319

TRIP 鋼の衝撃変形挙動計測を目的とした せん断試験片の FEM による検討

広島大学[院] 椿翔太

沢俊行

A Study on Shear Specimen for Impact Deformation Behavior of TRIP Steel by FEM Shota TSUBAKI, Takeshi IWAMOTO and Toshiyuki SAWA

1 はじめに

近年,自動車の衝突安全基準の厳格化が進み衝撃吸収 部材の重量は増加傾向にある.TRIP 鋼はひずみ誘起マ ルテンサイト変態の発生により優れた衝撃エネルギー 吸収能を示す鋼として知られており,衝撃吸収部材に適 用することで薄肉化に伴う軽量化が可能であると考え られている.また,一般にひずみ誘起マルテンサイト変 態はせん断変形によりその発生が促進されるものと考 えられている.そのため,衝撃吸収部材を設計する際に せん断変形を引き起こす構造を設けることにより,更な る衝撃エネルギー吸収能の向上が期待できる.

しかし、衝撃荷重下における材料のせん断変形挙動を 計測する手段は確立されておらず、そのため TRIP 鋼の せん断変形挙動のひずみ速度依存性は未だ明らかにさ れていない.そこで本研究では、比較的簡易な試験装置 で一様なせん断応力が得られる MDS 試験片 ¹)に、有限 要素解析を用いて、TRIP 鋼の衝撃変形挙動計測に適し た試験片形状を決定する.さらに、材料試験機及び分割 式 Hopkinson 棒法を用いて種々のひずみ速度における TRIP 鋼のせん断変形挙動計測を行うことにより、TRIP 鋼のせん断変形挙動のひずみ速度依存性を検討する.

2 試験片

Fig.1 は(a)MDS 試験片,及び(b)MDS 試験片に治具を 装着した状態の概略図を示す. MDS 試験片は図に示す ような両端に Shear zone とよばれる測定区間が設けら れた薄板を, Fig.1(b)に示すように治具で挟んで固定す る.そして,圧縮荷重を加えると両側にある Shear zone が変形することによりせん断変形挙動を評価すること ができる. 治具を装着した MDS 試験片に作用する圧縮 荷重 P と変位 d を用いて次式が算出できる.

$$\tau_s = \frac{p}{2A} \tag{1}$$
$$\gamma_s = \frac{d}{a} \tag{2}$$

ここで、 A は Shear zone の断面積を示す.次に,有限 要素解析より得られる測定区間中心でのせん断応力及 びせん断ひずみを τ , γ とする.このとき、 τ_s , γ_s と τ , γ の値は定量的に一致しない²⁾.そこで, τ_s , γ_s と τ , γ の関係を係数 λ_1 , λ_2 を導入して次式のように算 出する²⁾.

$$\begin{aligned} \tau &= \lambda_1 \tau_s \qquad (3) \\ \gamma &= \lambda_2 \gamma_s \qquad (4) \end{aligned}$$

ここで、 λ_1 , λ_2 は試験片形状及び材質より求まる値であ り²⁰,有限要素解析により決定する.試験片の材料には TRIP 鋼の一種である SUS304 を用いた.

3 有限要素解析

3.1 解析モデル 有限要素解析コードは LS-DYNA を

〇岩本剛

用いた. Fig.2 は本解析で用いた解析モデルを示す.解 析モデルは 1/4 対称モデルとし,要素分割には 8 節点 6 面体ソリッド要素を用いた.試験片の材料の構成式は次 式に示すような Johnson- Cook モデルを適用した.

$$\bar{\sigma} = [A + B(\bar{\varepsilon}^{pl})^n] \left[1 + C \ln\left(\frac{\dot{\varepsilon}^{pl}}{\dot{\varepsilon}_0}\right) \right] \left(1 - \hat{\theta}^m\right)$$
(5)

ここで, *A*, *B*, *C*, *m*, *n* は材料固有の値であり, $\dot{\epsilon}_0$ は単位ひ ずみ速度, $\hat{\theta}$ は室温及び融点から求まる無次元温度であ る. Table 1 は本解析で用いた SUS304 の機械的性質及 び Johnson-Cook の式に含まれるパラメータを示す³⁾.

Table 1 Mechanical properties and constitutive parameter of SUS304 for Johnson-Cook model³⁾

Density [kg/m³]	7900
Young's modulus [GPa]	193
Poisson's ratio	0.3
A [MPa] in Eq. (11)	310
<i>B</i> [MPa] in Eq. (11)	1000
<i>n</i> in Eq. (11)	0.65
<i>C</i> in Eq. (11)	0.07
$\dot{\epsilon_0}$ [s ⁻¹] in Eq. (11)	1
<i>m</i> in Eq. (11)	1

また、試験片に荷重を加える方法として、Fig.2 に示す ように分割式 Hopkinson 棒法装置をモデル化すること で、試験片に衝撃荷重を加えた.以下に分割式 Hopkinson 棒法を用いた場合の荷重,及び変位の算出方 法を示す.打撃棒を入力棒に衝突させると、入力棒内に 伝播する一定の入射ひずみ波 ϵ_i 、試験片側の入力棒端部 で反射するひずみ波 ϵ_r 、試験片および出力棒に透過する ひずみ波 ϵ_t を用いると、入力棒側から求められる試験片 側の入力棒端部の変位 u_1 及び荷重 P_1 、出力棒側から求 められる試験片側の出力棒端部の変位 u_2 及び荷重 P_2 は それぞれ次式で表される.

$u_1(t) = c_0$	$\int_0^t \{\varepsilon_i(t') - \varepsilon_r(t')\} dt'$	(6)
----------------	--	-----

 $P_1(t) = A\tilde{E}\{\varepsilon_i(t) + \varepsilon_r(t)\}$ (7)

$$u_2(t) = c_0 \int_0^t \varepsilon_t(t') dt' \tag{8}$$

$$P_2(t) = A_b E \varepsilon_t(t) \tag{9}$$

ここで、 A_b , E はそれぞれ入出力棒の断面積及び縦弾性 係数、 c_0 はひずみ波の伝播速度を示す.これより、d(t), P(t)は次式で表される.

$$\begin{aligned} & d(t) = u_1(t) - u_2(t) & (10) \\ & P(t) = P_1(t) = P_2(t) & (11) \end{aligned}$$

Fig.2 FEM model of Split Hopkinson Pressure Bar apparatus

3.2 解析結果及び設計 Fig.3 は Shear zone の幅 a, 高 さ h 及び試験片厚さ t をそれぞれ変化させた場合の, Shear zone における応力分布を示す. Fig.3(a)より, 幅 aは Shear zone におけるせん断応力分布,及び他の応力 成分への影響が小さいことがわかる.しかし,幅 a の増 加に伴い、曲げ変形に近い形状と考えられることから、 幅 a は小さい値を選択する. 次に Fig.3(b)より, 高さ h の増加に伴い、せん断応力が一様な部分の割合が増加し、 他の応力成分の影響が小さくなっていることがわかる. このことより、高さhは可能なかぎり大きい値を選択す る. 最後に Fig.3(c)より, 試験片厚さ t はせん断応力分 布にはほとんど影響を及ぼしておらず,試験片厚さtの 増加に伴って,他の応力成分の影響が小さくなっている ことがわかる.以上より、試験装置や試験片の大きさ等 を考慮に入れ, Shear zone の幅 $a \ge 1$ mm, 高さ $h \ge b$ 14 mm, 試験片厚さtを1 mm とした.

4 実験結果

Fig.4 に示す (a)試験片及び(b)せん断試験治具を試作 し、材料試験機及び分割式 Hopkinson 棒法による種々 のひずみ速度におけるせん断変形挙動を測定した.その 実験結果を Fig.5 に示す. Fig.5 より,試作した試験片 を用いることによって,TRIP 鋼のせん断変形挙動を計 測可能である.しかし,衝撃試験時において,試験片と 治具との間に生じる相対変位により,有効なデータを得 ることができなかった点は検討が必要である.

5 おわりに

本研究では、比較的簡易な試験装置で一様なせん断応 力が得られる MDS 試験片を用いて、TRIP 鋼の衝撃変 形挙動計測に適した試験片形状を決定した.材料試験機 及び分割式 Hopkinson 棒法を用いて種々のひずみ速度 における TRIP 鋼のせん断変形挙動計測を行うことによ り、TRIP 鋼のせん断変形挙動のひずみ速度依存性を検 討した.詳細は講演会当日述べる.

参考文献

1) W. K. Nowacki.et. al, J. Theor. Appl. Mech., 48,

1003 (2010)

2) A. Rusinek, J. R. Klepaczko, Int. J. Plast., 17, 87 (2001)

3) S. Y. Ahmadi-Brooghani et. al , Engng. Tech., 36 , 243 (2007)

Fig.3 Computational results on stress distribution

Fig.4 Schematic illustrations of (a) specimen and (b) shear device

Fig.5 Shear stress and plastic shear strain curves