237

多結晶金属に生じる AE 波の間欠性と不均一性(その一)

山形大学 o村灌

o村澤剛

山形大学 森本卓也

The Intermittent and Inhomogeneous Deformation Behavior in Polycrystalline Metal Go MURASAWA and Takuya MORIMOTO

1緒 言

金属材料の塑性変形のメカニズムの根本は原子間の すべりや格子変形による双晶であり、巨視的応力---ひず み関係は材料内のそれぞれの結晶粒に生じる微小変形 (すべり・双晶変形)の発生・進行状態に大きく依存す る. また, このような微小変形の進行状態は,「連続で はない間欠的な変形 (Intermittent deformation behavior)」, 「空間的にクラスタ(不均一性)を形成し、雪崩挙動を しめす (Spatial clustering and avalanche behavior)」, 「ある スケールで生じた変形構造が他のスケールでも同様に 生じる (Self-similar or scale free)」などの現象を示し、こ れらが自己組織臨界過程(Self-organized critical process) に起因していると示唆されている. 近年では、Weiss お よび Uchic らの研究グループがこの微小変形挙動に関す る研究を活発に進めている. Weiss らは、単結晶および 多結晶の氷に生じるクリープ変形下でのすべりを Acoustic Emission (AE) 法により計測し,得られた AE 信号の振幅からすべり領域寸法を決定することで上記 の微小変形挙動を確認し、さらに単結晶材料と比較して 多結晶材料では結晶粒界の影響により微小変形の雪崩 挙動が変化することを報告している. また, Uchic らは Focused ion beam 加工によりマイクロオーダ (~20µm) の純 Ni の試験片を作製し、さらにナノインデンテーシ ョン法により単軸圧縮負荷を試験片に与えることで純 Ni に生じるすべりの発生数と変位の関係を直接計測し て上述の Scale free の現象を報告している.

本研究では、多結晶純 Ti に注目し、その降伏点現象 のメカニズムを微視組織と上述の微小変形の発生・進行 状態を考慮することによって明らかにすることを試み る.具体的には、Electron Backscatter Diffraction Pattern (EBSD)による微視組織観察を行い、AE 法を用いるこ とで降伏点近傍の双晶変形の発生・進行状態を定量評価 することを試みる.

2 実験方法

2.1 材料 市販の多結晶純 Ti (99.5wt.%) を試験材料 として用意した. 図1左に電子顕微鏡による組織写真, 図1右に(0001), (1012), (1011)面の極点図を示す. 次に, 図2(a)に示すように引張試験片を, 圧延方向に対して 0°, 30°, 45°, 90°方向から切り出した. 図2(b)は本研究で用 いられた引張試験片の寸法である. 切り出された試験片 にはつかみ部にステンレスのタブが取付けられた.

2.2 微小変形挙動の計測システム 室温(21℃)で オートグラフ(AGS-5KNG, Shimazdu)を用いて単軸引 張負荷を行い,材料に生じる微小変形挙動を計測する. このときのひずみ速度は 0.08%/min である.また、単軸 引張負荷試験中,試験片中心の直線上に周波数帯域が 300kHz~2MHz である4つの AE センサ (AE-900M, NF 回路設計ブロック)を取付け,試験片中央部の双晶変形 のみ計測することを試みる.得られたセンサからの信号 は AE 用プリアンプ (9916, NF 回路設計ブロック) で増 幅され (40dB), ディスクリミネータ (AE9922, NF 回 路設計ブロック)により再度増幅(20dB)・雑音処理・ トリガ処理され、2枚の PCI 高速 AD 変換ボード (PCI-3163, インターフェース)を介して PC に取込ま れる. 波形データの取込み分解能は 100ns である. また, 本研究では上述の AE 計測システムに,筆者らがこれま でに開発してきた不均一変形挙動計測システムを統合 させた研究室独自の計測システムを用いて実験・データ 解析を行った.紙面の都合上,不均一変形挙動計測シス テムに関する記述は省略させて頂く.

3 実験結果

3.1 巨視的応力—-ひずみ関係 室温(21℃)で純 Ti 平板試験片に対して単軸引張負荷を行った.図3はこの とき得られた公称応力—-ひずみ(時間)線図である.圧 延方向に対して0°,30°,45°,90°方向で切り出したそれ ぞれの試験片での結果をプロットしてある.図を見てわ かるように,応力—-ひずみ線図は弾—塑性変形を示し, それらの変形挙動は切り出し方位に対して依存性があ ることがわかる.

3.2 降伏点近傍での微小変形挙動 図4は,引張負荷における公称応力---時間線図とAE計測から得られた

Fig.1 Microstructure and pole figures for polycrystalline pure Ti.

Fig.2 Specimen configuration.

AE 累積カウント数一時間線図および累積カウント速度 -時間線図である. 図を見てわかるように, これらの結 果には大きな切り出し方向依存性がある. 0°, 30°方向の 試験片では降伏点近傍で急激に双晶変形の数が増加す る雪崩のような挙動を確認することができる. 一方で, 45°, 90°方向の試験片では降伏点近傍で双晶変形の発生 はなく,降伏点後期から塑性流動の初期にかけてなだら かな双晶変形発生数の増加が生じるのみであった.

4 考 察

4.1 双晶変形の発生メカニズム 一般的に多結晶純 Ti に生じる双晶界面は(1012)もしくは(1011)であり、こ の双晶界面を境に(0001)が2つの領域に 87°の角度を持 って対象に存在していることが知られている.したがっ て、これらの面に注目すると、図1の結果から(1012)と (101)は試験片の面内においてランダムな方位を持って いることがわかる.一方で、(0001)は顕著な方位依存性 を持ち、試験片の面内では圧延方向と水平であることが わかる. 最密六方格子の構造を持つ金属材料において, 多結晶中の1結晶粒にはせん断応力によって双晶変形 が生じる.ここで、「外力による双晶変形で生じる晶壁 面と双晶界面は互いに水平であり,最初に外力によって 品壁面近傍で格子変態が生じ、その後、雪崩的に双晶変 形が進行する」と仮定すると、 ある結晶領域で最初に 外力によって変態した後の格子の面方位が双晶の発生 のしやすさに大きく起因していると考えることができ る. つまり,本材料の場合,(0001)がその起因となる面 方位となり、負荷前の組織の(0001)が格子変態した後の 面方位に近づく程,双晶が発生しやすい.本実験では, 材料の(0001)が試験片の面内で圧延方向と水平であり、 圧延方向から切り出し方向の角度が離れるとともに双 晶変形の発生が生じにくくなっている.

4.2 双晶変形の進展メカニズム本研究では,得られた AE 波形の最大振幅を双晶発生領域の大きさと考え, 双晶変形発生の雪崩現象を説明することを試みる. 図5

は、モニタリングされた AE 波形の最大振幅を AE イベント数ごと (250 カウントごと) にまと めた結果である. 図から, 全ての試験片で変形 中に小さい双晶領域から大きい双晶領域までが 発生していることがわかる.また,0°方向の試 験片では、変形後半でより大きなサイズの双晶 領域が発生してきていることがわかる.一方で, 90°方向の試験片では,双晶領域の大きさの比率 は変形中に一定であることがわかる. このこと は、「0°方向の試験片では、変形中にまず小さな 双晶が発生し、その後に大きな双晶に成長して いくこと」を示唆している.また、図4と上述 の結果から,以下のメカニズムが考えられ得る. 双晶領域の成長が粒界移動(塑性流れ)よりも 早ければ、双晶変形発生の急激な雪崩現象が生 じる. 双晶の成長が粒界移動よりも遅いとき, なだらかな双晶変形発生数の増加が生じるのみである. 言い換えれば,双晶領域が大きく成長しているときに双 晶変形発生数の雪崩が生じていることに他ならない.こ れらの双晶領域の成長と粒界移動の関係の実験的根拠 については今後の研究の課題としたい.

(結言および参考文献省略)

Fig.3 Macroscopic stress-strain (-time) curves for polycrystalline pure Ti.

Fig.4 Cumulative AE count – time curves and AE count rate – time curves for polycrystalline pure Ti under uniaxial tensile loading.

Fig.5 The cumulative number of events – amplitude relations for each 250 events in all AE signals.

-280-