335

セラミックスの限界欠陥寸法のR曲線法による評価

名古屋大学工学部	Æ	〇 田中 啓介
新潟大学教育学部	Æ	鈴木 賢治
名古屋大学工学部	īF.	田中 拓

1. 緒言

セラミックスの破壊じん性値は金属材料に比して1/10 ~1/100であるため,限界欠陥寸法も0.1mm以下と小さ く長いき裂の破壊力学をそのまま適用できない場合が 多い. 微視的組織あるいはき裂後方のウェイクの発達に よりき裂進展抵抗 K_R が上昇する場合が多く,このため 限界欠陥寸法の評価にも、R曲線の特性を考慮するこ とが必要である.従来、工学的手法として欠陥先端より ある点の応力が重要であるとする点応力モデル (Point stress model), 欠陥先端よりある領域の平均の応力が重 要であるとする平均応力モデル (Mean stress model), あ るいは実際のき裂より少し長いき裂を考える仮想き裂 モデル (Fictitious crack model) の3種がよく用いられる. しかし,破壊の物理的過程とは直接結びついていない. さらに, 微視的残留応力の効果や急激な巨視的残留応 力効果を取り扱うのに十分ではない。本研究では、R 曲線法を用いた方法について検討する.

R曲線法

2.1 R曲線の形状

き裂進展による抵抗の増大の原因として種々のものが 提案されているが、次のように表される。

$$K_R = K_0 + K_m + K_s$$

Crack length increment, C

ここで、 K_0 が材料の真の抵抗で、 K_m はRice, Evans らの 材料の微視的組織あるいは微視的応力(Microstress)の効 果であり、 K_s はき裂の応力しゃへい(Crack-tip shielding) の効果で、Lawn らのウェイクでの結晶粒橋渡し(Grain bridging), Evans らの微視的割れ(Microcracking)や、変 態(Transformation)などがその原因となる. いま K_m を考えないとき、R曲線は一般にFig. 1のように示され る. き裂伝ば量cが c_1 より小さいとき K_R は一定値 K_0 であり、 c_1 を越えると上昇し、 $c \leq c_2$ において長いき裂 の抵抗値 K_∞ となる. これらの代表的な式を次に示す.

$$K_R = K_0 + (K_\infty - K_0) \left\{ 1 - \left[1 - \left(\frac{c_2(c^2 - c_1^2)}{c(c_2^2 - c_1^2)} \right)^{1/2} \right]^3 \right\}$$
(2)

$$K_R = K_0 + (K_\infty - K_0) \left\{ 1 - \left[1 - \left(\frac{c - c_1}{c - c_2} \right)^{1/2} \right]^3 \right\}$$
(3)

$$K_R = K_0 + (K_{\infty} - K_0) \left[\frac{c - c_1}{c_2 - c_1}\right]^{1/2}$$
(4)

上式 (2), (3) は Mai-Lawn によって Grain bridging を説明 するのに提案された式で,式(2) が 3 次元き裂である, 式 (3) が 2 次元き裂である.式(4) は田中らによる式 である. Cook らによる多結晶アルミナの例からの粒 径 d=20 μ m, $c_1 = 40\mu$, $c_2 = 420\mu$ m, $K_0 = 1.73$ MPa \sqrt{m} , $K_{\infty} = 4.08$ MPa \sqrt{m} を代入したときの K_R の変化を Fig. 2 に示す.

-384-

(1)

- Crack length, C
- Fig. 3. R curve method.

Fig. 4. Effect of R-curve model on σ_B vs. t_{ea} .

2.2 き裂進展力と進展条件

き裂はき裂進展力が K_Rを越えたとき進展する.進展 に寄与する応力拡大係数は一般に負荷応力による値 K_a と巨視的残留応力による値 K_iの和となる.

$$K_A = K_a + K_r \tag{5}$$

き裂発生条件はFig. 1のR曲線中には含まれていず,別の条件が必要であるが,Fig. 1中の $c = c_1, K = K_0$ を通る場合がき裂がすでに存在するときのき裂進展可能な最小の応力 σ_1 である.欠陥がき裂状であるとき,Fig. 3に示すように σ_1 でき裂発生となり, σ_2 で不安定き裂の成長となり破壊強度に対応する.

Fig. 5. Effect of c_2 on σ_B vs. t_{eq} .

Fig. 6. Effect of aspect ratio on σ_B vs. t_{eq} .

3. 限界応力と欠陥寸法の関係

Cook らの多結晶アルミナのデータを式 (2), (4) の R 曲線に用いて, ペニー状き裂欠陥について計算した破 壊応力 σ_B と等価欠陥長さ t_{eq} との関係を Fig. 4 に示す. こ こで, t_{eq} は, 貫通き裂とペニーき裂の等式より

$$K = \sigma \sqrt{\pi t_{eq}} = \sigma \sqrt{\pi t} F \tag{6}$$

$$t_{eg} = tF^2 \tag{7}$$

で求めた. $F = 2/\pi$. Fig. 4の $\sigma_B \gtrsim t_{eq}$ の関係は,通常セラ ミックスで報告されているように,欠陥の大きい時には K一定の破壊力学が適用できるが,欠陥が小さくなると それよりずれる. また式(4)の方が式(2)より,この遷移 欠陥寸法は長くなるが傾向がある. 以下では Mai-Lawn モデルを用いて検討を行う. Fig. 5は, c_2 の影響を示す が c_2 が大きい方が,遷移欠陥長さも長くかつ σ_B も大き くなる.

Fig. 6 は半長軸*l*, 半短軸*t*のだ円状き裂でアスペクト 比(= t/l)が種々異なった場合の, $\sigma_B \ge t_{eq}$ の関係を示す. ここで注目すべき点はアスペクト比が1から0.3の広範 囲に変わっただ円状き裂では $\sigma_B \ge t_{eq}$ の関係は同一とな る. このことは, 微小欠陥からの破壊データの整理に 等価欠陥寸法の概念をしようすることの物理的根拠を 与える.

球状欠陥 (気孔) からの破壊応力を同様のR曲線法で 求めた結果をFig. 7 に示す・環状き裂を与えた Barratta の Kの式と、半円き裂を考えた Evans の Kの式では異な

Fig. 7. σ_B vs. t_{eq} for spherical void.

る.実際は寸法が小さいとき前者で、大きいときには後 者に近いと考えられる.気孔の寸法が小さいとき、ペ ニーき裂の場合と異ならないが、寸法が大きくなると σ_Bは弾性応力集中率の逆数に等しくなり最大応力で破 壊が決って行くことに対応する.

貫通だ円孔をもつ2次元平板(だ円孔の寸法全長 10mm)の破壊時の応力拡大係数

$$K_{\rho} = \sigma_B \sqrt{\pi t} \tag{8}$$

の,先端曲率半径 ρ に対する変化をFig.8に示す. ρ がある値以下では K_{ρ} は、き裂の場合と同一の一定値である. この値 ρ_{0} は、 c_{0} が長くなるほど長くなる.

4 討論

以上のようにR曲線法を用いた強度解析は、従来の 微小欠陥や有限半径をもつ切欠きからの破壊実験結果 の傾向をよく表現している.かつ従来の工学的な観点 からの平均応力モデル、点応力モデルおよび仮想き裂 長さモデルよりも物理的意味が明確であり、今後発展が 期待できる.