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Abstract: Many experimental phenomena concerning microscopic fracture processes have an atomistic
origin. The crack tip atom motion excited by fracture is highly nonlinear and chaotic, rendering the atom-
istic and chaotic characterizations as essential aspects of fracture processes. In this article, we outline a
combined atomistic-continuum formulism for material fracture studies. The chaotic atom motion near a
crack tip is explored by using a simplified atom-continuum model, so that an analytical characterization
is possible. The phenomena examined under this methodology include catastrophic atomistic cleavage,
fracto-emisson, chaos in dynamic cleavage and chaotic dislocation emissions.
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1 INTRODUCTION

Many experimental phenomena concerning micro-
scopic fracture processes have an atomistic origin.
Atom motion near a crack tip is highly nonlinear
and frequently of chaotic nature. This nonlinear and
chaotic motion manifests to various macroscopic com-
plexities observed in experiments. In this article, we
formulate a combined atomistic-continuum computa-
tion scheme. A simplified model of this scheme pro-
vides us the desired analytical tractability, and en-
ables us to explore the chaotic atom motion near a
crack tip. The phenomena under examination include
catastrophic atomistic cleavage, fracto-emission, chaos
in the dynamic cleavage processes and chaotic dislo-
cation emissions.

Atomistic chaos in materials fracture is generated
from two types of interactions; from the interaction of
many atoms and from the chaotic interaction of a sin-
gle atom pair at the crack tip. In many-atoms scale,
chaos may occur during dislocations emissions or dam-
ages evolution processes. Tens to thousands atoms
surrounded the crack tip are involved in this process.
If the number of the interacted atoms is small, the pro-
cesses may be studied by a quasi-analytical approach,
as outlined in sections 5 and 6. If the number of the
interacted atoms is large, detailed molecular dynamic
simulations are needed. In the mono-interatomic pro-
cess, a combined atomistic-continuum approach may
be adopted so that the attention can be focused on the
chaotic motion of the crack tip atom pair. The two
aspects of atomistic chaos in material fracture require
different atomistic-continuum approaches. To simu-
late many-atom effects, thousands of atoms should
be contained in an atomistic-continuum assembly, and
the investigations can only be numerical. To get the
essential information of the chaotic atom motion, on
the other hand, only a few atoms are needed and their
interaction with the surrounding continuuun would be
treated analytically. Most of the subsequent analyses
will be focused on the second approach.
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2 DESCRIPTION OF ATOMIC BONDING

The intrinsic fracture toughness of a material can be
studied from an atomistic approach by means of a uni-
versal expression for the binding potential energy ver-
sus atomic separation curves [1]. A complete descrip-
tion of materials can be furnished from a first principle
computation such as the ab initio calculation. How-
ever, the number of the macroscopic properties which
can be obtained from such level is small. To make the
atomistic studies practical, a classical or semi-classical
potential, from which interparticle forces can be de-
rived, is necessary. EAM and the modified EAM ad-
vanced by Daw and Baskes [2-5] provide a feasible for-
malism by which multi-body inter-atomic potentials
may be constructed for various metallic solids. Fur-
thermore, it readily allows the construction of poten-
tials for solids which contain defects, interfaces, sur-
faces, etc. In EAM the total energy stored in a crystal
lattice, Fiu,), is expressed by

Eigtal = ZEi, (1)

where

B: = @(r) + Flpy) (2)
The first term on the right hand side characterizes
the conventional pair potential, with ®; representing
the core-core pair repulsion between the ¢-th atom (lo-
cated at r;) and the rest of the atoms in crystal lattice.
The second term F(p;) is the energy to embed atom
7 in a background of electron density p;, where p; de-
notes the host electron density at atom ¢ due to a
superposition of electron densities contributed by all
atoms in the aggregate. The many-body effects de-
scribed by the embedding energy function F(p;) gives
more accurate description than the pair potential.
The classical pair formulation for the interatomic
potentials assumes that all particles in a crystal are
bonded by the central interaction between any paired-
particles. Though it is a simplification, as a first prin-
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ciple approximation it can be used to describe the in-
teraction between atoms. For the metallic or covalent
bonding, the following 6-9 potential [6] can be used

o) =0 [-3(2F +2(2p], @)
r r
where @ is the reference interaction energy and ag is
the reference interatomic distance.
For ionic bonding, Born’s Theory gives the following
interatomic potential

2
fI>(r)=£~a €

/,AS

dmegr

where s denotes a dimensionless exponent of about 10,
A an interatomic bonding constant, o ps the Madelung
constant, e the unit electron charge, and €g the dielec-
tric constant. Various constants for the above two
descriptions can be found in [7].

When the interatomic potential is known, the inter-
atomic force can be given by

Lo,

firy=-2

()

3 COMBINED ATOMISTIC-CONTINUUM
FORMALISM

Atomic calculations have been carried out to ex-
plore the atom motion at the crack tip [8-15]. The
calculations are performed for a side-cracked disc con-
figuration under a remote K field loading. Using the
molecular dynamics, Monte Carlo method and atom
exchange technique, Tan and Yang [11] simulated sev-
eral atomistic phenomena. Tt is revealed [11] that the
brittle-to-ductile transition of homogeneous materials
is defined by a critical loading rate, and the nanoscopic
profile near an interfacial crack tip is dictated by the
near tip mode mixity. The brittle-to-ductile transition
via dislocation nucleation is observed in the molecular
dynamics siimulation [12].

Mullins and Dokainish[16], Kohlhoff et al. [17],
Yang et al. [18] ,and Tan and Yang [19] performed a
combined atomistic-contimmum simulation on interfa-
cial fracture. The model consists of a nanoscopic core
made by atomistic assembly and a surrounding elas-
tic continum with discrete dislocations. In [17-19] an
overlapping belt is designed to transmit mechanics pa-
rameters, such as displacements, stresses, masses and
momentum, between the atomistic and continuum re-
gions. In the model of Kohlhoff et al., the overlap-
ping layer is further divided into two parts under the
frame of the non-local elasticity theory formulated by
Kroner[20,21]. The method allows an effective cou-
pling of the two media governed by different stress
types. However models developed in [16,17] can not
allow the permeability of the geometric discontinuity.
The overlapping layer developed in [18,19] provides
a permeable interface to allow defects such as dislo-
cations to move from the atom assembly to the sur-
rounded contimmun. Dislocations nucleate from the

; (4)

atomistic crack tip region and then move to the con-
tinuum layer where they glide according to the dislo-
cation dynamics curve. The curve of dislocation veloc-
ity versus crack tip distance shows a smooth velocity
variation from the atomistic region to the continuum
region.

The atomistic-continuum transmission is defined
through matrices T} _ , and TQH - In an overlap-
ping layer, the atomistic description by molecular dy-
namics and the continuum description by finite ele-
ments(FE) co-exist. The displacement of a FE-node
in the overlapping layer is averaged from a collection
of atoms surrounding it. On the other hand, the el-
ement nodal forces are distributed to the surround-
ing atoms. The matrix Tf_ , conveys the atomistic
displacements {labeled as “A”) to the continuum FE

nodes (labeled as “L”); and Tfh_ 1, defines the trans-
mission of forces from the continuum FE nodes to the
atom assembly. These matrices obey the following
transverse relation

T
) (6)
The transmission formulae for the displacement, ve-
locity, and force can be expressed as

T:);<—L = ( 7£<—vA

urL= Tzf—AuAﬂ

,=T7 404, (7)
fa=T,_,f1,

respectively.

The coupled atomistic/continnum simulation in
(18,19] is facilitated by a mechanical atmosphere
formed within the atom-contimium overlapping layer.
In each time step, the continuum deformation induces
atomic movements through the nodal forces generated
on the overlapping belt. These nodal forces are con-
verted to the forces acting on the overlapping atoms by

matrix Tf;(_ - Under these applied atomic forces, the
atoms assembly governed by the inter-atomic poten-
tial will update their positions. The new atomic con-
figurations generate increments in displacements and
momenta, which in turn modify the nodal displace-
ments in the overlapping belt. The atomistic contin-
uum interaction is evaluated iteratively. The atom
oscillation at the crack tip is more frequent than that
of the FE-node far from the crack tip. The simula-
tion condenses most finite element degrees of freedoms
to the matrices describing the mechanical atmosphere
surrounding the atom assembly, leading to the reduc-
tion of the computation time.

The system potential is a functional of uc(t),
uz(t) and u,(f). Here the subscripts “C”, “L”and
“A”denote the freedoms belonging to the continuum,
overlapping layer and atoms respectively. The poten-
tial of the whole system can be expressed as

) (8)

)

1eA

I [uc(t), ur (t)> s (t)]

K K
_1( 4T oF co Ker
=3(uc ug) ( K;e K,

~(ug ) ()
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The last term represents the energy in the atomistic
assembly, with E; given in Eq. (2). In the above
expression, Kcco, Koz, Kre and K;; are standard
finite element stiffness matrices. (See Tan and Yang
[19].)

In the overlapping belt, the continuum description
and the atomistic description represent the same piece
of material. In this sense, the above expression repre-
sents the potential of the whole system plus the poten-
tial in the overlapping belt. The double counting of
potential energy in the overlapping belt, however, will
not invalidate the field equations derived in the sequel.
Since the field equations will take a local form, and
will be homogeneous with the double counting factor,
except along the boundary of the overlapping belt.
Same situations will be encountered for the calcula-
tions of kinetic energy and the system Hamiltonian.
We will skip the discussions on the double counting in
the sequel for brevity.

The kinetic energy of the system is

T [uc(t), ur(t), ua(t)]

M M u
L{ +T +T cc CcL c
= = u u .
2( < L)(MLC MLL)(UL)
+2uAMAuA
(9)
where Moo, Moz, Mzc and Mz are standard finite

element mass matrices, and M4 is the mass matrix of
the atom aggregate. The latter can be expressed as

my
My = s (10)
nln nXn

where m; (i =1,---,n) is the mass of the atom ¢, and
1 is the total number of atoms.
The system Hamiltonian is given by

H [uc(t),ur(t), ualt)
= [P{T [uc(t), ur(t), ua(t)] (11)
~TI [uc(t), ur(t), wa(t)]}dt.

According to the Hamilton’s principle, the Hamilto-
nian of the displacement fields should be stationary
under actual motions uc(t), ur(t) and vy (t)

SH [uc(t), uL (), wa(t)] = 0. (12)

In Eq. (12), all virtual displacements satisfying (i)
boundary conditions, (ii) initial and ending conditions
at t =t; and t = t5 and (iil) the atomistic-continuum
correspondence

=Tr._4ual(t),

T a(t) (13)

should be searched.

To introduce the constraints (13) into the Hamilto-
nian, we adopt the standard procedure of Lagrangian

multipliers. The modified functional is

H* [uc(t) L(t),0a(t), AL(t), par (£)]

AT [uc( ),ur(t), ua(t)]
B [uc ug (t), ua(t)] (14)
+ (ur(t) - TL&AuA(t)) L(t)
+ (B (1) - Tf_,8a(t)” p(t)}dt.

By the variational principle, among all the available
displacements satisfying the above constraints (i) and
(i), the first variation of the modified functional would
vanish by the actual displacements

uA(t)’AL(t)a l"‘L(t)] =0. (15)

The above variational equation enables us to derive
displacement field equations. By Eqs. (8) and (9),
one can eliminate the Lagrange multipliers Ay and
ftr- Through straightforward algebras, the governing
equation of the atom aggregate is expressed by

SH™ [uc(t),ur(t),

(MA =+ MA) uy = f(uA)+f7A+I3A~KAAuA. (16)

The mechanical atmosphere surrounding the atom ag-
gregate is prescribed by the following parameters

Fu= Tﬁb_L (fz — KrcKgefe) (17)

Kaa= Tf;l_,; (Krr —KreKgeKre) T4, (18)
Py= A L (KLCKCCMCC — MLC) uc, (19)
M, =T, , Mz -~ KrcKgbMer) T 4, (20)

where F As K a4 and P A4 are the forces, elastic con-
straints, and the D’Alembert inertia forces of the con-
timmm acting on the atoms in the overlapping belt.
The matrix M A denotes the additional masses ad-
hered to the overlapping atoms.

Atomic motions in the area surrounding the crack
tip are much faster than the nodal velocities in the
continuum region. For an averaging quasi-static mo-
tion, one has

e =0,
ur =0. (21)
In this case one have the simplification
Pa=0, (22)
MAuL =0.

Under this algorithm, Yang et al. [18] and Tan and
Yang [19] calculated the dislocation emission from an
interfacial crack tip. Dislocations can be generated
in the atomistic region by molecular dynamics calcu-
lations, and emitted from the crack tip as atomistic
dislocations. They are switched to continuum disloca-
tions in the overlapping zone, and travel to the contin-
uum region outside. The simulation reveals that the
nature of dislocation emission is greatly influenced by
the zigzag interface structure.
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Fig. 1. Crack tip model for plane strain problem.
Atoms in 3-dimensional configuration are projected to
the plane perpendicular to direction. The solid circles
refer to the 3-dimensional lattice atoms, the shaded
ones refer to the projected atoms.

4 FRACTO-EMISSIONS DURING CATAS-
TROPHE CLEAVAGE

4.1 Catastrophic Cleavage

Consider an ideal situation of averaging plane strain
deformation. The three-dimensional atomic motions
(solid particles) can be studied by their projections
(shaded images) onto the plane perpendicular to ez di-
rection, as depicted in Fig. 1. As the simplest model of
combined atomistic-continuum calculation, the atom-
istic region only consists of a string of two atoms (or
an array of the similar atom strings in the thickness
direction). The atom string locates at the crack tip
and is embedded in the surrounding continuum. The
three-dimensional atom string line orients at an an-
gle § with ey axis in the figure. The angle 6 reflects
the actual three-dimensional lattice structure. When
projecting it to a plane normal to e, the projection
forms an angle ¢ with e axis. For the cleavage case,
the continuum stress field surrounding the crack tip is
symmetric and is measured by a remote mode I stress
intensity factor K. For the crack tip atoms, it was
shown that the Newton’s second law leads to [22,23]

d
mi = »d—UU (v; Fr, E'), (23)
where m is the mass of atom, v is the vertical dis-
placement of the atom, £/ = E/ (1 — 1/2), with the
Young’s modulus F and the Poisson’s ratio . The
cleavage potential U (v; Fr, E’) has the following ex-
pression

U(v; Fy, E') = %cp (r(v)) — Fyv + %k, (E')0?, (24)

where 7(v) is the distance between the two atoms at
the crack tip. The swrrounding continuum exerts two
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Fig. 2. Catastrophic jump of the equilibrium position
of the crack tip atom during the cleavage process.
The solid curves refer to stable states and the dashed
curves to unstable states.

effects on the movement of the atoms. One is the
stretching effect due to the remote stress intensity fac-
tor, expressed as the work of the stretching force Fy
against the vertical displacement v; and the other is
the confining effect by the continuum against the atom
vibration, where the effective stiffness of the cracked
continuum is denoted by k7 (E’). In the above expres-
sion, they are [22]

Fr = 0.818K a3/, (25)
k;r =0.513FE6,
where § denotes the distance between the interception
of the atom string at the crack plane and the crack
front, as shown in Fig. 1. The above two equations
are simplified versions of Egs. (17) and (18) respec-
tively. In the present case, only two crack tip atoms
are considered in the atom assembly. The U (v; Fy, E')
curves at different F; values would predict a cleavage
process featured by catastrophe, as will be discussed
below.

Taking the special case of ag = 4A |, m = 1.0 x
10725kg, &y = 2.22¢V, E’ = 84.2GPa and a simple
cubic lattice structure with the interatomic potential
given by Eq. (3). Under a prescribed Fy, the equilib-
rium displacement v°%(Fy) curve for this representa-
tive case is shown in Fig. 2. That curve shows the fold
catastrophe with the fold points at A and B, they give
two critical values Fre and Fres. When Fr < Frco
or F7 > Frc1, there is an one to one correspondence on
the v°4(F7) curve, and the solution is stable against
perturbation. When Frco < Fy < Ficp, three bal-
anced positions exist, as shown in Fig. 2. The posi-
tions on the top and on the bottom are stable, while
the one in the middle is unstable, and is depicted in
dashed curves. The reference force in the figure is
Fy = 0.818a2E’.
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Figure 2 reveals a negative hysteresis loop during
loading and unloading cycles. When the load F7 in-
creases from a low value up to Fy¢i , the crack tip
atoms will catastrophically jump upward from state
A to state A’. On the other hand, when the applied
force reduces from a high value down to Fjco, the
crack tip atoms will catastrophically jump downward
from state B to state B’. The unilateral jumping am-
plitude for one atom ranges from 0.15~0.25a5. The
two catastrophic jumps of atom positions suddenly re-
lease potential energies during and after fracture, as
observed by the experiments of Dickinson et al. [24].
From representative calculations in Fig. 2, the catas-
trophic jump of the system from state A to state A’
(loading) gives an energy release of AE; = 0.18¢V,
and that from state B to state B’ (unloading) gives a
smaller energy release of AE; = 0.10eV.

To perform a static analysis on the atom response
at the crack tip, Hsieh and Thomson [25] and Thom-
son et al. [26] developed the lattice Green’s function
(also called lattice statics) method. Using the crack
tip lattice model, they studied the fracture behavior
of brittle materials such as semiconductors and ce-
ramic materials [27] and crack-dislocation effects in
the fracture of crystalline materials [28]. The lattice
Green’s function approach gives the static response of
the lattice under an applied force. In their model, lin-
ear atomic forces are assumed, except for those atoms
in the verge of breaking. With this assumption they
studied the static response of a single kink at the crack
tip. The function of the external force versus the dis-
placement at the origin is calculated and leads to the
similar results as shown in Fig. 2. The model advanced
by Tan and Yang [22,23] provides an analytical de-
scription of the crack tip atom motion, combining the
atomic motion with the surrounding contimum.

In addition to the catastrophic jumps, a periodic
nrreversible energy barrier is encountered during the
cleavage process. This energy barrier is called the Lat-
tice Trapping Barrier (LTB). As shown in Fig. 2, the
top side crack tip atom jumps from vl to v2, un-
der the applied force Fje1. Under the force Freo, the
atom will jump from the displacement of vy,¢,) back to
the bottom curve. The LTB for crack extension can
be expressed as

Sext :/ ” F('U)d'l}, (26)
0
and LTB for crack healing as
heal
Epeal = — f F(v)dv. (27)

ext

From Fig. 2, we observe that the when there is a catas-
trophic jump of the loading curve, F(v) in the above
two integrations has different paths. We have

gheal > Eext- (28)
Sinclair [29] studied silicon and found a two-
dimensional lattice-trapping barrier for forward crack
motion of about 0.25e;. Markworth and Hirth [30]

0.6
0.5
L0.4
0.3
102
10.1

Balanced displacement v°i/ag

Fig. 3. Three-dimensional portrait of the surface
v°4(E’, F) shows a cusp catastrophe. Each line in the
surface corresponds to a specific material character-
ized by the elastic constant E’ .

devised a model consists a system of four point mass
atoms, arranged along a straight line by identical
Morse-function “springs”’. The model show a marked
asymmetry in the magnitudes of the barriers.

4.2 Fracto-Emissions

Experiments on fracture processes show the emis-
sion of particles, including photons, electrons, ions
and neutral species, during and after the fracture of
materials [31-35]. These phenomena are collectively
termed fracto-emissions because the material fracture
is a prerequisite for their appearance. The transport
of fracto-emissions has proved to be a useful probe on
the local environment in materials if that transport is
dictated by the local geometry. Experiment by Lang-
ford et al. [36] took the photon emission as a probe of
chaotic processes accompanying fracture. The spec-
trum of emitted particles are served as measurements
for the fractal crack path and the chaotic emission
process.

The fracto-emission phenomenon may be explained
using the present catastrophic cleavage theory. The
crack tip atomic potential drops when the crack ad-
vances. The released potential energy converts into
the kinetic energy of the crack tip atoms. Two chan-
nels exist to absorb or to diffuse this kinetic energy.
One is through the excitation of fracto-emissions, and
the other is through the wave propagation. Fracto-
emissions will be excited when the energy impulse is
sufficiently high and cannot be effectively carried away
by wave propagation. The probability of the fracto-
emission may assume an Arrhenius form

prob = min [exp ((AE - E)/(kBT)) , 1} ,(29)
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Table 1. Fracto-emission analysis on representative materials.

(a) Tonic crystals of NaCl structure, cleavage system (001){100]
Crystal | ao, A | 4,eV-(A)° | s | B, GPa | E,, GPa | AE,, eV | AE, , oV
LiF 2.01 1.63 x 102 6.20 108 314 3.18 1.05
NaCl 2.82 6.98 x 103 8.38 43.4 109 2.30 0.926
(b) Metallic crystal of f.c.c. structure, cleavage system (001)[110]
Crystal | ag, ®, eV | E/, GPa | E, GPa | Fracto-emissions
Cu 2.55 0.391 147 102 No
Al 2.86 0.359 79.8 66.6 No

(c) Metallic crystal of b.c.c. structure, cleavage system (001)[100]

Crystal | ap, A | ®g,eV | E/, GPa o> GPa | Fracto-emissions
Fe 2.48 | 0.780 231 155 No
w 2.74 1.57 446 230 No

(d) Covalent crystal of diamond cubic structure, cleavage system (111) [011]

Crystal | ap, A ) | @y, eV | E’, GPa %, GPa | AE;, eV | AE;, eV
C 1.54 3.59 1.09 x 10° | 2.46 x 10° 0.644 0.660
Si 2.35 2.16 154 416 0.764 0.488
Ge 2.45 1.96 123 334 0.688 0.445
where kp is the Boltzmann’s constant, 7 the abso-  equals to
lute temperature, AE the energy released by catas- AE
trophe and E the energy barrier (0.2¢V to 2eV) to Cjump = m (31)

cause a particle emission. Take the example of the
fracto-emission of NaCl monomers. Experiments [37]
indicate that the emission of an NaCl monomer from
a defect-free flat surface requires 2.2eV. The energy
required for fracture related emission should be con-
siderably lower than that. The sublimation energy on
a cracked surface of NaCl is about 0.25¢V [37].The
available time for fracto-emission, fs.., can be esti-
mated from the crack propagation velocity. The crack
velocity can be estimated from the light transmission
measurements [38]. The time interval t4,. for fracto-
emissions ranges from 100ps (slow cleavage) to 0.2-1ps
(fast cleavage). Fracto-emissions are easily induced
during fast cleavage, since the excitation energy is
supplied continuously at high intensity. We now in-
vestigate the slow cleavage case where ty,. is about
100ps. This time interval is much larger than the dy-
namic characteristic time t,.,., the time interval for
the stress wave to travel away. Typical data give the
order of tyaye in the range of 0.1-0.2ps. For the slow
cleavage case, we have a0 > twave, and a quasi-static
approximation can be applied to the governing equa-
tion (23). The time duration for this catastrophic en-
ergy release can be estimated from

(30)

tj ump — Ujump/cjumpy

wher Vjymp = ngt —’U;xt is the jump value of the verti-
cal displacement at catastrophe. The jumping velocity
of the bond-broken atom, ¢jump, can be estimated as
follows. The potential energy jump AE of the atom
pair is transformed into the kinetic energy mcjzump of
two symmetric atoms at the crack tip. Thus ¢jump

Combining Egs. (30) and (31), one finds the time
interval in the opening jump for the atom pair is
about 0.18ps, if the unilateral vertical jump is Vjym, =
0.25ap. This jump time is relatively short, so that the
energy impulse released during the catastrophe can-
not be taken away by wave dispersion and is supplied
to cause fracto-emissions.

Under a prescribed F7 value, the equilibrium solu-
tion v°% depends critically on E’. Figure 3 shows the
surface v°4(E’, Fr). This graph has the structure of a
cusp catastrophe. The curve on surface where the up-
per and lower sheets fold over into the middle sheet is
called the fold-curve. The projection of this curve onto
the horizontal controlling plane forms the bifurcation
set, which defines the bounds for energy releases. In
most cases, the intensities of fracto-emissions reach
their peak during the fracture event and decay af-
terward. However, recent measurements also showed
rapid, intense bursts of atomic and molecular emis-
sions that arise after the fracture. The bifurcation
set in Fig. 3 explains the catastrophic energy releases,
and consequently emission bursts, during the loading
and unloading phases of cleavage.

Although the fold curve is a smooth one, the bi-
furcation set has a sharp point. The cusp point pro-
vides a critical value for the material parameter E’,
denoted as Ef. Accordingly, a criterion for the ma-
terial to have a catastrophic jump can be phrased by
the comparison between E’ and Ef,

E < EL, (32)
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Fig. 4. Log-log curve of the fracto-emission intensity versus time for the after-peak decay period.

where

g 0975 & (dr 2+
¢~ é Ogtl)a<oo dr? dv

Table 1 lists relevant data for several representa-
tive materials based on the present theory for slow
cracking. The parameter values for the interatomic
potentials ag, ®o, E’, A, and s are taken from the ex-
periment data, [7,39-41]. AE. and AFE), refer to
the energies released in the extending and healing pro-
cesses, respectively. Some materials listed in the table
are ductile under normal conditions and the fracture
process is mainly controlled by dislocation emissions.
The results in Table 1 indicate that we can hardly ob-
serve fracto-emission in metallic crystals. The fracto-
ewission for ionic and covalent crystals can be easily
observed. The catastrophic energy release under these
materials varies from 0.45¢V to 1.1eV, sufficient to in-
duce fracto-emission.

‘dr dv?

i ﬁ} (33)

4.3 Effect of a Zigzag Channel

Tsai and Mecholsky([42] studied the fractal fracture
of single crystal silicon. The self-similar nature of frac-
ture offers a way that the relationship between bond
breaking at the crack tip and the fracture surface mor-
phology can be found. The nature of this phenomena
may be related to the self-similar pre-fracture zone
growth in the vicinity of the propagated crack tip.
Experimental observations show the relation between
the fracture toughness and fractal crack [43-45]. Scan-
ning tunneling microscope observations of LiF frac-
ture surfaces indicate that they can be very rough on
nanoscopic scale [46]. A simple gquantitative descrip-
tion for an irregular surface was to model it as a zigzag
swrface, as shown in the schematic profiles in [46].

Using the zigzag profile model, Tan and Yang
[23] presented a numerical simulation of the fracto-
emission process channeled by the cracked surfaces.
The result suggests that the long-lasting tail observed
in the photon emissions is caused by the zigzag char-
acter of crack surfaces. Figure 4 shows the simulated

dimensionless fracto-emission intensity I(¢) under the
zigzag fracture surface model, where I(t) is the parti-
cle beam intensity normalized by its maximum value.
The results are presented by a log-log plot of the after-
peak fracto-emission intensity versus time. The rela-
tion between log(I(¢)) and log(t/o) is roughly linear,

which suggests
to A
(%), (34

in agreement to the experimental observations [24].
In the above equation, tp is the time for a particle to
fly over the crack with ideally flat surfaces. From the
slope of the log-log curve, we estimate that § = 0.63.

5 CHAOTIC CLEAVAGE PROCESSES

Tt is well known that certain systems exhibit chaotic
behavior. Nip et al. [47] constructed equations of
atomic motion in a two-dimensional crystal lattice
and studied the chaotic phenomena. Numerical anal-
ysis indicates that the system integrability depends
on its energy level. The breaking of the crack tip
atomic bond is a dynainic and highly nonlinear pro-
cess. Markworth and Hirth [30] proposed a simple
atomic model for a crack tip, consisting of a string
of four atoms. Markworth later [48] described cer-
tain catastrophic behavior this crack tip model may
exhibit. Dynamic calculations are carried out by pin-
ning the two end atoms while allowing the two inner
atoms to move freely. Upon large departures from the
state of minimum potential energy, the inner atom
motion was shown to be chaotic [49,50].

Mohan et. al. [51] extended the above model to
study the effects of dissipation and excitation on the
chaotic dynamics in a cleavage process. Damping is in-
troduced by dissipative mechanisms occurring at the
crack tip. Chaotic motion is found under large ex-
citations and small damping constants. The models
by Markworth et. al. [50] and by Mohan et. al
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[51], however, only consists of one dimensional array
of four atoms, connected by nearest-neighbor inter-
atomic bonds. Linking the atom-string model to a
continuum mechanical field characterized by K7, Tan
and Yang [22] present a model to elucidate that how
the surrounding continuum mechanics field controls
the near crack tip atom motion. Consider the four-
atom string model for a crack tip. The nonlineality
in the inter-atomic force law of these atoms will be
shown to generate chaos during a cleavage process.
By the symmetry of the problem, only the two atoms
(labelled by subscripts 1 and 2) above the crack exten-
sion line need to considered. Let & = vy, & = mi,
&3 = vg and £ = Mmoo, one can formulate the atom
motions by a system of first order differential equa-
tions

éfl = éZ/ma
&= —flao + & — &) + flao + 261), (35)
& = &a/m,

§a=F — k& + flap + & — &1),

where the interatomic force fis given by Eq. (5). Ho-
mogeneous initial condition is assigned in the subse-
quent mumerical simulation.

The above dynamic system may excite chaotic be-
havior. Lyapunov exponents measure the expansion
or contraction along different directions in the phase
space and are among the most useful quantities in
characterizing chaotic systems. Given a continuous
dynamic system in an n-dimensional phase space, an
infinitesimal n-sphere will become an n-ellipsoid in the
long-term evolution. Denoting the length of the sphere
along the ¢-th dimension by p;(t) , one can define the
Lyapunov exponents as

oLl
)\i:tlggozlogzp—(oy,zz1,2,---,77,. (36)

Their algebraic values are ordered from large to small
as Ay 2 Ay > ... > A, Wolf et. al. [52] provided
an algorithm to search all Lyapunov exponents. A
positive Lyapunov exponent is the conclusive evidence
for chaos, and reflects the time scale over which the
evolution of a dynamic system becomes unpredictable.

In Fig. 5, the largest Lyapunov exponent of the dy-
namic system (35) is calculated for the load parameter
a = K1/K\ varying from 0 to 0.5, where Ky = E'\/ay.
The largest Lyapunov exponent can be evaluated di-
rectly from the exponential growth on the separation
of initially neighboring trajectories. The whole sim-
ulation consists of one million Lyapunov restarting
steps. The Lyapunov exponent analysis on the equa-
tion system governed by Eq. (35) is drawn in Fig. 5.
As the load parameter  increases, the crack tip atoms
exhibit four types of dynamic responses. For an o
value in regime I, atoms vibrate individually near the
balanced positions. In regime II, nonlinear effect dom-
inates and atoms couple together to approach a state
of bond breaking. The maximum Lyapunov exponent
rises suddenly at an o value (about 0.1) considerably
smaller than the one of the static fracture toughness
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Fig. 5. The maximum Lyapunov exponent \; versus
the load parameter o.

(o =0.235). Consequently, the crack tip chaotic atom
motion is a precursor of cleavage. In regime III, bond
breaks from the static point of view, but the weakened
Interaction still holds the atom pair together. At even
higher load in section IV, the linearity of the system
is recovered and the nonlinear bonding between the
atom pair is completely lost. The two broken atom
string segments are hooked to the upper and lower
crack faces and vibrate with the continuum. The crack
moves to the next atom pair.

The result in Fig. 5 suggests that the dynamic frac-
ture process is a more complex procedure than the
static one. K§*** is the value of K; at which the crack
tip atom jumps catastrophically to extend the crack.
From the figure we can get two additional parameters
for dynamic cleavage, namely the K ?h“S value at the
transition from section I to section IT and the X ferm
value at the transition from section IIT to IV. Kghaos
refers to the burst of chaos in a dynamic process.
When K;h“"s > K7r , the crack is absolutely stable
and remains stationary. When K205 < J{; < K¢ta
, chaotic atom motion occurs prior to complete cleav-
age separation. Small disturbances (such as the load-
ing rate fluctuations and temperature induced fluctua-
tions on the phase trajectories through Brownian mo-
tion) may have significant influences on the dynamic
motion of crack tip atoms, and the spatial region for
atoms under chaotic motion may spread. This cor-
responds to a diffusive fracture process. K™ refers
to the termination of chaos in the dynamic process of
the crack tip atoms. When the stress intensity factor
exceeds this value, disastrous fracture occurs with the
crack moving ahead without stop.

Besides its meaning in mathematics, chaos has cer-
tain meanings in a cleavage process. As a precursor
to cleavage fracture, chaotic motion characterizes a
period of time on the cleavage process when the inter-
atomic bond disintegrates under certain cohesion. The
critical values for the chaos to occur and to recede link
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Fig. 6. Dislocation emission band model.

to various fracture parameters, and their meanings to
a dynamic cleavage process are yet to be explored.

6 CHAOTIC DISLOCATION EMISSION

Rice [53] discussed the equilibrium (or static) pro-
cess of dislocation emission from a crack tip based on
the Peierls concept. A slip plane with periodic shear
stress and sliding displacement relation is embedded
in an elastic continuum to incorporate the continuum
elasticity with an atomistic description of the dislo-
cation core. Rice’s static analysis introduces a new
solid state parameter: the unstable stacking energy.
Recently, Sun et al. [54] extended this model to the
case of tension-shear coupling in the dislocation nu-
cleation from a crack tip.

The above models for dislocation emission at the
crack tip does not incorporate the dynamic atom mo-
tion. It is the pattern of this dymamic motion near
the crack tip that dictates the failure modes of solids,
and provides more accurate description for their brit-
tle versus ductile behavior. The dislocation nucle-
ation at the crack tip was studied by Doyama [55] by
means of molecular dynamics method with an analyt-
ical model. For the complete procedure of atomistic
dynamic emission of dislocations, a simple model is
formulated as follows, Tan and Yang [56].

In the subsequent analyses, the crack is viewed as
a semi-infinite slit in an otherwise unbounded solid,
loaded at the infinity through a crack tip singular-
ity field. Consider the anti-symmetric mode 11 load-
ing by the stress intensity factor Kj;. Ahead of the
semi-infinite crack in the contimumum, a number of
atom columns {connecting each other by inter-atomic
bonds) is positioned and embedded in the cracked con-
timaum.  We term this strip a dislocation emission
band. One possible configuration of the dislocation
emission band is shown in Fig. 6. N colummns of atoms
ahead of the crack tip are included. We attempt to an-
alyze the dynamic motion of a dislocation core along
this dislocation emission band.

Denote the horizontal displacement of atom 7 in the
sliding plane S as u;. The shear stress acting on the
atom in the balanced configuration is the summation
of horizontal components of forces exerted from all

atoms in the central plane

2 Zf ;1)

....(/1

r” e (37)
i)

where r;; = r; —r;.

The Peierls concept gives rise to an alternative way
to obtain the shear stress 7 along the slip plane. The
function 7;(u;) would assume the same form for any
atom ¢ if the presence of the crack has negligible in-
fluence on the slide potential. Accordingly, 7;(u;) can
be approximated as 7(u;), a periodic function of the
atomic displacement u; with the period ag. The sim-
plest form of 7(u;) is the Frenkel sinusoidal function

/“Lshp

T(us) = o sin(27u; /ag). (38)

When u; is small, 7(u;) degenerates to —fug1ipu; /ao.
The modulus, fip , refers to the shear resistance of
central atom plane C against the sliding atom plane
S. Matching the amplitudes of the periodic functions
(37) and (38), we get fq1p = 3.04d0 /ad .

Now we determine the forces F; and constraints k;
exerted from the continuum to the ¢-th sliding atom,
under the framework of linear fracture mechanics. The
horizontal displacement can be expressed by the fol-
lowing superposition

w(t) = uk ol (8), (39)
where u is the background dlsplacement caused by
the stress intensity factor K7, and 7 (t) is the crack

tip atom vibration. uiK is given by the well-known
K-field,
2K 2(IN+1-1)a
K __ I7 0

The term u7(¢) is induced by a pair of transversal
concentrating forces 7T} (#)a? applied on the upper and
lower slit faces of the cracked continuum. A remark-
able result by Freund [57] indicated (see also Tan
and Yang [22,56]) that the relation between T;(t) and
ul (t) can be approximately expressed by their quasi-
static relation at a time scale much larger than 0.2ps.
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Namely

1 TE o

BINTI=3) a

Ti(t) = — (41)

where

B(n) = 2v/4n? + 2n
+1n!2\/4n2 +2n+4n+1)
—2V/4n? — 2n

+In (2v/4n? — 2n +4n — 1).

Combining the above three expressions, one gets the
force acting on atom % as

(42)

2(N+1—~z

F,=2 K \/Taga 43
BIN+1—q) 1 0 (43)
and the continuum confinement to atom ¢ is
! Jo% (44)
= TL Q
FTBN+1—d)

For a dislocation emission band ahead of the crack
tip, the system Hamiltonian is

N
811 k i
H=Y (%muz — Fu; -i-ag—‘ﬂ'——Q sin? %)
=1
-+ Z (I)(U, — ui—l)-
i=2

(45)
The summation in Eq. (45) is carried over all atom
columns. Denote &;_1 = u;, £; = mi;, one can write
a system of differential equations by

él = 52/77%
& = —27% (k1 +M51;pao) sin (27!'%)
— f(ri2) + F1,

f2i 1 = ézi/m 2<i<N, (46)

égi = (kl +M51,pao) sin (2’7‘
“f (r‘L,L-‘—l) +f(rz~ ,‘L) + E) 2 S 4 S N

€ai1

At the end of the dislocation emission band, equi-
librium conditions are enforced

uN+1 = O)

frane1) = (47)

0.

Namely atoms along the tail of a dislocation emission
band are held in the undeformed lattice.

We investigate the critical value for dislocation
emission K ‘;’,“it when the number of atom columns,
N, in the dislocation emission band varies from 1 to
several tens. K ?’;‘it can be evaluated from a static
analysis. Taking the left hand side of Eq. (46) to
be zero, we get N equations, with N+1 unknowns &,
, &3 4, €an—1 , and K. Selecting a sequence of
&y values from 0 to ap , one can solve the nonlinear
equations described above and predict the values of
K1 at specific €1 values. The peak value of the K;;
versus &) curve gives the value of K ‘;}“1’5. If one pro-
ceeds in this way, each NV will lead to a corresponding

10

value of K§P*. When the atom column mumber N
in the band becomes larger, the critical K value for
dislocation emission, K$P*, decreases and eventually
approaches an asymptote, see Tan and Yang [56]. This
calculation justifies, in some extent, the convergence
of the present model to the actual atomistic assembly.

The nonlinear atom motion governed by the above
dynamic system controlled by Eq. (46) relies on a
loading parameter a = Krr/Ko, where Ky = ', /ao.
The phase trajectories of the first atom-pair at the
crack tip were plotted [56] at various levels of a. Tt is
observed that the phase diagrams become more and
more chaotic as o value increases. As a precursor of
the dislocation emission from the crack tip, the chaotic
atom motion intervenes and dominates the early re-
sponse near defects. Similar conclusions are reached
by other measures on chaotic motion. For examples,
strange attractor appears in the Poincare section dia-
gram of the same dynamic system, and the Lyapunov
index takes a pattern shown in Fig. 7.

In Fig. 7, the largest Lyapunov exponent of Eq. {46)
is calculated for the load parameters o = K;;/Kj
varying from 0 to 0.09, when N is taken as 2. The
Lyapunov exponent analysis on the equation system
(46) reveals its chaotic characteristics. As the load
parameter o increases, the crack tip atoms exhibit
distinct dynamic responses in the two regimes of o
values. For an « value in regime I, atoms vibrate indi-
vidually near the balanced positions and their motions
are almost harmonic. In regime II, nonlinear effect
dominates and atoms couple together to approach a
state to nucleate dislocations. The regions I and II are
separated at an a value of 0.066, at which the maxi-
mum Lyapunov exponent rises suddenly. That « value
for chaotic atom motion is less than one half of the a
value for the static fracture toughness {(a = 0.139)
[56], corresponding to K5 in Fig. 7. Consequently,
the crack tip chaotic atom motion is a precursor of
dislocation nucleation.

The result in Fig. 7 suggests that the dynamic dis-
location emission process is more intricate than the
static one. From the figure we obtain one additional
parameter for the dynamic dislocation emission pro-
cess, namely the K75 Ch““s value at the transition from
regime I to regime II. K '[-’?a"s refers to the burst of
chaos in a dynamic process. Before reaching the value
of K ;l}aos, the crack tip remains stationary and is abso-
lutely stable against the dislocation emission. When
K > K?}I‘aos, chaotic atom motion occurs prior to
dislocation nucleation.

The chaotic nature of dislocation emission is shown
by the oscillation of dislocation center along the atom
strip. At an intermediate level of K, dislocations
nucleated at the crack tip will drift in the disloca-
tion emission band instead of staying at a fixed loca-
tion. We call this dynamic phenomenon as dislocation
cloud. Because of the fast drifting of dislocation core,
one can hardly give a deterministic description on the
dislocation location. A probabilistic description will
be attempted instead. We denote Prob(z;) as the
probability density for a dislocation to be detected at
the position x;. In the process of integrating Eqs.
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Fig. 7. The maximum Lyapunov exponent \; versus

the load parameter a. The curve reveals sudden ap-

pearance of chaos in the crack tip ators motion when
the applied load exceeds the critical value K$22

(46), the dislocation positions at every ten integration
steps are recorded. Taking the total recording number
as ngo , we define the probability as

n(xl;Ax_v) (48)

Prob(z;) = oAz,

Axy—0

where n{z;, Ax;) is the recordings of dislocation cores
located in the region |x; — ég—”,xl -+ émz—l} . Our cal-
culations showed that after the time evolution for
about 50ps the curve Prob(z;) approaches a steady
configuration. What we observe in the conventional
microscopic measurement is the time average of the
dislocation cloud. The dislocation cloud model pre-
dicts an extended core region along the dislocation
glide plane, where the recorded data of microscopic
deformation are actually the time average of the os-
cillating dislocation core. Indeed the recent nanome-
chanics experiment revealed an extended core-region
in which the continiam elasticity field is severely per-
turbed.

Figure 8 shows the probability functions Prob;(x;)
and Proba(x;) for the occurrence of two dislocations
that nucleate from a crack tip and drift ahead of
it, at a remote loading of & = 0.11. The functions
Prob;(z;) for the first dislocation and Probg(x;) for
the second one are normalized such that for the first
dislocation has a total probability of one, namely
fOOOProbl(xl)d:vl = 1. There is a segment along x;
axis ahead of the crack tip where the two proba-
bility functions overlap. Both dislocations may en-
ter the overlapping zone, either at different times or
at different locations. Under a macroscopically ob-
served time scale, the overlapping dislocation clouds
would manifest themselves as connected cores. Ra-
tio of the covered areas by two probability functions
shows the occurring rate of the two dislocations. Since

11
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Fig. 8. Curves show the probability functions of the
core positions for the first and the second dislocations
emitted from the crack tip.

fONProbl (x7)dxy > fDOOProbz(acl)da:l, the first nucle-
ated dislocation would occasionally drift back to the
crack tip and deplete the second dislocation.

The description of the inter-atomic potential cer-
tainly influences the possible chaotic motion at the
crack tip. Depending on the nature of the inter-atomic
potential, dislocations can emit from the crack tip like
a passage of solitone or a passage of cloud. The brit-
tle versus ductile behavior of materials is decided by
the chaotic atom motion near the crack tip. It is the
chaotic competition between the emission of disloca-
tion clouds and the chaotic-to-deterministic separa-
tion of cleavage that decides the fracture toughness of
a material. Related issues, such as the temperature
and rate effects on the brittle versus ductile transi-
tion, can also be addressed by the chaotic nature of
the atom motion near the crack tip.

7 CONCLUDING REMARKS

Chaotic atom motion near a crack tip excited
by fracture are studied in a combined atomistic-
continuum approach. Numerical simulations are fa-
cilitated by a atom-continuum overlapping belt which
can convert the mechanical atmosphere formed on the
atom assembly. The defects transmission across the
atom-continuum interface are easily addressed. This
technique put no extra constraint on the atom assem-
bly. Simplified analytical atom-continuum models put
focus on nonlinear effects of the crack tip atom mo-
tions. They show effects of the macroscopic control-
ling parameters on the microscopic atom behaviors.
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