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Abstract: Recent devclopment of  the ]ocal approach  to fracture based continuurn  damage  mechanics  and  finite

element  method  together  with  the re]atcd  numerica]  problems is reviewed.  After brief description of  the concept,

procedure and  applicability  of the Iecal approach,  the essential  features and  the  causes  of  the mesh-depcnqenge  
of

numerical  results  are  discussed. As  regularization  methods  to avoid  or  to improye the mesh-dependencc  in time-

independent materials, schemes  based on  localization limiters and  nenlocal  damage  theory are  discussed in some

detail. The mesh-dependence  problem in time-dependent  damage, i,e., creep  damage, are  also  discussed,
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1 INTRODUCTION

  Recent development of  continuum  damage mechanics

(CDM) has provided an  important framework for the

failure analyses  of  components  in enginecring  structures

[1-9], By  use  of  the proper constitutive  and  evolution

equations  taking  account  of  material  damage, CDM  is

capable  of  describing the  whole  process of  failures
ranging  from damage development, crack  initiation, crack

(or failure zone)  growth to final fracture. Namely,  i'f we
characterize  a  crack  by an  aggregate  of  material  elements

where  the damage variable  attains to a  critical  value,  we

can  analyze  the process of initiation and  growth of  cracks,

and  this scheme  is usually  called  a Local Amproach  to

Fracture [2, 7, 10-12]. Becauso  of  its potential capability

of  engineering  applications,  local approach  based on
CDM  combined  with  finite element  method  (FEM)  has
been extcnsively  investigated in various  fields including

creep,  elastic-plastic  and  fatigue fracture of  traditional

metallic  materials,  damage problems of  composite

materials,  and  fracture problems of  various  brittle

materials  (concrete, ice, rock,  bone, cement  mortar,

ceramics,  etc.).

  While  the FEM-based local approach  has proved its
significant  applicability,  it has been often  found to be

subject  to mesh-dependence  of  its numerical  results  [l3-
20], and  leads to non-objective  or  no  convergent  results

with  respect  to the mesh  refinement.  Since this mesh

dependence is a crucial problem  to the practical appli-

cations  of  CDM,  it has received  considerable  attentions  in

recent  papers [19, 21-31].
   So far most  investigations on  mesh  dependence  are

related  to strain softening  of  materials.  In many  time-

independent damage models,  especially  those applied  to

brittle materials  like concrete  and  rock,  the strain

softening  inevitably leads to a  loss of  uniqueness  or

stability  of  solution  in the sense  of  continuum

mechanics.  Thus, mesh-dependence  has been often

discussed in relation  to thc material  bifurcation or

instability [32-4]], and  several  regularization  methods

(such as nonlocal  formulation, the use  of  higher order

gradient, etc.)  were  proposed to overcome  the mesh-

dependence. The  mesh-dependence  problems occur  also  in

the local approach  in materials  without  strain-softening

and  material  instability L20, 28, 42, 43]. Though  these

problems have drawn  less attention,  they also  are very

important in the applications  of  the local approach,

especially  in time-dependent damage model  (like creep  and

fatigue).

  After a brief review  of  the notion  and  procedure of  local

approach  based on  CDM  and  FEM,  the state of  recent

application  of the approach  wi!1 be addressed  in Chapter
2. Characteristic feature of  mesh-dependence,  their relation
to strain-softening  and  bifurcation together  with  several

schemes  of  the regularization  will  be discussed in Chapter
3. In Chapter 4 the nonlocal  model  as  one  of  the most

promising method  to regularize  the mesh-dependence  will

be presented, Finally, mesh  dependent problems in time
dependent  damage models,  as well  as  its causes  and  the

releyant  regularization  methods  will  be discussed in

Chapter5.

2 LOCAL  APPROACH  AND  ITS RECENT
  APPLICATIONS

2.1 Continuum  Damage  Mechanics  and  Local

   Approach

  According to the notion  of  Continuum Damage  Me-
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chanics  (CDM), we  take  a  body B  as  shown  in Fig. 1
with  distributed microscopic  cavities,  and  suppose  a

Representative Volume  Etement  (RVE) in the body B
around  a material  point P  at x, sufficiently  smaller  than
B. Then, if the damage state of  the element  V can  be
described by a properly defined Damage  Vbriabte D(x)
(O g IDI S D,,), the process of  damage and  fracture caused

by the development of  distributed microscopic  cavities

can  be analyzed  in the  framework of  continuum

mechanics  by the following procedure [7, 10, 12, 171:
(a) represcntation  of  the mechanical  effects  of  distributed

   microscopic  defects by a proper damage variable  D;

(b) formulation of  the evolution  equation  of  the damage
   variable;

(c) formulation of  the  constitutive  equations  to describe

   the mechanical  behavior of  the damaged materi  al ;

(d) solution  to the initial-boundary value  problem  govern-

   ed  by the above  coupled  eyolution  and  constitutive
       ,
   equatlons.

  In the  usual  procedure of  CDM  described above,  the
damage  state  at  a  point x  in the  material  is described by a

damage field DCx). Thus, if a crack  is characterized  by an

aggregate  of  material  elements  where  the damage has
attained  to its critical  state  IDI =

 4, as  shown  in Fig, 2,

the process of damage development and  crack  growth can
be analyzed  directly by calculating  the states ofstress,

Fig, 1,Reference volume  element  and  damage  variable.

y

strain and  damage. This scheme  is usually  called  Locat

Approach cV' Fracture [2, 7, 10-12]. In particular, thc
local approach  of  fracture based on  CDM  and  Finite
Element  Method  (FEM) was  proposed for the first time
to the analysis  of creep  fracture by Hayhurst, Dimmer  and

Chernuka [1 1], and  thereafter has been applied  to various

problems of  ductile fracture, brittle fracture, low  cycle

fatigue, etc.

  In general, methods  of  fracture analysis  pursuing the
local process of  crack  extension  are  also  called  Iocal

approach.  Namely,  a  method  of  crack  growth analysis
without  recourse  to damage mechanics,  in which  one  may

assume  that a crack  grows  by a  critical  length when  a

certain physical quantity attains to its critical  value  in an

element  apart  from the crack  tip by the critical  length I2,
44, 4S], or  a  method  of  deriving an  analytical  solution  of

the  damage  field by  use  of  some  simplified  damage Iaw

[46, 47] may  be classified  into the local approach.

However, the following discussions will  be exclusiyely
concerned  with  the local approach  of  fracture based on  the

combined  method  ofCDM  and  Iil]M.

o

2.2 Recent  Applications of  Loeal  Approach

  After Hayhurst et  al. [48] analyzed  creep  crack  growth
in aluminum  and  copper  plates by a Iocal approach  based
on  CDM  and  FEM,  a  great number  of  similar  analyses

were  perfbrmed for creep  fracture [11, 17, 49-56] and

ductile fracture [57-65], low  cycle  fatigue and  creep-

fatigue interaction in metals  l7, 66-72], as well  as brittle
fracture in various  materials  including metals,  composites

[73-80], concrete  [13, 22, 81-85], ice [86-89], rock  [90-
94] and  other  materials  [95-97]. Among  others,  some  of

recent  applications  will  be mentioned  as  fbllows:

 - creep  crack  growth  under  neutron  irradiation [98, 99];
 - failure history of  a  pressure vessel  weldment  under

   long-term creep  condition  [53];
 - prediction of crack  initiationofacenter-crackedalu-

CrackDCx)=DcrDamagevariable
 D(x)

IE･T･IT･l･/y･i,l･t/,･ll･l･:lt･i,l-i･l/;,'{i･l;･ililll,･ll･lgig/;;IZ',i,,i,,,
l/;{Utlifwte,./1//･,IIIIII-i･"'

a

x

Fig, 2,

HN''

F{a)emFwwN.FNLUnELoAD

/

 tet-/-ogR-d9,e

 -1

'Z

       45
    32-o-rw"ylC"nEsuurs

  ma,
  FAILUnELOAD-195,7ma
  CRACKLNGLOAO.SS.IKN

1L

   O i--  s tO /t //
          OEFLEcr10N(mm)

         (b>

Fig. 3. CDM  simulation  of  the fai

 Tljoint in a pressure vessel  [10e,

2

'

t7

x.

,'f"'

l/

1,fty

  '

s'Z'tt

jx

Damage  field and  local approach  to fracture,

(c}

lure of  welded  tubular

101].

l32

NII-Electronic  



The Society of Materials Science, Japan

NII-Electronic Library Service

TheSociety  ofMaterials  Science,  Japan

LOCAL  APPROACH  BASED  ONCONTINUUMDAMAGE  MECHANICS

  minum  plate by several  anisotropic  elastic-plastic

  damage models  [621;
- simulation  and  prediction of  the fracture process of  a

  welded  tubular  T-joint [100, 101] (see Fig, 3);
-
 prediction of  failure load of  an  industrial pressure

  vessel  [63];
- fatigue damage  under  therrnal  cycle  loading fora68

  UO  ceramic  leader chip  carrier [ 1021;
- damage initiation and  propagation in a slag  tap

  component  under  60000 thermal cycles  [69];
- damage ofa  thin-walled pressure vessel  made  of  metal

  matrix  composite  [78];
- progressive damage  calculation  of  a  notched  com-

  posite specimen  under  tension-tension fatigue I801;
- examination  of  the anomalous  behavior of  a ceramic

  prejectile in hyper-velocity (>1 kmls) impact [96];
- mechanical  behavior of  cancellous  bone in canine

  proximale femur [971;
- crashanalysisofaluminumbumper[103];

- prediction and  assessment  of  nuclear  safety  tests

  conducted  for 1arge structures [64, 65];
- seismic  analysis  of eoncrete  gravity dams ll03, 104]

  (see Fig. 4).

3 MESH-DEPENDENCE  IN  TIME-
  INDEPENDENT  MATERIALS
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Fig. 4, Local approach  to failure of a dam  subjected  to an

  earthquake  of  magnitude  6.5 [104]: (a) geometry and
  FEM  mesh;  (b) ground accelerations  due to the

  earthquake;  (c) damage evolution  in the  dam; (d)
  results  of  shake  table test.

  In the applications  of  the CDM-based  Iocal approach,
it has been observed  that the numerical  results of  the local
approach  are often  ver},  sensitive  to the finite element
mesh,  and  this feature giyes rise to a crucial problem for
engineering  application  of  the Iocal approach,  As the

causes  of  the  mesh-dependence  of  the  local approach  based

on  CDM  and  FEM,  we  can  count  the  fbllowing factors in

general [28, 39]:
(a) stress singularity;

(b) bifurcation and  strain localization due to material

    instability;

(c) localization ofdamage  field;

(di dependence  ofcrack  zone  on  the mesh  size;

(e) errors  in numeTical  calculation,

  In the case  of  time-independent materials,  in particular,
the mesh-dependence  is observed  most  frequently in

relation  to the above  cause  (b), and  most  of recent  papers
are  concerned  with  the effects  of  the strain-softening

induced by damage [14-16, 21, 22, 31, 36].
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3.1 Mesh-Dependent  Phenomena

  Figure 5 shows  a  typical damage-induced strain-

softening  behavior of  quasi-brittle materials  (concrete,
rock,  etc.) under  uniaxial  tension [105]. In such  strain-

softening  material,  salient mesh-dependence  is usually

observed  in damage  analysis  by the  convcntional  local

approach.  An  example  is shown  in Fig. 6 [291, wheTe  a

plate is subject  to displacement on  the upper  boundary,

o.oO,2O.4  O,6 O,8

    Strain

    oo
    .31,2xlO

Fig, 5, A  typical strain softening  constitutive  relation

  for quasi-brittle materials  [105].

and  five FEM  meshes  with  different sizes shown  in the
figure are employed,  The resulting  traction on  the upper

boundary is shown  in Fig. 6 as a function of  the

displacement in y-direction. Salient mesh  sensitivity  is

observed.

  The  most  important features observed  in the mesh-
dependent  behavior may  be  the appearance  of  localized

intense deformation bands whichhave  awidth  approxi-

mately  equal  to the mesh  size, Namely,  the energy

dissipation before fracture will  occur  only  in the band, and
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of  a porous plastic damage model  [30], The  mesh-

dependent iocalization deformation bands are clearly

observed,

MeshS:SO#cttments

3.2 Bifurcation and  Mesh-Dependence

  The  cause  of  the above  mentioned  mesh-dependence  has
been discussed in many  papers [13, 34-36, 39, 40]. The
material  softening  shown  in Fig. 5 can  be described by
the fbllowing stress rate-strain rate  relation  coupled  with

darnage:

               Oij=Eij,i(D)Ek,, (1)

where  D  is the isotropic damage variable,  and  Eijkt(D) is
the damage-dependent elastic  stiffness  tensor. Because of
the

 
material

 degradation, material  stiffhess ELi･kt always
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. 6. Mesh-dependence of damage analysis  of  strain

softening  material  [29].

  Fig. 7, Mesh-dependent strain Iocalization bands [30].

thus  is governed by the mesh  size. Figure 7 shows  such

an  example  where  damage analysis  is conducted  for a
material  with  a  doubly  periodic array  of  soft  spots  by use

         x

Fig, 8. Material element
  deformationband,

       y

with  a  discontinuous

  In the general framewQrk of  continuum  mechanics,  the

strain  softening  behavior may  lead to bifurcation or

material  instability, which  indicates the emergence  of a

discontinuous defbrmation band as shown  in Fig. 8. The

general bifurcation condition  [34-36, 39] for material  of

Eq,
 (1) requires  the decrease of  the stiffness ELj･ld to

some  critical value  so  that

               det(njEli,,n,)=O, (2)

where  ni  is the normal  vector  of  the  discontinuity band
shown  in Fig, 8. In the casc  of  an  axial  tension or

compression,  the bifurcation condition  becomes simply

that the tangent modulus  E, =O,  which  corresponds  to

the peak  point of the stress-strain curve  in Fig, 5. For
time-independent  damage  models  used  for modeling  of

strain-softening  materials, condition  (2) can  be satisfied  at

a rather  small  critical value  of  damage, denoted as  ag.
Usually Q# is much  smaller  than the critical value  of

damage  at  failure, denoted by D.,, i, e･,

                 D,b.."D.F,, (3)

134

NII-Electronic  



The Society of Materials Science, Japan

NII-Electronic Library Service

TheSociety  ofMaterials  Science,  Japan

LOCAL  APPROACH  BASED  ONCONTINUUMDAMAGE  MECHANICS

This implies that, for these  materials,  there exists a

considerable  strain softening  range  as  shown  in Fig, 5.

  It should  be mentioned  that not  all the  dalnage models
have such  obvious  strain  softening  features. Especially, it
is found that, for time-dependent  damage models,  the

bifurcation condition  can  not  be satisfied  except  at failure
where  D=  D,F.. [20], Since the stress  will  be reduced  to

approximately  zero  in the failure zone  of material,  the

bifurcation, if occurs,  will  have  little effects  on  the

results  of  calculation  [20]. The mesh-dependence  and  the

relevant  improvernents in the local appreach  ef  time-

dependent materials  will be discussed in Chapter 5,
  It is well  known  that, after  the  condition  (2) is
satisfied, the boundary value  problem will lose ellipticity
and  well-posedness.  When  bifurcation occurs,  the

numerical  analysis  exhibits  emergence  of  an  intense
deformation band. Since the damage zone  tends to localize
into a  band  as  narrow  as possible, the eventual  band  width

will  be governed by  the mesh  size  in the numerical

analysis  [13, 36, 106]; the  mesh-governed  band width  or

bandorientation will  bring about  obyious  mesh-

dcpendence in numerical  analyses  as  shown  in Fig, 6,

3.3 Limitation of  Localization
  In order  to overcome  the difficulties of  mesh-

dependence in local approach  in strain-softening

conditions,  different regularization  methods  have been

proposed for numerical  calculations  in both deformation
and  damage analyses.  Some  excellent  reviews  on  these

methods  are  available  in Iiterature [31, 36, 39, 106, 1071.
Here, these methods  will be discussed briefly with  special

emphasis  on  their applicability  to the local approach

based on  CDM  and  FEM.

1) Mesh  Size Limitation [106]
  Obviously, the simplest  scheme  to limit the locaiiza-
tion is to impose a  minimum  admissible  mesh  size. This
is called  also  as  crack  band modet  when  applied  for

concrete  materials  [108]. Because  of  its easiness  to apply,

the method  has been often  employed  in the practical
engineering  calculations;  some  recent  applications  include
the simulation  of  ductile crack  growth in several  large

structural  tests by use  of  local approach  [63, 64, 109],
Besides its simplicity  as a localization limiter, mesh  size

limitation method  can  describe also the mechanical  effects

of  structure  size  in concrete  materials  [108].
  The  main  disadvantage of  this method  is that, the
reasonable  precision of  the  solutions  in the calculation  ,

can  not  be obtained  because mesh  refinement  is

prohibited. Another problem  of  difficulty is how  to

determine the  minimum  mesh  size  which  conforms  to the

actual material  properties,

2) Nonlocal Damage  [15, 22, 106]
  A  mere  sophisticated  localization Iimiter is provided

by the coneept  of  nonlocal  continuum  [110, 1ll].
Directly based on  this concept,  a  nenlocal  damage
formulation in which  all the state variables  are  nonlocal

was  proposed  by Bazant et al, [112]. However,  it was

found that the formulation led to a nonstandard  boundary-
value  problem  with  additional  boundary and  interface
conditions.  This prevents it from the practical application

because the  conventional  FEM  method  can  not  be used,

  Therefbre, a new  fbrmulation was  proposed  [15, 21,
22], in which  only  damage variable  or  its thermodynamic

conjugate  force was  assumed  to be nonlocal.  This

simplification  in the formulation has greatly reduced  the

complexity  of  calculation,  while  the essential  features of

the nonlocal  concept  are  still preserved.
  This later nonlocal  formulation has been demonstrated
to be very  effective to mitigate  the mesh-dependence  in
various  damage calculations  [23, 25, 29, 30, 41, 65, 84,
105, 113, 1141. In recent  years, the nonlocal  formulation
has become one  of  the most  important approaches  to

damage and  failure analyses  based on  CDM.  Some
detailed discussions about  this method  will  be  given in
Chapter 4,

3) Gradient-Dependent Material Models [1 1 5, 1 16]
   Another  method  of  localization limiter is to include
the gradient of  field variables  in the constitutive  equation,

In gradient-dependent plastic theory, stress  becomes q
function not  only  of  the plastic strain  but also  of  the first
or second  spatial derivatives of  the plastic strain.

  The gradient-dependent formulation is in fact an

alternative  form of  the nonlocal  formulation, since  it has

been found that  the formulation can  be derived from
nonlocal  one  [116-118]. Its main  advantage'  over  the

nonlocal  model  is that it leads to a  simpler  equation  for
consistency  condition  in plastic problern, rather  than an

implicit integration equation  in nonlocal  formulation.
This perrnits a  formulation by a  variational  principal [39,
1 16], which  enables  proper formulation of the additional,

non-standard  boundary  conditions.  A  dis-advantage of  the

formulation is the necessity  of  an  additional  yariable  to be
solyed  at a global level [39].

4) Cosserat Continua [119, 120]

  The  use  of  Cosserat continua  incorporating the couple-
stress  and  micro-curvature  provides an  internal length
scale,  and  thus may  give naturally  a characteristic  length
for the limitation of  the localization [120], It was  found
that the rate boundary value  problem  remains  elliptic  after

the onset  of  shear  banding due to the existence  of  a  length

scale  in Cosserat continua  [120].
  While this method  has several  advantages  from a

numerical  peint of  view,  its distinct disadvantage is that

the localization limiter provided by  the model  is only

effective fbr pure shear  deformation [39].

5) Mesh  Size Dependent Softening Property [107, 121]
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  This method  imposes a lirnitation on  damage
dissipation, rather  than en  the sizc of  localization band. In
order  to maintain  the identical dissipation for mesh-

dependent localization bands (width), a  mesh-dependent

softening  modulus  has been employed  [107]. This leads
to a very  simple  algorithm  which  can  be easily  imple-

mented  into a  standard  finite element  code.

  TTie effectiveness  of  this method  has been demonstrated
by several  authors  [103, 104, 121, 122]. Especially, by

use  of  this method,  a  seismic  analysis  of  concrete  gravity
dams based on  CDM  has been successfully  conducted

[104], see  Fig, 4,

  The  disadvantage of  this regularization  is obyious.
From a  physical point of  view,  it is highly questionable
to use  a mesh-dependent  material  property, Moreover, the
different meshes  will give different and  eyen  unreal  local

deformation, although  the oyerall  fracture energy  can  bc
correctlypredicted,

  Other regularization  methods  include the introduction

of  artijicial viscoplastic  [16, 107] into the constitutive
equation,  and  the use  of  a  stochastic  description of  the

damage threshold [123, 124].

4 NONLOCAL  DAMAGE  THEORIES

  Because of  the increasing use  of  the nonlocal  damage
forrnulation in damage and  fracture simulation  based on
CDM  [23, 25, 29, 30, 41, 65, 84, 105, 113, 114i, the

procedure, possibilities, limitations, and  the related

problems of  the nonlocal  method  will  be discussed in
more  detail in this Chapter.

4.1 Formulation

  In the nonlocal  damage  model,  an  averaged  damage

variable  is introduced by means  of a spatial ayeraging

procedure [15, 22, 41], For a scalar damage  variable,  the

nonlocal  damage variable  D  is defined as

    D-(x)-L,D(g)ip(x,gvn(g21laip(x,g)ctn(g), (4)
or

    D-(x)==lab(g)ip(x,gvQ(g)1foo(x,gvn(o,  (s)

where  D  is a  local damage variable  which  may  be
specified  by diffeTent local damage  theories, and

( 
'
 )represents the derivative with  respect  to time  t, x

denotes a characteristic material  point, and  g an  arbitrary

material  point in solid  body  n.

  In the  nonlocal  definition of  Eqs. (4)-(5), a  weighing

function ip(x,g) is used  to determine the influences of

surrounding  material  points on  D.  An  often  employed

form  of the weighing  function is the  Gaussian  (normal)
distribution function [22, 23], i. e.

ip(x,g)=exp{-[d(x,g)/d*]2},(6)

where  d(x,g) is the distance between x  and  gand d' is

a characteristic  distance, a  new  material  constant  which

specifies the range  of  averaging  of  D.

  A  similar  formulation by use  of  the  thermodynamic
conjugate  force of  damage has been also  proposcd [21,
31]. It was  found that these  two  formulations gave almost

the same  results  [31]. While  the second  one  was

suggested  to be easier  to be implemented into finite
element  code  for brittle damage problem, the nonlocal

formulation of  Eqs. (4)-(6) for damage  variable  has been

widely  accepted.  The nonlocal  formulation has been
proposed also  fdr creep  damage [l5, 23, 1 14] and  ductile
damage  [30, 65].
  An  alternative  nonlocal  formulation to be mentioned  is
s6 called  cell model  [25, 29, 65]. This model  is
characterized  by use  of a fixed cell mesh  as the range  of

nonlocal  averaging,  and  choose  of  the 6-function as

¢(x,g) in Eq, (6). These simplifications  result  in some
computational  advantages,  but the resulting  nonlocal

damage becomes  discontinuous over  the boundaries of

adjacent  cells [29],
  Although the above  mentioned  nonlocal  damage
formulations have been mainly  employed  to scalar

damage models,  the  nonlocal  damage cencept  can  be

applied  also  to the  anisotropic  damage  problems  without

specific  difficulties [31, 125].

4.2 Effects of Nonlocal Damage  Formulation
  The nonlocal  fbrmulations described above  have been
applied  to a number  of problems [23, 25, 26, 29, 30, 65,
84, 105, 106, 114, 124, 126, 127], and  have  been shown

very  effective  to mitigate  mesh-dependence  in local
approach.  This can  be seen  in Fig. 9 where  the damage
distributions haye been obtained  by nonlocal  damage
model  for the same  boundary value  problem  shown  in
Fig. 6, Finite and  almost  identical width  of  the damage
zone  can  be observed  for two  different meshes.  This

results  in the  well  convergent  and  almost  mesh-

independent curve  of  force vs.  displacement as shown  in
Fig. 10,

  Delocalization effect of  the nonlocal  formulation has
been elucidated  by some  theoretical analyses  [31, 40, 41].
Based  on  the concept  of  damage loading function or

damage surface, the local damage evolution  can  be given

O.o.O.1O.1-OAO.4-O.6o.G'.o.sO.S.LO

        Meshl  MeshS

Fig, 9, Damage  distribution for two  different meshes

  shown  in Fig. 6, obtained  by nonlocal  damage

  formulation [29].
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. 10. Improvement  of mesh-dependence  shown  in
Fig, 6 by use  of nonlocal  damage formulation [29],

as  follows [31]:

or

  D=

Y-!
   2

f(Y) ,Eh-ktEijCkt,

b  .  `if(Y)dYEijktgijekl,

(7)

(8)

(9)

where  f(Y) is a  material  function. In view  ofEq.  (4), we

have a constitutive  equation  of nonlocal  damage model  as

follows:

oij .
 (1 -  D)EL-,,e,t ,

Differentiation of  this

where

equation  furnishes

aij =
 (1 - D)EL'ktEkt 

-
 EL)gEpqD ,

D  is given by Eqs. (5) and  (9) as  follows:

=L
 lnD=`if(Y)dYE.kiE,,Ekie(x,g)d9(g),

(1O)

(11)

(12)

non'local damage model,  although  the width  ef  the local-
ization band becomes  finite,
  For the nonlocal  form of  the well  known  Gurson

model  of  ductile damage, similar  conclusions  concerning

the delocalization effects  have also  been obtained  by
recent  theoretical  investigations [41]. The  numerieal

calculations  using  this nonlocal  Gurson medel  [30I show
that the inherent mesh  sensitivity of  the nurnerical  failure

predietions can  be removed,
  Besides the  bifurcation behavior, the  nonlocal  forrnula-

tion ofEqs.  (4)-(5) has effects  to reduce  the  damage,  stress

or strain concentrations  directly [28]. This may  be  less

important for the  strain  softening  materials  where

bifurcation behavior is essential  for improvement of

mesh-dependence,  However, for time-dependent problem
such  as creep  damage where  no  bifurcation occurs,  this

regularization  effect  to damage concentration  become
more  important, and  will  be diseussed in Chapter 5.

JQip(x,g)cin(g)

Because D  is determined from the integration of  strain

rate  Ekt, D  and  D  are  always  continuous  even  if eki is
discontinuous. This  condition  implies that  the strain

localization due to the onset  of  a discontinuity of the

velocity  fields is suppressed  by the nonlocal  model  of' Eq,

(11). This may  explain  why  nonlocal  model  can  pre'vent
the vanishing  width  of  darnage localization band.

  Furtherrnore, more  complicated  theoretical analysis  can

show  that strain  softening  will  produce a loss of

uniqueness  of  the solution  of  a  boundary value  problem
[40], This may  be used  to cxplain  why  there still exists

damage localization in the numerical  calculations  using

4.3 Limitations and  Further Deyelopment

  One  of  the main  difficulties in the application  of

nonlocal  model  is how  to identify the new  material

constant  d 
"
 in Eq. (6). This internal characteristic  length

is related to the range  of  the nonlocal  effects,  and  it can
not be identified directly from the conventional  uniaxial

tests like other  constants  in constitutive  equations.

  At  present time, the determination of  d*  usually

needs  the aid of  the inverse analysis  concept,  e.g., d" is
adjusted  in the calculations  so  as  to obtain  results  that are

in good agreement  with  test ones.  To  elaborate  the

process, inverse analysis  technique using  nonlinear

optimization  was  sometime  employed  [31], However, in
some  cases,  the values  of  d* required  to fit experimental
data for every  different geometry may  differ significantly,
and  therefore  it cannot  be regarded  as  a  true material

constant  [27], Thus, the choice  of  the nonlocal  modeling

as well  as the length d* have been made  rather  arbitrari-

ly or for reason  of  computational  conyenience  [30].
  Physically, the nonlocal  damage  formulation should  be
based on  the  interaction of  micro-defects  in materials,
Some  researches  in this direction have been conducted  in
recent  years [27, 113, l28, 129].
  Another problem of  the nonlocal  damage formulation

is relatecl to its application  to time  independent plastic
(ductile) damage analysis.  In this case,  the incremental

form of  consistency  condition  will  become  an  implicit

integral equation  which  is difficult to solve  [30, 31, 39,
105], Moreover, the nonlocal  formulation will leads to a
non-symmetrical  tangent  matrix  that requires  much  more

computational  efforts.  However,  these numerical

difficulties can  be avoided  if a  total stress-strain relation
rather  than  a  incremental one  can  be employed  in the
analysis.  The  elastic-damage  material  descr{bed by Eqs.
(7)-(12) is such  an example,  The difficulty does not  occur

also in the nonlocal  viscoplastic  (creep) damage models
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[15, 23, 114] where  tangent modulus  is an  elastic  matrix

coupled  with  damage,

5 MESH-DEPENDENCE  IN
  MATERIALS

TIME-DEPENDENT

  Since bifurcation does not occur  due to time-dependent
deformation [16, 20], the mesh-dependence  of  local
approach  in time-dependent materials  should  be accounted
for by other  causes  than  the  strain-softening  due to

damage [28]; i.e. the causes  (a), (c) through (e) mentioned
in Chapter 3. Some  recent  results  on  mesh-dependence

problem in time-dependent  materials  will be discussed
briefly in this Chapter.

5.1 Mesh-Dependent  Phenomena  and  Their

     Causes
   A typical example  of time-dependent  problem is the
creep  (viscoplastic) damage analysis  by use  of  local

approach  based on  well  established  Kachanov-Rabotnov
creep  damage theory  [1, 130]. Though the theoretical

analysis  shows  that the bifurcation behavior is ruled  out

except  at  failure [20], creep  damage  analysis  exhibits

serious mesh-dependence  of  numerical  results [15, 17, 20,
23, 43, 126]. An  example  of  mesh-dependence  in creep
crack  growth  analysis  is given in Fig, 11 [231.
   In these  numerical  calculations,  it is observed  that the

failure zone,  or crack,  is always  localized in a  single  row

of  Gaussian  points (or element)  and  thus  the  width  of

crack  is determined by the mesh  size employed,  However,
there is no  localized deformation bands as  those shown  in
Fig. 7, We  will  now  review  some  other  causes  discussed
in recent  paper [28], i,e, causes  (a) (c) through (e)
mentioned  aboye:

1) Initial Stress Singularity at  Crack-tip of  Sharp Crack

   For creep  damage models  governed by stresses, the
essential  cause  of  the mesh-dependence  of  damage analy-

sis in the specimens  containing  sharp  cracks  has been
shown  to be the stress  singularity  at  the crack  tip [20].
   In the numerical  calculation  of  an  initially sharp

crack,  as finite element  size  Ae  in front of  crack-tip

decreases, the stress in this element  (or at  some  Gaussian

points in the element)  will  increases approximately

according  to asymptotic  singularity solution  [20], i,e.,

a  ec  (Ae)'a, (13)

where  ct is the order  of  singularity,  equal  to 112 for elastic
material  and  1/(n+1) for n-power  law material,  respective-

ly. According  to the above  equation,  the mesh  size

governs the  stress  appearing  in the local zone  in front of
the crack-tip,  and  thus  goyerns the predicted damage
development  and  fracture in this zone.

   FiguTe 12 is an  example  of  the mesh  dependent

lo･

ln･1

     ew, 
wwM

(Inconel 718 Alloy at  650 
bC)

 ,o-

                                   1 a-eo  lmm) 10

  Fig. 11. Mesh-dependence  in creep  crack  growth
     analysis  by local approach  [23].
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Fig, 12, Mesh-dependence of crack  initiation time

  and  stress  singularity [20].

behavior governed by singularity [20]. Inthis log-log
figure, t,, denotes the initiation time ofcrack  growth, and

decreases almost  Iinearly with  the decrease of  mesh  size

Ae  from  1.0 mm  to 1/128 mm,  Obviously, no  finite

convergent  value  of  the initiation time can  be expected.

By use  of  the singular  stress field (13), one  obtain

ti, oc  Ae'i'oo [20], This is in good agreement  with  thc

calculation  results  shown  in Fig. 12. It has been
elucidated  that the  mesh-dependent  behavior of  incipient
crack  growth is induced by  the  effects  of  initial stress

singularity,  even  if the  singular  stress  field has been

redistributed  by the development of  damage [20].
   The similar  singularity-induced  mesh-dependent

behavior has been obseryed  also  in the  crack  growth
analyses  of time-independent elastic-brittle materials  [l06,
131]. In the case  ef  dynamic ductile crack  growth, on  the

other  hand, it is found that, for initially sharp  cracks  the

initiation of  crack  growth is quite sensitive  to the mesh

size,  while  for initially blunt cracks  the mesh  sensitivity

of  the initiation time vanishes  [19].
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2) Damage  Localization Due  to Stress Sensitivity of

  Damage  Evolution Equation

   For the problems without  initially sharp  crack,  time-

dependent crack  growth  analysis  shows  that  mesh-

dependent results appear  only  after  the initiation of crack

growth [43, 132], Here, the completely  damaged  zone

(CDZ), i.e., the crack,  and  its size are found to have very
significant  influences on  the subsequent  results,  because
CDZ  prescribes the newly-generated  free boundary in the
problem, It is observed  [23, 57, 133] that the width  of

CDZ  becomes arbitrarily  narrow  with  regards  to rnesh

refinement,  and  thus mesh-dependence  occurs.

   If there  is no  effects  of  strain  softening,  nor  initial
stress  singularity,  the  narrowing  of  the CDZ  width  should

be attributecl  to other  causes,  One  of  the possible reasons
is the damage  localization induced by stress sensitivity of
damage  evotution  equation  [28, 134], Numerical

calculations  under  uniform  stress  confirmed  that this
stress sensitivity  will  causes  the  damage  locaiization

even  from numerical  errors of  order  of 10rie [28, 134].
Thus, a  small  stress gradient in a non-uniform  stress  field

will lead to an  extremely  high damage concentration

(localization) which  can  be resolved  only  by use  of  a

mesh  size  close  to zero,  This may  be the reason  why

CDZ  width  always  equals  to the smallest  mesh  size.

3) Local Fracture Criterion

   Another more  important factor that leads to a  zero

width  of  CDZ  may  be the local failure criterion  employed

by the present local approach  [281. The  local fajlure
implies that the failure will  always  occurs  in a single
Gaussian point (or a constant  strain elemenO  when  the

damage  value  at this Gaussian point leads to its critical
value,  The damage development of  the neighborhood

Gaussian points in the crack  width  direction wi]1  cease

because of  the unloading,  and  thus a CDZ  (or crack)
consisting  of  a  single  row  of  Gaussian  points will  be
formed, It has been pointed out  that a  nonlocal  fracture
criterion may  be essential to improve  the mesh-dependent

problems [28].

dependent on  mesh  size,  Thus, the mesh-dependent  stress

conccntrations  can  be considered  as the immediate reason
for the mesh  dependence of  crack  growth in the time-
dependent calculations.  In order  to avoid  the mesh-depen-

dent stress concentration,  a  stress  timitation method  [43]
have been proposed, in which  the stress  level in the front
of  CDZ  can  be limited to a value  approximately  equal  to

yield stress.  The  effectiveness  of this method  has been
confirmed  by a  series  of  numerical  calculations  [43, 135].
It is fbund that the same  regularization  effects  can  be

obtained  by only  limiting the stress  used  for damage
calculation  and  leaving the elastic-creep  constitutive

equation  intact. The  later simplification  greatly reduce  the
computational  efforts  [133, 135, 136]. This stress

limitation method  is yery  simple  and  yery  ease  to be
incorporated into a  standard  finite element  code.  However,
the mesh-goyerned  CDZ  width  can  not  be remoyed  by  use

of  this method.  Moreover, it can  not  give a correct

prediction to crack  growth  if the real stress concentration
ahead  of  CDZ  is lower than the material  yield stress.

   The  nonlocal  formulation of Eqs, (4)-(6) as  well  as

the simplijied  cell model  has also  been employed  to
regularize  the mesh-dependent  problems  in creep  crack

growth analyses  [23, 25, 28, 126]. Good  improvements
of  mesh-dependence  have been obtained  in these investiga-
tions, although  sometimes  different values  of  the
characteristic  length d* seems  necessary  fbr different

specimen  geometry [23, 28].

   On the other  hand, more  essential  improvement
methods  to the problem  lies upon  the regularization  of

mesh-governed  CDZ  size. Several methods  under

investigations includes [28, 134J:
   - modification  of  the damage evolution  equations;

   - reduction  ofthe  critical damage  values;

   - use  of nonlocal  fracture criterion;

   
-
 introduction of  statistic properties of damage.

Because of  the  recent  development  in the applications  of

the CDM  based local approach  to industrial problems,
further investigations in this aspect  become  more

importantandnecessary,

5.2 Development of  Regularization Methods

   For both the strain softening  calculations  and  the
time-dependent  calculations,  the  damage  zone  sizes

decrease when  meshes  are subdivided.  However, their
mechanisms  to induce mesh-dependence  are  quite different.
In the case  of  strain  softcning,  the energy  dissipation in
the damage zones  (localized bands) has a  dominant
influences on  the  calculation  results, On the other  hand,
in the  case  of  creep  crack  simulations,  there is almost  no

dissipation in CDZ  because CDZ  is a stress free zone,  and

it is the stress  or  strain  states influenced by the CDZ  size

that leads to mesh-dependent  results.

   The  mesh-governed  CDZ  size  implies that the stress
and  strain  concentration  in front of  a  crack  will  be

6 CONCLUDING  REMARKS

   A  revjew  is made  concerning  the recent  application

status of  the local approach  based on  continuum  damage
mechanics  and  finite element  mcthod,  especially,  its
related  mesh-dependent  problems. Several concluding

remarks  are  given as fo11ows:
1) Industry applicability  of  the local approach  to fracture

   based on  CDM  has received  increasing attentions  in
   recentyears.

2) Mesh-dependence  isacrucial problem that prevents
   more  reliable  application  of  CDM-based  local

   approach,
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3) There exist  some  other  causes  for mesh-dependence  22.

  besides the damage-induced  strain-softening  often

  investigated so  far. This is especially  true  for the 23･

  time-dependentdamageproblems.

4) Although nonlocal  damage formulation has been often  24'

  employed  as  an  effectiye  regularization  method  to the

  mesh-dependence,  more  reasonable  regularization  2s,
  methods  are  still necessary,
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