526

ラジカル窒化した球状黒鉛鋳鉄の 低サイクル疲労試験による疲労特性向上の検討

徳山高専 〇森野数博 徳山高専 西村太志 鋼鈑工業 深地誠吾

Study on Improvement of Fatigue Property of Radical Nitrided Spheroidal Graphite Cast Iron by Using the Low Cycle Fatigue Test

Kazuhiro MORINO, Futoshi NISHIMURA and Seigo FUKAJI

1緒 言

高強度・高じん性で加工性にも優れている球状黒鉛鋳 鉄は、その有用性のため、古くて新しい材料として注目 されているが、疲労特性が大きく劣り信頼性も十分とは いえないため、本格的な強度部材として使用されるまで には至っていない.

一方,著者らは,疲労寿命が3つの因子(初期き裂長 さ,限界き裂長さ,相対き裂伝ば速度)に支配されるこ とを提示¹⁾しているが,この概念を用いると,疲労寿命 向上方策が明確になる.これを Fig.1 に模式的に示す. すなわち,き裂の発生時期を遅らせ①,初期き裂長さを 短くする②ことにより疲労寿命は向上する.

そこで本研究では、この要因を満たすために効果的と 考えられる表面改質のなかでも特に優れた特性をもつ ラジカル窒化処理²⁾³⁾を球状黒鉛鋳鉄に施すことによ

Fig.1 Schematic illustration of the proved method on fatigue life of ductile cast iron

rabier enemiear composition fills /	Table 1	Chemical	composition	wt.	%
-------------------------------------	---------	----------	-------------	-----	---

С	Si	Mn	Р	S	Mg
3.72	2.5	0.56	0.016	0.008	0.041

Table2	Mechanical	properties.
100102	wieenamear	properties.

<u></u>	σ _{0.2} (MPa)	σ_B (MPa)	Ψ (%)	E (MPa)
As cast	376	532	18.2	166×10 ³
Nitrided	380	423	3.85	166×10 ³

 $\sigma_{0.2}$: 0.2% proof stress Ψ : Reduction of area

 σ_B : Tensile strength *E*: Young's Modulus り,疲労特性を向上させる可能性があることを,広いひ ずみ範囲の低サイクル疲労試験を行うことにより明ら かにした.

2 使用材料, 試験片および実験方法

供試材にはフェライト系球状黒鉛鋳鉄 (FCD400 相当, 以下 FDI と呼ぶ)を用いた.化学成分を Table1 に示す. 正確な低サイクル疲労挙動を得るため,試験片には中央 部平行長さと直径の比が 1.5 の円柱型⁴⁾を用いた.試験 部はエメリペーパとバフで鏡面に仕上げ,その後 NH₃ と H₂の混合ガス中で 530℃-10hのラジカル窒化処理を 行っている.このとき,FDI 中のフェライトと黒鉛の硬 さをビッカース硬度計でそれぞれ求めた.窒化は黒鉛に は関与せず,フェライト部のみが表面から 50 μ m程度ま で硬化しており,表面では *HV*420 と未処理材 (*HV*160) の約 2.6 倍の硬さとなった.

Fig.2 に未処理材と窒化材の引張試験結果を最高荷重 点まで示し、Table2 にそれらの機械的性質を示す.

実験は油圧サーボ式疲労試験機を用い,軸方向伸び計 により塑性ひずみ幅が一定となるよう制御した両振り の引張圧縮で行った.破面は SEM で観察した.

3 実験結果および考察

Fig.3 に未処理材と窒化材の疲労寿命曲線を示す. どち らもデータのばらつきは少なく, 塑性ひずみ幅*4eP*と破 断寿命 *N_f*の間には Manson-Coffin 形の関係が成り立って いる. 求めた式を図中に示す. 窒化材では指数の値が 0.45 と一般的な金属材料で得られている 0.5~0.7⁵¹ より小さ くなっており, 塑性ひずみ幅の変化に対する破断寿命の 変化が大きい. そのため, FDI の窒化材では, 塑性ひず

(a) $\Delta \varepsilon_P = 0.00034$, $N_f = 3.09 \times 10^4$ As cast

 $(b-1)\Delta \varepsilon_P = 0.002, N_f = 1.39 \times 10^3$ $(b-2) \angle$ Radical nitrided

Fig.4 Observation of fracture origin

み幅が大きい領域では未処理材より寿命が短いものの, ひずみ幅が小さくなるにつれてその差は急激に縮まり, 0.0001を過ぎたあたりで逆転し,それ以下では窒化材の 方が疲労寿命が長くなる.

なお、図中には破断延性値 ϵ_f の2倍の値を 1/4 サイ クルの値として()内に併記したが、どちらの材料も 疲労寿命曲線の延長上にそれらの値は位置しており、窒 化材では、 ϵ_f の値が小さい場合にみられる通常の材料 とは異なる傾向⁶⁾を示している.

Fig.4 に未処理材と窒化材の破断面における破壊起点 近傍を比較して示す.未処理材では,かなり小さい塑性 ひずみ幅にもかかわらず,これまでと同じく⁷⁾表面近傍 に引け巣が存在しており,実験したすべての試験片で破 壊起点は表面近傍に存在する引け巣や異常黒鉛であっ た.一方,窒化材においても破壊起点近傍に引け巣が観 察されたが,未処理材に比べるとその大きさは小さかっ た.また,塑性ひずみ幅の大きい(b-1)では表面の拡散層 生成部分がぜい性的に割れ,引け巣は少し内部にみられ たのに対し,塑性ひずみ幅の小さい(b-2)では(b-1)ほど表 面の割れがぜい性的でなく,引け巣の位置も 50~100 μ mと(b-1)よりは表面寄りとなる傾向が見受けられる.

Fig.5 に窒化材の繰返し応力-ひずみ曲線を示す. これ より,窒化材の疲労寿命が未処理材より長くなった*Ae p* = 0.0001 は Fig.2 の引張試験で大きく変形し始める 380MPa での値にほぼ対応していることがわかる. これ らのことから,塑性ひずみ幅が大きい領域で窒化材の疲 労寿命が短くなるのは繰返しの初期段階で表面に発生 するリング状き裂が原因であり,塑性ひずみ幅が小さい 領域で寿命が延びるのは窒化による表面硬さの増加に よりき裂の発生が遅れることに加え,約 500MPa の圧縮 残留応力(表面)によるき裂伝ば速度の抑制が原因であ ろうと考えられる. <結言,参考文献:省略>