The Society of Materials Science, Japan

119 粒界破壊抵抗分布モデルに基づくクリーブおよびクリープ疲労下の微小き裂発生・成長の確率分布の解析的検討

京都大学工学部 NASA Lewis Research Center 北村隆行, 大谷隆一, L.J. Ghosn and G.R. Halford

1. 緒言

著者らのグループでは、金属材料のクリープおよび クリープ疲労における破壊機構を解明するため、平滑 試験片表面に現れる微小なき裂の発生・成長過程の実 験観察を行ってきた(1.2). そして、き裂発生および 初期成長は材料の微視組織的不均一性の影響を強く受 け,不規則な挙動を示すことを明らかにした(*). 最 近では、これらの不規則な挙動を確率変数を用いてモ デル化し、モンテカルロ法を援用して数値シミュレー ションを行う方法を提案してきた(4.6). しかし、モ ンテカルロ法では,非常に確度が高い解を得るために は多くの時間と労力を有することが知られている. ま た, 乱数の質も問題となる. これらは, 寿命に大きな 影響を及ぼす最短のき裂発生寿命や最高速のき裂成長 速度を推定する際に重要である.そこで、本研究では モンテカルロ法の欠点を補うために、前報(5)の粒界 破壊抵抗分布モデルについて、たたみこみ積分を用い てき裂の発生寿命および成長速度の確率分布を解析的 に求める方法について検討した(*).

2. 微小き裂の発生・成長モデル

用いたモデルは、多結晶体表面における粒界の破壊 抵抗値および破壊駆動力に分布をもたすモデルである. 以下にこれを要約する.

(1) き裂は, 隣接する 2つの粒界三重点間(一粒界長 さ)を単位として, 粒界に沿って発生・成長する.す なわち,き裂は階段状の離散的な発生・成長挙動を示 す.

(2) き裂長さ / および粒界長さ dは応力軸に垂直な面 への投影長とする. 粒界長さは確率変数であり, その 密度関数をf(d)と表す.

(3) 各粒界は固有の破壊抵抗 Ø。を有する. Ø。は密
 度関数g(Ø。)を有する確率変数である.

(4) 各粒界には単位時間(繰り返し数)ごとにφの破 壊駆動力が与えられ,破壊抵抗がφずつ減少する.き 裂が存在する場合には,き裂に隣接する粒界の応力が 拡大されるため,破壊駆動力はき裂のない場合と比べ て著しく加速される.すなわち,φは負荷応力とき裂 長さに依存する確率変数であり,その密度関数をh(φ |σ₈, ε)と表す.ここで,σ₈ は負荷応力,εはき 裂長さである.

(5)残存粒界破壊抵抗がOになった時点において、その粒界は破壊し、き裂となる.破壊粒界が他のき裂に 隣接している場合には、き裂の成長と考える.そうで ない場合には、き裂の発生として取り扱う.

なお,損傷力学的に破壊抵抗を限界損傷,破壊駆動 力を損傷累積速度と表現しても同じである.

3. 微小き裂の発生・成長速度の確率分布

3.1 き裂発生

時間(または繰り返し数) tまでに累積された破壊 駆動力は \$\overline 0 0 から tまでの積分で与えられるが,こ こでは簡単のため定常状態を想定して

 $\phi = \phi t$ (1) とする.この時、 ϕ の確率密度関数 $k(\phi | \sigma_{\phi}, t = 0, t)$ は、

 $k(\phi \mid \sigma_a, \ell=0,t) = 1/t \cdot h(\phi \mid \sigma_a, \ell=0)$ (2) と与えられる

次に,

 $\phi \mathbf{m} = \phi \mathbf{c} \cdots \phi$

(3)

で定義される各粒界における残存破壊抵抗φ。につい て考える. φ。も確率変数であり、その確率密度関数 は、

 $\mathbf{m}_{\mathfrak{s}}(\phi_{\mathfrak{m}} \mid \mathbf{t}, \sigma_{\mathfrak{g}}) = \int_{\mathfrak{s}}^{\mathfrak{s}} \mathbf{g}(\phi_{\mathfrak{m}} + \phi) \mathbf{k}(\phi \mid \sigma_{\mathfrak{g}}, \ell = 0, \mathbf{t}) d\phi$

= $\int_{c}^{\infty} g(\phi_{a} + \phi t)h(\phi + \sigma_{a}, z = 0)d\phi$ (4) となる.ここで、 $\phi_{a} \leq 0$ はその粒界が破壊してき裂を 形成していることを示す、したがって、時間(繰り返 し数) tまでにある粒界にき裂が発生している確率P. (t, σ_{a})は

$$P_{n}(t, \sigma_{\varrho}) = \int_{-\infty}^{\infty} \mathbb{I}_{\varphi}(\phi_{u} \mid t, \sigma_{\varrho}) d\phi_{u}$$
(5)

となる.

の二項分布で与えられる.

多結晶材料では多くの粒界があり、各粒界がそれぞ れP,のき裂発生確率を有している.いま、 N個の粒界 (潜在的なき裂発生源)がある場合を考えると、時間 tにおいてそのうち n個にき裂が発生している確率は

$$(P_{i})_{n} = \frac{N! [P_{i}(t)]^{n} [1 - P_{i}(t)]^{N-n}}{(N - n)! n!}$$
(6)

簡単な例を示す. φ、を 0~ 1の一様乱数, φを一 定値 0.1とすると, P,は容易に求められる. Fig. 1と

-55-

2にm。(φ "),の推移とP,の時間に対する変化を示	す.
	が簡
単にできない場合には、後述のように数値積分に	よっ
てP,を求めることができる.	
<u>3.2 き裂成長</u>	
本モデルではき裂成長はき裂先端に隣接する粒	界へ
のき裂発生と考えることができる.長さ (のき裂	に隣
接する粒界について考える、この粒界の破壊寿命	をt,
とすると	
$\phi_{z} - \phi \cdot \mathbf{t}_{z} = 0$	(7)
が成立する.ただし、ここでは簡単のため、き裂	がィ
まで成長するまでの粒界抵抗の減少を無視してい	る.
さて, t,の確率密度関数は式(7) より	
$s(t,) = \int_{c}^{b} \phi' g(\phi' t,) h(\phi') d\phi'$	(8)
と求められる. ここで, き裂成長速度 dı/dtを	
d z / dt = d/t,	(9)
と定義すると,その確率密度関数は	
$P_{\alpha}(d \ell / dt \sigma_{\alpha}, \ell)$	
$= \int_{c}^{\infty} t_{i} f(d \not / dt \cdot t_{i}) s(t_{i}) dt.$	(10)
となる. き裂発生の場合と同様, f(d), g(ø,),h	(Ø)
が簡単な関数の場合には、Pgは解析的に求めるこ	とが
できる.	
<u>3.3 標準化</u>	
局所応力で」と負荷応力で。の関係を	
$\sigma_{1} = K(\mathbf{u} \mid \boldsymbol{\ell}) \sigma_{a}$	(11)
と仮定する。 K(u) こ)は (の 保組織 フンダム因子	u 2 3
裂長さくの関数である飯俵的応力集中係数である	• -
	(19)
$\varphi = AO(1) = A, q, E \chi$	(12)
$d = \Lambda(X(u \mid z) \sigma) \exists t = d \bar{t}$	(13)
	(10)
$\sigma = AK(n \mid z)$	(14)
$\overline{\mathbf{t}} = \sigma_{a} \mathbf{t}$	(15)
である、。なは確率変数であり、 もは確定変数であ	る.
$ \overline{\phi} $ の確率密度関数 $\overline{h}(\phi)$ は	-
$\overline{\mathbf{h}}(\vec{\phi}) = \sigma_{a} \cdot \mathbf{h}(\vec{\phi})$	(16)
で与えられるため、き裂発生確率Prとき裂成長速	度の
確率分布Р。は	
$\overline{\mathbf{P}}, = \sigma_{\mathbf{e}} \circ \mathbf{P},$	(17)
$\overline{P}_{\mathfrak{g}}(d\ell/dt \mid \ell) = \sigma_{\mathfrak{g}} P_{\mathfrak{g}}(d\ell/dt \mid \sigma_{\mathfrak{g}}, \ell)$	(18)
となる.ここで, P.とP.は応力に依存しない	旦こ
あとが毎川さわわば オ(17)と(10)を用いて に	سام علاد
れらか昇出されれは、式(11)と(10)を用いて、 住	急応

4. 実験結果との対応

Figure 2 Probability of crack initiation.

ここでは、 ø。はワイブル分布に従い、 ø は正規確 率分布に従うと考えた. この場合、 P_f, P_gは直接求め ることができないため、数値積分を用いて値を決定し た.

<u>き裂発生</u> SUS304,923K,応力98MPa,大気中の静 クリープにおけるき裂密度データに基づき, øc とø の確率分布の定数を試行錯誤によって決定した.なお, 式(12)の qはべき乗則クリープ(定常クリープ)のク リープ指数とした.フィットさせたき裂密度をFig.3(a)に示す.これより, P_iが求められる.このP_iより求 めた応力147MPaにおけるき裂密度の予想曲線と実験結 果をFig.3(b)に示す.両者はよく一致している.

<u>き裂成長</u> SUS304,923K,全ひずみ範囲1%,大気 中cp-type(slow-fast)疲労におけるき裂成長に本解析

(a) CRACK LENGTH, \boldsymbol{l} = 0.03 mm. (b) CRACK LENGTH, \boldsymbol{l} = 0.06 mm. FIGURE 4. - CUMULATIVE DENSITY FUNCTIONS OF CRACK-GROWTH RATE OF 304 STAINLESS STEEL FOR TWO CRACK LENGTHS UNDER CREEP-FATIGUE CONDITION. 923 K IN VACUUM; SLOW-FAST FATIGUE; STRAIN RANGE, $\Delta \varepsilon$, 1 PERCENT.

を適用した. ø。の分布は、材料のみに依存すると考 えて静クリーブの場合と同じとした. øの平均 møは mø = Co+C1・2 Co,C1:定数 (19) とした. Coは本試験のき裂発生密度から決定し、C1は 巨視き裂成長則から決定した.また、øの標準偏差は き裂発生より決定した.すなわち、微小き裂成長に関 するデータを用いることなく解析に必要な定数を決定 した. Fig.4 に、この定数を用いて求めた 2 = 0.03mm, 0.06mm における微小き裂成長速度の累積確率分布の予 測値と実験値を示す. 両者は比較的良く一致している. また、き裂成長速度とき裂長さの関係を Fig.5に示す. 同関係も実験結果と予測値はよく一致している.

なお, 確率分布の導出や実験結果との対応についての詳細は参考文献⁽⁶⁾を参照されたい.

5. 結言 省略

参考文献

- (1) 大谷,奥野,清水:材料, 31, p.505(1982).
- (2) 大谷, 木南,坂本:機論, 52-A, p.1824(1986).
- (3) 大谷,中山,平:材料, 33, p.590(1984)、

(4) 北村,大谷:機論, 53-A, p.1064(1987).

(5) 大谷,北村,村山,多田:機論, 54-A,p.1312(1988).
(6) T.Kitamura, L.J.Ghosn and R.Ohtani: NASA TM No.101358(1989).

ATION OF CRACK-GROWTH RATE OF 304 STAINLESS STEEL AS FUNCTION OF CRACK LENGTH UNDER CREEP-FATIGUE CONDITION. 923 K IN VACUUM; SLOW-FAST FATIGUE; STRAIN RANGE, Δε, 1 PERCENT.

-57-