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ABSTRACT: The X-ray elastic constants of pressureless sintered B-silicon nitride (Si;N,), were experimentally
determined for ten different diffractions by using Ka radiations of Cu, Co, Fe, Cr and V. The X-ray compliances,
(1+vx) Ex and vy/ Ex ( Ex = Young's modulus, v% = Poisson's ratio), change as a second power function of cos?¢
(¢ = angle between the diffraction plane normal and the c-axis of hexagonal crystal) . Using the simplex method, the
elastic constants of single crystals of f-silicon nitride were determined from the measured values of the X-ray
compliances on the basis of the average of Voigt and Reuss models and Kréner's model, combined with the self-
consistent analysis of multi-phase materials. The obtained result shows a high stiffness in the c-direction of
hexagonal crystals, but the degree of anisotropy is not so large as the whisker data reported by Hay et al.
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1. INTRODUCTION

The X-ray and neutron diffraction methods are very
powerful non-destructive techniques to measure the
residual stress in crystalline materials. In both methods,
the stress is determined from the measured lattice strains.
Since the lattice strain measured by diffraction methods
is different from the strain measured by mechanical
methods, the elastic constants for diffraction stress
measurements are different from the mechanical values.
They are called the diffraction elastic constants or the X-
ray elastic constants, and are dependent on diffraction
planes. The diffraction elastic constants for single-phase
polycrystals can be derived from the single crystal elastic
constants by using Kroner model [1] or the average of
Voigt and Reuss models [2]. The influence of the
secondary phases on the diffraction elastic constants can
be predicted by the self-consistent model [3]. By
following the inverse way of the above derivation, it is
possible to determine the single crystal elastic constants
from the diffraction elastic constants determined by X-
ray powder diffraction [2, 4].

The elastic constants of single crystals of new
materials are not always known, because it is sometimes
difficult to obtain a large-sized crystal enough to measure
the elastic constants, by the ultrasonic method for
example. For 3 Si;N,, the only data reported are those by
Hay et al. [5]. They obtained the elastic constants of
silicon nitride whiskers by the nanoindentation method
under several assumptions of the characteristics of elastic
constants of hexagonal crystals. In the present paper, the
X-ray elastic constants of pressureless sintered 8 Si,N,
were measured for ten different diffractions, and then
used to determine the elastic constants of single crystals.
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2. DIFFRACTION ELASTIC CONSTANTS

2.1. Micromechanics for Diffraction Elastic Constants
of Single-Phase Polycrystals
2.1.1. Voigt model

In Voigt model [6], the strain in each crystal is
assumed to be uniform and equal to the macrostrain. The
diffraction values of Young's modulus and Poisson's
ratio, Fy and vy, are equal to the mechanical values, E
and v. The diffraction compliances, S, and S,, are given

from the single-crystal elastic constants, c;, as follows:
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2.1.2. Reuss model

Reuss model [7] assumes that the stress in each
crystal is uniform and equal to the macrostress. The
values of S, and S, are expressed in term of single crystal
compliances, s;, as follows [8]:
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where ¢ is the angle between the normal of the diffrac-
tion plane (hkl) and the c-axis.

The mechanical elastic constants can be obtained by
taking the average. The average of cos?¢ is 1/3, and that
of cos*¢is 1/5.

2.1.3. Average of Voigt and Reuss models

Hill [9] has shown that the Voigt and Reuss averages
represents bounds of the elastic modulus of polycrystalline
materials. The numerical means of §, and S, can be
approximations for diffraction elastic compliances. For
mechanical elastic constants, the mean of shear modulus
and the bulk modulus will be used as an approximation.
Here, this model is called Voigt-Reuss average model.
2.1.4. Kroner's model

According to Kroner's model [1], the strain tensor in a
crystal in polycrystals subjected to the applied stress o
is given by

i(sukl +1u) OF (5)

1=

Mw

k:

where Siu is the compliances of single crystals. The value
of t;, is the additional term due to the constraint by
neighboring grains, and is determined as a function of
single crystal compliances with the use of Eshelby's
inclusion mechanics [10, 11]. For hexagonal polycrystals
of spherical grains with random orientation, the
diffraction compliances, S, and S,, are related to the
mechanical Young's modulus and Poisson's ratio, E and
v, as follows:
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where ¢; is the matrix notation of 7,,. The mechanical
elastic constants of polycrystals are also calculated from
the single crystal elastic constants by using the equation
derived by Kneer [12].

2.2. Micromechanics for Diffraction Elastic Constants
of Multi-Phase Polycrystals

For the case of multi-phase materials, the mean stress
of the diffracting phase is not equal to the macrostress.
Secondary phases of sintered ceramics, such as glassy
phase and pores, may influence the diffraction elastic
constants. The diffraction elastic constants of multi-phase
materials correlate the lattice strain of the diffracting
phase to the macrostress. Among several models of
elastic deformation of multi-phase materials, the self
consistent model was found to give the best estimation of
the diffraction elastic constants of sintered alumina [3].
According to the self-consistent model, the diffraction
values of Young's modulus and Poisson's ratio of multi-
phase materials, Ex and vx, are related to those of single-
phase polycrystals, Ey and vy, as follows :

I+vi  14vy
Ex Ex
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and E' and V' are the mechanical Young's modulus and
Poisson's ratio of multi-phase materials, and E, and v, are
those of the diffracting phase.

2.3. Experimental Determination of Diffraction
Elastic Constants

In the experiment by the X-ray method, the diffraction
compliances, S/ and S;, are determined from the changes
of the slope and the intercept of the linear regression
lines in the 26,-sin*y diagram taken under the different
values of the uniaxial applied stress o, as follows [3]:
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where 26, is the diffraction angle of the stress-free
materials.

For stress measurement by the sin’y method, the
slope of the 26,-sin’y diagram is multiplied by the stress
constant, K (MPa/deg) , defined by

’

Ex T

K=-coty —— — .
2(1+vyx) 180

(14)

Therefore, the value of S;/2=(1+vx)/Ex is particularly
significant for X-ray stress measurement.

3. EXPERIMENTAL PROCEDURE

The experimental materials are pressureless sintered
B Si;N, (SN1) [13]. The mechanical properties are
presented in Table 1. The aspect ratio of needle-like
grains was 4.2 for SN1. The specimen was 10 mm in
width, 4 mm in thickness and 55 mm in length. The
specimen surface for X-ray measurement was finished by
lapping.

The diffraction elastic constants were experimentally
determined by the sin? y method for ten different diffrac-
tions by Ka radiations of Cu, Co, Fe, Cr, and V charac-
teristic X-rays. The conditions of X-ray measurement are
summarized in Table 2. The X-ray equipment had a
parallel beam optics and the iso-inclination mechanism
(Q-diffractometer). The value of the sin’ y was changed
from O to 0.6 with an interval of 0.1 to obtain the 26,
sin’y diagram. The diffraction angle was determined as
the center of the half breadth at the 2/5 to 4/5 height of

the peak position depending on the diffraction as shown
in Table 2. ,

The four-point bending stress was applied to the
specimen. The X-ray was irradiated on the tension side of
the bent specimen and the applied strain was monitored
by a strain gage glued on the specimen surface. The 26,
sin?y diagram was obtained at five strains : 0, 400X 107,
80010, 1200X10%, 1600X10. The applied stress
was calculated by multiplying the strain by the mechani-
cal Young's modulus.

4. EXPERIMENTAL RESULTS

The measured relations between 26, and sin’y were
all linear and did not show any systematic non-linearity
[13]. The slope and the intercept of the regression line in
26,-sin’y diagram changed linearly with the applied
stress. The diffraction elastic constants determined by
using Eqgs. (12) and (13) are summarized in Table 3,
where the confidence limit of 68.3% is also indicated in
the table. For the stress measurement with high accuracy,
the 323 diffraction by Cu-Ka, radiation, 251 and 232
diffractions by Fe-Ka radiation, and 411 diffraction by
V-Ka radiation were recommended, because the the
confidence limit is narrow and the stress constant is
small.

According to Voigt-Reuss average and Kroner's
models, the X-ray compliances, S/ and S;, change as a
second power function of cos’¢ (¢= angle between the
diffraction plane normal and the c-axis of hexagonal
crystal) as shown Egs. (1) to (7). The X-ray compliances
are plotted against cos’¢ in Fig. 1. The variations of the

Table 1. Mechanical properties of silicon nitride.

Material Bulk density ~ Young's ~ Poisson's Bending  Fracture toughness
A e
SN1 3.22 294 0.281 659 6.4
Table 2. Measurement conditions.

Cha;?_crt:}rlistic Diffraction D1ffr2aecotj(:ir; gngle Scannidrz‘i range, o Tl;l:ey;) izﬁgl cos'0
Cu-Ko, 323 141.260 138~145 0~0.6 4/5 0.708
Co-Ka, 203 148.091 145~152 0~0.6 4/5 0.920

251 155.332 152~158 0~0.6 2/5 0.116
610 149.299 146~152 0~0.6 2/5 0
Fe-Ka 142 142.553 139~145 0~0.6 1/2 0.494
232 135.059 130.5~137.5 0~0.6 12 0.519
212 131.649 129~134 0~0.6 12 0.745
Cr-Ko. 330 129.479 127~131 0~0.6 12 0
411 125.668 123~128 0~0.6 12 0.196
V-Ka 411 152.682 149~155 0~0.6 172 0.196
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5. ELASTIC CONSTANTS OF SINGLE CRYSTAL
OF SILICON NITRIDE

compliances are not large and close to the mechanical
values drawn with the dot-dash line in the figures. The
regression relations for S;/2 (10?/GPa) and for — S/ (10
/GPa) are by the second order polynomial of cos*¢ are The elastic constants of single crystals can be deter-
mined from the measured values of the diffraction elastic

constants by the simplex method [14]. Figure 2 shows the
> = =3.90+2.12 cos’ ¢ —2.50 cos* ¢ , flowchart for the determination of the single crystal

b elastic constants. Voigt-Reuss average model and Kroner's

S, 1+vy

(15) model are used for the calculation of the X-ray elastic
constants and the polycrystalline elastic constants. The
v isotropic mechanical elastic constants shown in Table 1
-8/ =—2%-=9.90+557cos’¢—8.42cos* ¢ . were used as the initial values of the single crystal elastic
Ey constants for the simplex method. The initial values of
(16) the X-ray elastic constants, Ex and vx are the same as the
mechanical values. The sum of the square of the differ-
ence between the calculated and experimental values of
Table 3. X-ray elastic constants and stress constant for SN1.
X-ray compliances X-ray elastic constants
Characteristic | . : ) . i ' : . Stress constant
X-ray Diffraction (1+vx)/ Ex' Vx/ Exr Ex/ (1+Vx)r Ex’ Vx K, MPa/deg
10°/GPa 10%/GPa GPa GPa
Mechanical _— 4.36 9.56 230 294 0.281 _—
Cu-Ka, 323 429+0.15 9.68%0.63 233 301 0.292 -719
Co-Ka, 203 3.73%£0.32  8.18%+0.76 268 343 0.281 -677
251 4.10£0.06  9.65+0.13 244 319 0.308 -470
Fo.K 610 3.93£0.82  9.29+0.28 254 333 0.309 -612
e 142 | 4214041 1132053 | 237 325 0368 706
232 431+0.03  12.1+0.29 232 322 0.388 841
212 4.06+£0.10  7.98+2.37 246 306 0.244 -966
Cr-Ka, 330 3841041 11.7+0.74 261 375 0.438 -1079
411 438£0.15 9.88%2.21 228 295 0.292 -1025
V-Ka. 411 422+£0.11 9.88+£0.25 237 309 0.306 -507
6 Si,N,, SN1 20 Si,N,, SN1
® Cu-Ko;323 O Fe-Ka 232 | ® Cu-Ka, 323 O Fe-Koa 232
< B Co-Ko,203 O Cr-Ka 212 B Co-Ko, 203 0O Cr-Ka 212
% ¢ Fe-Ka 251 © Cr-Ka 330 £ & Fe-Ko 251 <© Cr-Ko 330
'r-s 5 A Fe-Ka 610 A Cr-Ko 441 52 15 |- A Fe-Ka 610 A Cr-Ka 441 ||
= I ¥ Fe-Ko 142V V-Ka 411 = ¥ Fe-Ko. 142V V-Ko, 411
R ) T [(1+v)/E]mech -
g SR [V/E]nech
3 R eor s TN
-t . K
1l , VIJ
a 90+2.1 -2.50cos*
o 3:90+2.12c08'9 -2.50cos’9 9.90+5.57cos?) -8.42c0s*d
3L l ] ] 5 | ] |
0.0 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
cos ’¢ cos ‘g

(a) (1+Vx ) Ex vs. cos*

(b) vx/Ex vs. cos’¢

Fig. 1. Relation between X-ray compliances and cos?¢ (Experiment).
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Fig. 2. Procedure for determining elastic constants of
single crystal silicon nitride.

S; /2 =(1+vy)! Ex for all the measured diffractions is used
as the error function. The accuracy of the experimental
data for S; is larger than that for S/, so the only the S;
value is adopted in the error function. The simplex
method is used to reduce the error function. New values
of the single crystal elastic constants are obtained, and
then the second approximations of the mechanical elastic
constants of polycrystals are obtained by Voigt-Reuss
average or Kneer's equation. From the second approxi-
mations, the X-ray elastic constants, Ex and vy, were
determined by Egs. (1) to (7). Then, the X-ray elastic
constants of Ex and v are calculated by Egs. (8) and (9).
The simplex method is again adopted to reduce the error
function. The third approximations of the single crystal
elastic constants are obtained. This calculation loop is
repeated until to get the minimum value of the error
function.

The results of single crystal elastic constants obtained
by the simplex method are shown in Table 4, together
with the data reported by Hay et al [5]. The poly-
crystalline elastic constants calculated by Voigt-Reuss
average or Kneer's equation are also shown in the last
two columns. The ¢, value is larger than the the ¢,, value.
The ratio of cy/c,, is slightly smaller for the case of

Kroner's model. The calculated values by Voigt-Reuss
average and Kroner's model are different from the data
reported by Hay et al [S]. Especially, the ratio of c,/c,, is
smaller for the present material. The elastic constants of
single crystals may be dependent on the doping agents.

Using the estimated values of single-crystal elastic
constants, the S/ and §; values were calculated on the
basis of Voigt-Reuss and Kroner's models combined with
the self-consistent model. The changes of S/ and §; with
cos’¢ are shown in Fig. 3. Similar results obtained using
the data by Hay et al. are shown in Fig. 4. In the figures,
the symbols of data are the same as Fig. 1. As seen in
Fig. 4, the results calculated by Hay's data are different
from the measured values. Hay's data is not applicable to
the present material. For S/ value, the difference
between model predictions is very small. In Fig. 3, the
calculated line for S; by two models are identical, and
nicely approximates the measured values. For S’ value,
the line calculated based on Kroner's model gives the best
approximation to the measured data. The variation of the
measured values of S/ is larger than the measured values
of S;. More precise measurements are necessary for S/
values.

Kroner's model assumes the grain shape is spherical.
On the other hand, real grain shapes of B Si,N, are
needle-like with the mean aspect ratio of 4.2. In the
future study, the effect of the aspect ratio on the elastic
constants should be taken into account in Kroner's model,
and also the accuracy of the measurements of X-ray
elastic constants need to be improved. Still, the method
presented in the present study will be useful for
measuring single crystal elastic constants of the other
new materials such as nanocrystals, where single crystal
samples are not be available.

6. CONCLUSIONS

(1) The X-ray elastic constants of pressureless sintered
Si;N, (SN1) were experimentally determined with the
sin*y method for ten different diffractions by using Ko
radiation of Cu, Co, Fe, Cr and V. The X-ray com-
pliances, (1+Vx)/Ex and vx/Ex (Ex = Young's modulus,
vx = Poisson's ratio), change as a second power function
of cos’¢ (¢ = angle between the diffraction plane normal
and the c-axis of hexagonal crystal).

(2) Using the simplex method, the elastic constants of

Table 4. Elastic constants of B Si,N, (SN1).

Single crystal elastic constant, GPa Polycrystal
Model Ciy Cpp Ci3 C33 Cay E, , GPa Vo
Voigt-Reuss average| 413 173 60 553 122 350 0.245
Kroner model 439 166 142 494 106 330 0.282
319* 0.259*
Hay et al. [5] 343 136 120 600 124
Y 318™* 0.259™*
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*

Calculated by Voigt-Reuss average model

** Calculated by Kroner's model (Kneer's equation)
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Si;N, SN1

| | |

—— Kroner model
Voigt-Reuss average model

cos o

(b) v/ Ex vs. cos’¢

Fig. 3. Relation between X-ray compliances and cos?¢ (Prediction).

6 Si; N, SN1
| | | |
< —— Kironer model
% - - Voigt-Reuss average model
S 5L i
‘g 4
S
Y
N
2R
3T I I ] ]
0.0 0.2 0.4 0.6 0.8 1.0
cos ’¢
(a) (1+vx) Ex vs. cos*¢
6 Si3 N, SN1

| I I I

—— Kroner model
Voigt-Reuss average model

YE; , 107GPa
W

(1+vy

2/2 =

S

0.0 0.2 04

0.6 0.8 1.0
cos ¢

(a) (14+v%) EX% vs. cos’¢

20

Si; N, SN1

—— Kironer model
Voigt-Reuss average model

cos’p

(b) vi/Ex vs. cos*¢

Fig. 4. Relation between X-ray compliances and cos’¢ (Prediction based on Hay's data).

single crystals were determined from the measured
values of the diffraction elastic constants on the basis of
Voigt-Reuss average model and Kréner's model, com-
bined with the self-consistent analysis of the effect of the
secondary phases. The estimated results of B Si,N,
showed a high stiffness in the c-direction of hexagonal
crystals, but the degree of anisotropy is not so larger as
the whisker's data reported by Hay et al.
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