類のS-N特性 が混合するようなS-N線図である.

5 走査型電子顕微鏡(SEM)による破面観察

ワイヤ素線の疲労試験で破断した試験片の破面ついて SEMを用いて破面観察を行った。短寿命域における疲労 破面の一例を Fig.3 に示す。き裂発生起点である表面近傍 に介在物の脱落跡が確認され、疲労き裂の安定成長領域

と不安定破壊領域の境界は明瞭に現れた.

長寿命域における疲労破面の特徴は上記の短寿命域の ものと同等であるが、き裂の安定成長領域が非常に大き くなっている. 短寿命長寿命の破面において、き裂発生 起点である表面近傍に介在物または介在物の脱落跡が確 認された.

Fig.3 A fracture surface in low cycle fatigue for Uni-fiber. ($\sigma a=844$ MPa, N_f=4,415)

Fig.4 A fracture surface with fretting wear. for Uni-fiber. ($\sigma a=654$ MPa, N_f=11,168,052)

続いてフレッティング磨耗が発生した疲労破面の一 例を Fig.4 に示す.素線の3分の1程度がフレッティング 摩耗により磨り減っていることが確認できる.また疲労 き裂が安定的に成長した領域も確認され,き裂発生起点 と考えられる付近に介在物の脱落跡が確認された.この ことから内部の介在物を起点とした疲労き裂の安定的な 進展と,フレッティングによる磨耗が並行して生じたこ とが破壊の原因となったと考えられる.

また、フレッティング磨耗が起こった場所と疲労き裂 の起点となった場所の位置関係は一定でないことがわか った.主な原因は、フレッティング磨耗による断面積の 減少の結果、真応力が上昇したため破断に至ったと考え られる.

<結言·参考文献省略>