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Abstract: The phenomena of crack propagation and interface debonding can be regarded as formation of new
surface. Thus, it is quite natural to model these problems by introducing the mechanism of surface formation. The au-
thors proposed a method in which the formation of new surface is represented by interface element based on the in-
terface potential energy. The general idea of the interface element and its application to peeling test of bonded plates,
push-out test of fiber in matrix, dynamic crack propagation and ductile tearing of steel plate are presented.
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1. INTRODUCTION

Fiber reinforced composite materials and the com-
posites with a thin film coating are applied in various
fields as the structural materials because of their high
specific strength and stiffness which are effective for
weight savings. The conventional materials, such as
metals and ceramics, are also used under severe con-
ditions due to the recent improvement of their per-
formances. From the point of view of safety design of
structures, it is very important to estimate the fracture
strength of materials with a reasonable accuracy. Many
methods for evaluating the failure strength of materials
have been proposed. There are basically two approaches.
One is the macroscopic approach in which the concepts
of stress intensity factor, energy release rate and J-
integral are employed. The other is the microscopic
approach such as the simulations of crack propagation
using the molecular dynamics [1]. To evaluate the
strength of structural component, both the macroscopic
and the microscopic nature of the phenomena must be
taken into account [2-4].

In this study, a new and simple method is developed
in order to simulate the fracture phenomena that can be
considered as the formation of new surface with the crack
propagation [5]. Based on the fact that surface energy
must be supplied for the formation of new surface, a
potential function representing the surface energy density
is introduced in the finite element method(FEM). The
proposed method is applied to simple mode-I and II crack
propagation problems and its capability for static and
dynamic analyses is demonstrated.

2. METHOD OF ANALYSIS

2.1. Surface Potential
Figure 1 shows an illustration of the crack propagation
modeled using interface elements. The interface element
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consists of two surfaces and has no thickness when the
load is not acting. When the load is applied, the two
surfaces separate from each other. The distance between
the surfaces, or the crack opening, is denoted by 8. The
mechanical characteristics of the interface element are
defined through a potential function ¢(8). Since the
function ¢(8) can be chosen rather arbitrarily, the
Lennard-Jones type potential energy [6] described by the
following equation is employed in this study.
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Fig.1. Crack propagation model with interface element.
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Fig. 2. Lennard-Jones type interface potential.

where 6 is the crack opening and y, n and r, are the
material constants. Especially, 2y is the surface energy
per unit area. As shown in Fig. 2, n controls the shape of
potential energy. The derivative of ¢ with respect to &
gives the bonding force per unit area of the surface. As
shown in Fig. 3, the bonding force rapidly decreases with
increasing d. Through this phenomenon, the formation of
new surface can be described.

2.2. Equilibrium Equation of System

For simplicity, the outline of the mathematical for-
mulation is presented using the crack propagation prob-
lem in elastic solid. When the material is elastic, the
equilibrium equation can be derived based on the prin-
ciple of minimum potential energy.

The total energy IT of the elastic body with prop-
agating crack can be described as the sum of the strain
energy U, the potential of external load W and the
interface energy for the newly formed surface during
crack propagation U, i.e.

o=U+U+W. )]

In case of the finite element method, the elastic body to

be analyzed is subdivided into small elements and the

displacements in each element are interpolated by nodal

displacement u,. Noting this, the total energy is described

as,

IT= Iuy) = Uug) + Ugug) + W(uy), (3)

Further, U(u,), U(u,) and W(u,) can be represented as the

sum of the contributions from each element U°(u°,),
U(u’,) and W (u°)), i.e.

I(uy) = Z{U°(u") + US(u) + W (@)}, (4

where uf, is the nodal displacement vector for each

clement extracted from the nodal displacement vector of
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Fig. 3. Bonding force acting on interface.

the whole system u,,.

Once the total energy IT is given as in Eq. (4), the
equilibrium equation in incremental form can be derived
in the following manner. Denoting the nodal displacement at
the present step and its increment to the next step as u,
and Au,, the total energy IT can be described as a function
of uy + Au, and it can be expanded into Taylor’s series,
ie.

IKug+ Aug) = II(uo) + A'IKAuy) + AT (Auy)

=II(u,)- {Au 0 }T {f } + % {Au 0 }T [k ]{Auo } , 5)

where A'IT and A?IT are the first and the second terms in
Auy, ie.

A'TI(uy) = —{Au(, }T {f }
AH(uy) = %{Au e Haw, b

(6)
()

Further, the equilibrium equation can be derived as the
stationary condition of IT (u,+ Au,) with respect to Auy,

~h+lefan }. @

9 Iy + Auy)/ dAu,

or,

[ Kaw, }= {r} .

where [k] and {f} are the tangent stiffness matrix and the
load vector, respectively.

©)

2.3. Stiffness Matrix and Force Vector of Interface El-
ement
The stiffness matrix and the load vector of the interface
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element can be derived in the manner basically same as USs(uo + Au'o) = f¢(5 +AS )ds°

that for the whole system. Since the FEM code developed ( ) 98

in this research is a three dimensional one using solid - f¢(5)ds f Au°ods°

element, the same 8-node solid element is used for the dé ou®

inteface element as shown in Fig. 4. The interface 1 & ( ) 2

element consists of two surfaces containing four nodes, 4 Au® | ds®* +HOT. (13)
namely nodes 1-4 for bottom surface and 5-8 for top 2 ds? (au )

surface, and it has no thickness when load is not applied.
The two surfaces separate when the load is applied and  where
the distance or the opening is denoted by 6. When the

surface area of the interface element is S°, the interface d ¢( 6) 35 r
energy for an element U(u%y) is given by the following f ———Au‘ods® = —{f °} {Au“o} (14)
equation. dé  ouo
Us(u) =[¢(8)dS®, (10) 1fd2¢(6)( 88 0 )zdse
5V T552 | e 40
2 dé au‘o
where & is the opening at arbitrary point on the surface 1 r
and it can be interpolated using interpolation function =— eo} [k ]{Au 0} (15)
N(E, ) ie. 2
Since the interface element has no volume or mass, the
6(5,m) =2N, (E 77XW,+4 e ) ’ a1 same formulation can be applied to both the static and the
dynamic problems. Further, by arranging the interface
where elements along the crack extension path in the ordinary
FEM model, crack propagation problems can be ana-
N,(En)=02501+E)1-n) lyzed.
N,(En)=025(1+&)1+7) (12) 3.SIMULATION OF PEELING TEST
N,(8:m)=025(1- X1 +n) | |
Figure 5 shows the peeling test to be analyzed by the
N 4( ) 0'25( -& Xl ), proposed method. Two elastic plates are bonded.
Young’s modulus E and Poisson’s ratio v of the plate are
and w, is the nodal displacement normal to the surface. assumed to be 3 GPa and 0.3, respectively. The computed

Finally, the tangent stiffness matrix [k°] and the load  load-displacement curves are shown in Figs. 6-9. The
vector {f°} of the interface element can be derived by computed results show that the crack starts to propagate
expanding U°®, (1% +Au®o) Wwith respect to AuSo in &t the maximum load. Then, the load gradually decreases

with increase of the peeling length. Figures 6 and 7 show
the effect of material constants r, and ». It is indicated
that the force at the start of crack extension becomes
large when r, is small or » is large.

the following manner.

a: Initial Crack length

Fig. 4. Interface element and interpolation
of crack opening. Fig. 5. Peeling test model for FEM analysis.
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Fig. 10. Deformation of wide bonded plates

Fig. 7. Effect of n on load-displacement curve. .
under peeling.
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On the contrary, the curve for the crack propagation

27=0.2N/mm process is not influenced by r, or n. Figure 8 shows that
—/>—27=0.5N/mm the value of y influences both the initiation and the
e mem 2 7 20.7N/mm extension of the crack. These results suggest that the

. crack extension in peeling test is primarily governed by
E the magnitude of the surface energy y. Thus, the value of
E y can be estimated from the propagation part of the

%O'O' ] measured load-displacement curve and those for r, and n
% can be estimated from the point where the crack start to

E grow.

obo o The effect of the mesh size is examined by changing
0 2 4 6 8 10 the mesh divisions along the length of the model. As

. seen from Fig. 9, the mesh size does not have significant
Displacement (mm) effect on the load-displacement curve. Further, peeling

problem of wider plates as shown in Fig. 10 is simulated
to demonstrate the potential versatility of the proposed
Fig. 8. Effect of y on load-displacement curve. method.
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4. PUSH-OUT TEST OF FIBER IN MATRIX

The proposed method can be applied also to a mode-
II crack propagation problem by replacing the opening
displacement & in Eq. (1) with the shear deformation.
The push-out test of fiber in matrix shown in Fig. 11 is
analyzed. In this model, the interface elements are
arranged along the interface between the fiber and the
matrix. The computed load-displacement curves are
presented in Fig. 12. Nearly horizontal part after the
linear stage corresponds to the crack propagation process.
This means the load is almost constant during the crack
propagation. The sudden drop of the load observed in the
case of 2y=0.2 N/mm is the moment when the interface
crack reaches the bottom surface of the matrix.

LoadP

e
Rf Radius of fibre
R¢ Radius of composite
Le Height of composite
Rf=5um Rc=60u.m
Lc =80 4 m
Eg=500GPa v ¢=0.01
=150GPa v =02

\Ec Y,

Fig. 11. Model for push-out test of fiber in matrix.
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Fig. 12. Load-displacement curve of push-out test.
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Fig. 14. Pulse load to initiate crack propagation.

5. DYNAMIC CRACK PROPAGATION

In many cases, the fracture problems are dynamic
phenomena. The dynamic crack propagation in an elastic
plate as shown in Fig. 13 is analyzed to demonstrate the
potential capability of the proposed method. The plate
has an initial crack with its length of 400 mm and it is
pre-stressed by the forced displacement at the top and the
bottom edges. The crack is initiated by a pulse load
applied at the tip of initial crack. The pulse load in-
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creases and decreases linearly in 10 pus as shown in Fig. Stress
14. The time histories of crack extension lengths Aa for (Mpa)
different values of pre-stress displacement U, are plotted 550
in Fig. 15. As theoretically predicted [7], the speed of
crack propagation increases with the value of pre-stress. 1
When the pre-stress is small as in the case of U,=0.4 mm, 500
the crack is arrested. Figure 16 shows the crack extension
and the distribution of stress normal to the crack at 60 450
and 100 ps after the application of pulse load. Due to the
symmetry, only right half of the plate is shown. As it is
seen, the stress wave is traveling ahead of the propagating 1 400
crack. ,
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Fig. 18. Comparison with experiment.

6. DUCTILE TEARING OF STEEL PLATE

The process of tearing of steel plate with an initial
notch at its center is analyzed as elastic-plastic finite
strain problem using the proposed method. The length

60us 100us of the initial notch in the steel plate is 20 mm. The width

of the plate at the central section and the thickness are

y=50kN/m  1,=0.05mm n=6 200 mm and 4.5 mm, respectively. The material is

Us=0.7mm  At=0.1us a.=60mm assumed to have the strain hardening property described
0V —Ue 0

by the following equation.

Fig. 16. Deformation and stress distribution

oy =0y, (L+ae?)V . 19
during crack propagation. Y ol ) (19)
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where
0y,=280 Mpa, a=115, N=0.2, E=210 Gpa, v=0.3

The computed deformation and the distribution of the
stress component in the loading direction before the crack
propagation and at the final stage are presented in Fig. 17.
The curves for nominal stress-strain relation are com-
pared between FEM analysis and experiment in Fig. 18.
The indicated strain is the average strain for the 50 mm
gauge length at the center. Good correlation between the
computation and the experiment proves the potential
capability of the proposed method for the analysis of
ductile crack propagation.

7. CONCLUSIONS

In order to analyze the crack propagation or the peel-
ing, a new computer simulation method using the in-
terface element is proposed and applied to peeling test of
bonded plates, push-out test of fiber in matrix, dynamic
crack in pre-stressed plate and ductile tearing of steel
plate. The conclusions are as follows.

(1) The processes of mode-I or II crack propagation can
be simulated by the proposed method.

201

(2) In the simulation of peeling test, the material const-
ants r, and n influence the load at the beginning of crack
propagation. However they do not have influence on the
processes of crack propagation. On the other hand, y in-
fluences both the beginning and the processes of crack
propagation. The effect of mesh division on the crack
propagation is found to be small.

(3) The dynamic crack propagation in a pre-stressed
elastic plate is simulated and the relation between the
crack propagation speed and the pre-stress is clarified.

(4) Good correlation with experiment proves the potential
capability of the proposed method to ductile fracture pro-
blems.

REFERENCES

1.H. Noguchi et al., Trans. Japan Society of Mechanical
Engineers, Ser. A, 63 (1997) 725 (in Japanese).

2. L. Xia and F. Shih, J. Mech. Phys. Solids., 43 (1995) 233.

3. L. Xia and F. Shih, J. Mech. Phys. Solids., 43 (1995) 1953.

4. L. Xia, F. Shih and J.W. Hutchinson, J. Mech. Phys. Solids.,
43 (1995) 389.

5. H. Murakawa and Z.Q. Wu, Proc. of the Kansai Society of
Naval Architects, 10 (1998) 125 (in Japanese).

6. A. Rahman, Phys. Rev., 136 (1964) 405.

7. N.F. Mott, Engineering , 165 (1948) 16.

NI | -El ectronic Library Service



