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Abstract: The  phenomena of  crack  propagation and  interface debonding can  be regarded  as  formation of new

surface.  Thus, it is quite natural  to model  these problems by introducing the mechanisrn  ofsurface  formation, The au-

thors prepesed a  method  in which  the formation ef  new  surface is represented by interface element  based on  the in-

terfaoe potential energy, The general idea of  thc interi'ace element  and  its application  to peeling test of  bonded platcs,

push-out test ef  fiber in matrix, dynamic crack  propagation and  ductile tearing of steel plate are  presented,
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1. INTRODUCTION

  Fiber reinforced  composite  materials  and  the com-

posites with  a thin film coating  are  applied  in various

fields as  the structural  materials  because of  their higb
specific  strength  and  stiffhess  which  are  effective  /for

weight  savings.  The conventional  materials,  such  as

metals  and  ceramics,  are  also  used  under  severe  con-

ditions due to the recent  improvement  of  their per-
formances. From  the point of  view  of  safety  design of
structures,  it is very  important to estimate  the fracture
strength  of  materials  with  a  reasonable  accuracy.  Many

methods  for evaluating  the failure strength  of  materials

have been proposed. There  are  basically two  approaches,

One is the macroscopic  approach  in which  the concepts

of  stress  intensity facter, energy  release  rate  and  J-

integral are  employed.  The other  is the microscopic

approach  such  as  the simulations  of crack  propagatilon
using  the molecular  dynamics [1]. [ib evaluate  the

strength  of  structural  component,  both the macroscopic
and  the microscopic  nature  of  the phenemena  must  be

taken into account  {2-4],
  In this study, a  new  and  simple  method  is developed
in order  to simulate  the fracture phenomena  that can  be
considered  as  the formation of  new  surface  with  the crack

propagation [5]. Based on  the fact that surface  energy

rnust be  supplied  for the formation of  new  surface,  a

potential function representing  the surface  energy  density

is introduced in the finite element  method(FEM),  The

proposed method  is applied  to simple  mode-I  and  II crack

propagation problems and  its capability  for static and

dynamic analyses  is demonstrated.

2. METHOD  OF  ANAL:YSIS

2.1. Surface Potential

 Figure 1 shows  an  illustration of  the crack  propagation
rnodeled  using  interface elements.  The interface element

consists  of  two surfaces  and  has no  thickness  when  the

load is not  acting. When  the load is applied,  the two

surfaces  separate  from each  other. The distance between
the surfaces,  or  the crack  opening,  is denoted by 6, The

mechanical  characteristics  of  the interface element  are

defined through  a  potential function ip(6). Since the
function ip(6) can  be  chosen  rather  arbitrarily,  the

Lennard-Jenes type  potential energy  [6] described by the

fo11owing equation  is employed  in this study.

ip(6)-27[( 
ra)

2n

ra +6-2(
 n)n)

 +6)

n
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v(b) during crack  extension

(1)

Fig,1. Crack propagation model  with  interface element.
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     Fig, 2, Lennard-Jones type interface potential.

where  6 is the crack  opening  and  " n and  ro  are  the
material  constants,  Especially, 2r  is the surface  energy

per unit  area. As shown  in Fig. 2, n contro]s  the shapc  of

potential energy,  The  derivative of ip with  respect  to 6
gives the bonding  force per unit area  of  the surface. As
shown  in Fig. 3, the bonding  force rapidly decreases with
increasing 6. Through  this phenomenon, the formation of
new  surface  can  be described.

22. Equilibrium Equation of  System
   For simplicity, the outline of the mathematical  for-
mulation  is presented using  the crack  propagation prob-
lem in elastic solid,  When  the material  is elastic, the
equilibriurn

 equation  can  be derived based on  the prin-
ciple of  minimum  potential energy.

   The  total energy  n  of  the elastic body with  prop-
agating  crack  can  be described as  the sum  of the strain
energy  U, the potential of  external  load M  and  the
interface energy  for the newly  formed surface  during
crack  propagation q, i.e.

              ll=u+q+m.  (2)

In case  of  the finite element  method,  the elastic body to
be analyzed  is subdivided  into small  elements  and  the
displacements in each  element  are  interpolated by nodal

displacement uo. Noting this, the total energy  is described
as,

         ll=  qu,,) =  u(u,) +  q(u,) +  ur(u,) , (3)

Further, U(u,), q(u,) and  PP<u,) can  be represented  as  the

sum  of  the contributions  from each  element  UC(uC,),
U",(uCo) and  W  (uCo), i.e.

       n(uo) =  £ {if(ueo) +  uc,(ueo) +  w(ueo)} 
,
 (4)

where  uC,, is the nodal  displacement vector  for each

element  extracted  from  the nodal  displacement vector  of
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      Fig. 3. Bonding force acting  on  interface.

the whole  system  uo.

   Once the total energy  Il is given as in Eq. (4), the
equilibrlum  equation  in incremental form can  be derived
in the fo11owing mannen  Denoting the nodal  displacernent at

the present step and  its increment to the next  step  as u,

and  Au,, the total energy  II can  be described as a function
of  uo  +  Att, and  it can  be expanded  into Thylor's series,
Le,

 I](uo+ ZLu,) "  I](u,) +  Ail](Att,) +  A2n(Au,)

   
=quo)-fou,Ytr}+;ke,Ylelou,},

 (5)

where  A'n  and  Agll are the first and  the second  terms in
Auo, i.e.

       A'n(u,)=-{Ae{,  }T {f} (6)

       A2n(,,)-gfou,ykKdn,}.  (7)

Further, the equilibrium  equation  can  be derived as the
stationary  condition  of  ll(uo+ Au,) with  respect  to Atto,
i.e.

    Oll(u,+Au,)1OAu,=-{f}+[)t]{Au,},  (8)
or,

         kfouo}" tr}･ (g)

where  [k] and  {f} are  the  tangent  stiffriess  matrix  and  the
load vector, respectively,

2.3. Stiffhess Matrix and  Force Vl ctor  of  Interface El-
ement

  The stiffhess matrix  and  the load vector  ofthe  interface
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elernent  can  be  derived in the manner  basical]y same  as

that for the whole  system.  Since the FEM  code  developed
in this research  is a three dimensional one  using  solid

element,  the same  8-node solid element  is used  for the
inteface elernent  as shown  in Fig. 4. The interface
element  consists  of  two  surfaces  containing  four nodes,
namely  nodes  1-4 for bottom surface  and  5-8 for top
surface, and  it has no  thickness when  load is not applied.

The two  surfaces  separate  when  the load is applied  and

the distance or  the opening  is denoted by 6. When  the

surface  area  of the interface element  is Se, the interface
eneTgy  for an  element  UC,(ltC,) is given by the fo11owing
equatlon.

whereand

 itN(g,

where

ue,(ue,)=  fip(6)dse , (10)

6 is the opening  at  arbitrary  point on  the surface

 can  be interpolated using  interpolation function
Tl), i.e.

6 (g,n) -EN,  ig,nXw,., - w,  ) ･

N, (e,n)
N,ig,n)

N, (g,n)
N,ig,n)

-o.2sa+gk-n)

-o.2se+gfo+n)

-o.2sa-gfo+n)

-  o2sa  -- g fo - n),

(11)

(12)

and  wi is the nodal  displacernent norrnal  to the surface.

  Finally, the tangent stiffiness  matrix  [k"] and  the lead

vector  {ft} of the interface element  can  be derived by

expanding  UC,(u`o+AuCo)  with  respect  to Auev in

the fo11owing manner.

uc, (ue, +  Au  
e,)=f

¢(6 +A6  kse

   =fip  (6 n,e .fdgg6  
)
 
oO.6,,

 zyt 
e,dse

    'ifdiip6(,6  
)(
 eO.6., 

Au 
co

 )
2

 dsc +H  ol

where

fdip(6)
 06

d6 OuCoAueodse
 .  -{fe]T foueo}

ifdiip6(26 
)(
 eO.6., 

Au 
co

 )
2

 dse

== ll fu en }T [t e lo.e,} .

(13)

(14)

(15)

Since the  interface element  has no  volurne  or mass,  the

same  formulation can  be applied  to both the static  and  the

dynamic problems. Further, by arranging  the interface
elements  along  the crack  extension  path in the ordinary
FEM  model,  crack  propagation problems  can  be ana-

lyzed.

3. SIMVLA[[ION  OF  PEELING  TEST

  Figure 5 shows  the peeling test to be analyzecl  by  the

proposed method.  TXNo elastic plates are  bonded.

Ybung's modulus  E  and  Poisson's ratio v  of  the plate are

assumed  to be 3 GPa and  O.3, respectively.  The  computed

load-displacement curves  are shown  in Figs. 6-9. The
computed  results show  that the crack  starts  to propagate
at the maximum  load. Then, the load gradually decreases
with  increase of  the peeling length. Figures 6 and  7 show

the effect of  material  constants  ro  and  n.  It is indicated
that the fbrce at the start of  crack  extension  becomes
large when  ro is small  or n  is large.

F

a-). L ･
B Interfaceelement

a:InitialCracklength
F

a=10  mm

L=70  mm

B=10  mm

h=5 mm

Fig. 4. Interface element  and  interpolation
of  crack  opening. Fig. 5. Peeling test model  for FEM  analysis,
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   On the contrary, the curve  for the crack  propagation
process is not  influenced by ro  or  n. Figure 8 shows  that
the value  of  r influences both the initiation and  the
extension  of  the crack.  These  results suggest  that the
crack  extension  in peeling test is primarily governed by
the magnitude  of  the surface  energy  r. Thus, the value  of

r can  be estimated  from the propagation part of  the
measured  load-displacement curve  and  those  for r, and  n

can  be estimated  from  the point where  the crack  start  to

grow,
   The effect of  the mesh  size is examined  by changing
the mesh  divisions along  the length of  the model.  As
seen  from Fig. 9, the mesh  size  does not  have significant
effect

 on  the ]oad-displacement curve.  Further, peeling
problem of  wider  plates as shown  in Fig. 10 is simulated
to demonstrate the potential versatility  of  the proposed
method.
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4. PUSH-OUT  TEST  OF  FIBER  IN  MMRIX

  The  proposed method  can  be applied  also to a  mode-

II crack  propagation problem  by replacing  the opening

displacement a in Eq. (1) with  the shear  deformation,
The push-out test of  fiber in matrix  shown  in Fig. 11 is
analyzed,  In this model,  the interface elements  are

arranged  along  the interface between the fiber and  the

matrix.  The computed  load-displacement curves  are

presented in Fig. 12. Nearly horizontal part after the

linear stage  corresponds  to the crack  propagation process,
This means  the load is alrnost constant  during the crack

propagation. The  sudden  drop of the load observed  in the

case  of  2FO,2 Nlmm  is the moment  when  the interface
crack  reaches  the bottom surface  of  the matrix.

Load P
a,=O.06  m

E=21O  GPa
v=O,3p=7.85

× 103kg/m3

r=50  kN/m

r =O.05  mm
 on=

 3

Fig. 13, Model  for dynamic crack  propagation.

Rf Radiusoffibre
Rc Radius  of  composite

Lc
 Height ef  composite

Rf=S"m  Rc=6e"m

Lc=80"mEf=sooGpa

 vf=o,ol

Ec=150GPa  vc=O.2

Fig, 11, Model  for push-out test of fiber in matrix.
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Fig. 12. Load-displacement curve  of  push-out test.
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Fig. 14. Pulse load to initiate crack  propagation.

5. DYNAMIC  CRACK  PROEAGATION

100

  In many  cases, the fracture problems  are  dynamic

phenomena,  The dynamic  crack  propagation in an  elastic

plate as  shown  in Fig. 13 is analyzed  to demonstrate the

potential capability  of  the proposed method.  The plate
has an  initial crack  with  its length of  400 mm  and  it is

pre-stressed by the forced displacement at the top and  the

bottom  edges.  The  crack  is initiated by a pulse load
applied  at the tip of  initial crack.  The pulse load in-
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ereases  ancl decreases linearly in 10 ps as  shown  in Fig.
14. [ilie time histories of  crack  extension  lengths zVi for
diffeTent values  of  pre-stress displacement Ln, are  plotted
in Fig. IS. ks theoretically predicted [7], the speecl of
crack  propagation increases with  the value  of  prc-stress.
VVhen the pre-stress is small  as  in the case  of  [4,=O.4 mm,
the crack  is arrested. Figure 16 shows  the crack  extension

and  the  distribution of  stress normal  to the  crack  at 60
and  leO ys after the application  of  pulse load. Due to the
syrnmetry,  oniy  right half of  the plate is shown.  As  it is
seen, the stress wave  is traveling  ahead  of  the  propagating
crack,
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6. DVCTKLE  TEARING  OF  STEEL  PLATE

O.35

7=50kNlm
IL,=O.7mmro=0.05mmAt=O.lps

n=6ao=60mm

Fig.durin16. Deformation  and  stress  distribution

g erack  propagation.

   The process of  tearing of  steel  plate with  an  initial
netch  at  its center  is analyzed  as  eiastic-plastic  finite
strain problem using  the proposed method,  The  iength
of  the initial notch  in the steel plate is 20  mm.  The  width

of  the  plate at  the central section  and  the thickness  are
200  mm  and  4.5 mm,  respectively.  The  material  is
assumed  to have the strain hardening property described
by  the foliowing equation.

ay  ==  ayo(1+a6P)N  , (19)
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where

oy,=280Mpa,a=115,  IVkO,2,E=210Gpa,v=O.3

The computed  deformation and  the distribution ef  the

stress component  in the !oading diTection before the crack

propagation and  at the final stage  are. presen!ed in Fig. 17.
                    stress-strain relation  areThe  curves  for nominal                                       com-

pared between FEM  analysis  and  experiment  in Fig. 18.

The  indicated strain is the average  strain fbr the 50 mm

gauge length at  the center. Good  correlation  between the

computation  and  the experiment  proves the potential
capability  of  the proposed rnethod  for the analysis  of
                 .
ductile crack  propagation.

7. CONCLUSIONS

  In order  to analyze  the crack  propagation or the peel-

ing, a new  cornputer  simulation  method  using  the in-

terface element  is proposed and  applied  to peeling test of

bonded plates, push-out test of  fiber in matrix,  dynamic

crack  in pre-stressed plate and  ductile tearing of  steel

plate. The conclusions  are as fo11ows. .
(1) The processes of  mode-I  or II crack  pro                                 pagatlon can

be  simulated  by the proposed rnethod.

(2) In the simulation  of  peeling test, the material  
const-

ants  ro  and  n influence the load at the beginning of  crack

propagation. However they do not  have influence on  
t.he

processes of crack  propagation. On the other  hand, r m-

fiuences both the beginning and  the prooesses of crack

propagation. The effect  of  mesh  division on  the crack

propagation is found to be small.

(3) The dynamic crack  propagation in a  pre-stressed
elastic plate is simulated  and  the relation  between  the

crack  propagation speed  and  the pre-stress is clarified.

(4) Good correlation  with  experiment  proves the potential
capability  of the preposed method  to ductile fracture pro-

blems.
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