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ABSTRACT:  The X-ray elastic  constants  of  pressureless sintered  fi-silicon nitride  (Si,N,), were  experimentally

determined  for ten different ditftactions by using  Ka  radiations  of  Cu, Co, Fe. Cr and  V. The X-ray compliances,
(1+vk)t Ek and  vltEC  {EA =  Young's modulus,  vl  =  Poisson's ratio), change  as  a  second  power function of cos!e

(ip =  angle  between the diffraction plane nomial  and  the c-axis  of  hexagonal crystal)  . Using the simplex  method,  the
elastic  constants  of  single  crystals  of  fi-silicon nitride  were  determined from the measured  values  of  the X-ray
compliances  on  the basis of  the average  of  Voigt and  Reuss models  and  Kr6ner's model,  cornbined  with  the selr
consistent  analysis of  multi-phase  materials.  The obtained  rcsult  shows  a high stiffness  in the c-direction  ef

hexagonal crystals,  but the degree ot' anisotropy  is not  so 1arge as the  whisker  data reported  by Hay et al.

Key words:  Stress meas"rement  X-ruy method,  Elastic constant,  fi-siticon nitride,  Simplex method

1. INTRODUCTION 2. DIFFRACTION  ELASTIC  CONSTANTS

   The  X-ray and  neutron  diffraction methods  are very

powerful  non-destructive  techniques  to measure  the
residual stress in crystalline  materials.  In both methods,

the stress  is determined from  the measured  Iattice strains,
Since the lattice strain  measured  by  diffraction methods
is different from the strain  measured  by mechanical

methods,  the  elastic  constants  for diffractien stress

measurements  are  different from the  mechanical  values.

They are called the diffraction elastic  constants  or  the X-
ray  elastic constants,  and  are dependent on  diffraction

planes. The diffraction elastic constants  for singlc-phase
polycrystals can  be derived from the single crysta] elastic

constants  by using  KrOner model  [1] or  the average  of

Voigt  and  Reuss  models  [2]. The infiuence of  the

secondary  phases on  the diffraction elastic constants  can

be predicted  by the  self-consistent  model  E3J. By
fo11owing the inverse way  of  the above  derivation, it is
possible to determine the single  crystal  elastic  constants

from the diffraction elastic  constants  determined by  X-
ray powder diffraction [2, 4],
   The  elastic  constants  of  single  crystals  oi' new

materials  are  not  always  known, because it is sometimes
difficult to obtain  a large-sized crystal enough  to measure

the  elastic  constants,  by the ultrasonic  method  for
example.  For 6 Si,N,, the only  data reported  are those  by
Hay  et  al,  [51. They  obtained  the elastic  constants  of

silicon  nitride  whiskers  by the nanoindentation  inethod

under  several  assumptions  of  the characteristics  of elastic

constants  of hexagonal crystals.  In the present paper, the
X-ray elastic constants  of  pressureless sintered  fi Si,N,
were  measured  for ten different diffractions, and  then

used  to  determine the elastic constants  of  sjngle  crystals.

2.1. Micromechanics for Diffraction Elastic Constants
ofSingle-PhasePelycrystals

2.1.1. Voigt model

  In Voigt  model  [61, the strain  in each  crystal  is
assumed  to be unifbrm  and  equal  to the macrostrain.  The
diffraction values  of  Young's modulus  and  Poisson's
ratio,  Ex  and  vx, are equal  to the mechanical  values,  E
and  v. The diffiraction compliances,  S, and  S,, are given
from  the single-crystal  elastic constants,  cij, as fbllows:

S221+Vx 15

Ex

     vx
SL =-

     Ex

7cii+2c33-5cn-4cn+12c44

3

 (2c" +  c].i +  2cn +  4ci3)

×
 (4c"-c]i-cii-5cn-8cm) .

,
 (1)

(7cdd +2c"  -5cm  - 4cis +  12c"  )
(2)

2.12. Reuss  model

  Reuss  model  [7] assumes  that  the  stress  in each
crystal  is uniform  and  equal  to the macrostress,  The
values  of  S, and  S, are  expressed  in term of  sing]e  crystal

compliances,  s,-, as  fo11ows [8]:

Si21+vxEx=il(2sdd-s.-s,,)
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-;(5sn-si2-5si3+s33-3s")cos2ip

+g(s"  
-2si3

 +s3i - s.  )cos4ip ,

     Vx
s, =-

     Ex

(3)

  1=i(S12+Sl])

+;(Std-S12-S13+S]3-S44)COSIip

-g(s" -2si]+s3]-s. )cos4ip , (4)

where  ip is the angle  between  the normal  of  the diffrac-
tion plane (hkD and  the  c-axis.

  The  mechanical  elastic  constants  can  be obtained  by
taking the average,  The average  of  cos2ip  is 1/3, and  that
of cos` ip is 1/5.
2.1.3. Average of  Voigt and  Reuss models

  Hill [9] has shown  that the Voigt and  Reuss averages

represents  bounds of  the elastic modulus  of  polycrystalline
materials.  The numerical  means  of  S, and  S, can  be
approximations  for difftaction elastic compliances.  For
mechanical  elastic constants,  the rnean  of  shear  modulus

and  the bulk modulus  will  be used  as an  approximation.

Here, this model  is called Voigt-Reuss average  model,

2.1.4. KrOner's model
  According  to Kr6ner's model  [1], the strain  tensor  in a
crystal  in polycrystals subjected  to the applied  stress o,",

is given by

    33

Eij =  Z £ (sij,, +  tij,,) o,A, ,

   k=1l=1

(5)

where  tij is the matrix  notation  of  tij,,. The  mechanical

elastic  constants  of  polycrystals are  also  calcu!ated  from
the single  crystal  elastic  constants  by  using  the equation

derived by Kneer [12].

2.2. Micromechanics for Diffraction Elastic Censtants
of  Multi-Phase Polycrystals
  For the case  of  multi-phase  materials,  the mean  stress

of  the diffracting phase is not  equal  to the macrostress.

Secondary phases of  sintered  ceramics,  such  as  glassy
phase and  pores, may  influence the  diffraction elastic

constants,  The  diffiraction elastic  constants  of  multi-phase

materials  correlate  the lattice strain  of  the  diffi'acting
phase to the macrostress.  Among  several  models  of

elastic  deformation of  multi-phase  materials,  the  self

consistent  model  was  found to give the best estimation  of

the  diffraction elastic constants  of  sintered  alumina  [3].
According  to the self-consistent  model,  the diffraction
yalues  of  Yeung's modulus  and  Poisson's ratio of  multi-

phase materia]s,  EA and  vk 
,
 are related to those ef  single-

phase polycrystals, E.  and  v3,, as  fo11ows :

1+vft 1+vx

Ei

vk  1+vx

Eg E.

ExB',

At-B'  -I!L. A,,

(8)

where

A'=

3

3(1'V')Ee

Ex

                   '

(l+v')Eh+2(1-2vo)E'

(9)

(10)

where  sij,, is the compliances  of  single  crystals.  The  value

of  ti,･ki is the additional  term  due to the constraint  by
neighbering  grains, and  is determined as a function of

single  crystal  compliances  with  the use  of  Eshelby's
inclusion rnechanics  [10, 11]. For hexagonal polycrystaLs
of  spherical  grains with  random  orientation,  the
diffraction compliances,  S, and  S,, are  related  to the
mechanical  Young's  modulus  and  Poisson's ratio,  E  and

v, as fo11ows:

B'=
15(1-v'2)Eo

2(4-5v')(1+v')E,  +(7-5v')(1+v,)E'  
'

(11)

and  E' and  v' are the mechanical  Young's  modulus  and

Poisson's ratio of multi-phase  materials,  and  Eb and  v, are

those of  the diffracting phase,

S,21+VxEx1+v  2tll-tl]-tl]
    +E

2
5tl1-ttl-4tdl-tl,+t]3-3t,4

           2

 3(t,,-43-t3,+t]]-t44)
+

cos:ip

2
Cos4ip  ,(6)

2.3. Experimental  Determination  of  Diffraction
ElasticConstants

  In the experiment  by the  X-ray method,  the  diffraction
compliances,  Sr and  S,', are  determined from the changes
of the slope  and  the intercept of  the linear regression
lines in the 2e,-sin2v diagram taken  under  the different
values  of  the uniaxial  applied  stress q  as fo11ows [3]i

     Vx
Sb =--

     Ex

   V  tT2+t13
=--+

   E2
'

  t:]-t12-2tl]+t.i]+t31-t44
+ COs2ip

$2

         2
tl1-t13-t3T+t13-t"COs4ip

 ,(7)

1+vlcoteo

El 2 eo.

 .
 vi coten

Si
 
=-

 El 
=-

 2

,(  020. )
0sin2vfY

0(2ev-o)

2 0a.,

,(12)

(13)
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where  2e, is the  diffraction angle  of  the stress-free
materials.

  For  stress  measurement  by the siniv  method,  the
slope  of  the 2e,-sin'vdiagram is multiplied  by the stress

constant,  K  (MPaldeg) , defined by

K=-coteoEin
2(l+vl ) 180

(l4)

Therefore, the value  ef  SS12=(1+vk)/Eft is panicularly
significant  for X-ray stress measurement.

the peak position depending on  the diffraction as  shown

in Table 2.

  The four-point bending stress  was  applied  to the

specimen.  The  X-ray was  irradiated on  the tension  side of

the bent specimen  and  the applied  strain  was  monitored

by a  strain  gage glued on  the specimen  surface.  The 2e,-
sin?vdiagram  was  obtained  at  five strains  : O, 400×  10'fi,
800  ×  10'6, 1200 × le'G, 1600  X  IO'6. The  applied  stress

was  calculated  by  multiplying  the strain  by the mechani-

cal Young's  modulus.

4. EXPERIMENTAL  RESULTS

3. EXPERIMENTAL  PROCEDURE

  The experimental  materials  are pressureless sintered

fi Si]N4 (SNI) [13], The  mechanical  properties are

presented in Table 1. The  aspect  ratio  of  needle-like

grains was  4.2 for SNI,  The  specimen  was  10 mm  in
width,  4 mm  in thickness  and  55 mm  in length. The
specimen  surface  fbr X-ray measurement  was  finished by
lapping,

  The diffraction elastic constants  were  experimentally

deterrnined by the sini v method  for ten different diffrac-
tions by Kctradiations of Cu, Co, Fe, Cr, and  V  ¢ harac-

teristic X-rays. The conditions  of  X-ray measurement  are

summarized  in Table  2. The  X-ray  equipment  had  a

parallel beam optics  and  the iso-inclination mechanism

(9-diffractometer). The  value  of  the sin2  vf was  changed

from O to O,6 with  an  interval of  O.1 to obtain  the 20,-
sin2yt  diagram, The  diffraction angle  was  determined as
the center  of  the half breadth at the 215 to 415 height of

  Tlie measured  relations  between 2e. and  sin'v  were

all linear and  did not  show  any  systematic  non-linearity

[13], The  slope  and  the intercept of  the regression  line in

2e.-sin?v  diagram changed  linearly with  the applied
stress. The diffraction elastic constants  determined by
using  Eqs, (12) and  (13) are summarized  in Table 3,
where  the confidence  limit of 68.3% is also  indicated in

the table. For the stress measurement  with  high accuracy,
the 323 diffraction by Cu-Kct, radiation,  251 and  232

diffractions by Fe-Ka radiation, and  411 diffraction by
V-Kct  radiation  were  recommended,  because the  the

confidence  limit is narrow  and  the  stress  constant  is
small.

  According  to Voigt-Reuss  average  and  Kr6ner's
models,  the X-ray  compliances,  S,' and  SI, change  as a

second  power function of cosiip (ip = angle  between the
diffraction plane normal  and  the c-axis  of hexagonal

crystal) as shown  Eqs. (1) to (7), The X-ray compliances
are plotted against  cos2ip in Fig, 1, The variations  of  the

Table 1.Mechanical properties of  silicon ninide.

MaterialBulkdensity
P,Mgtm3Young'sPoisson's

modulusratio

EGPa v,

BendingstrengthMPaoB,Fracturetoughness

K,,,MPaVliF

SNI 3.22 294 O.281 659 6.4

Table 2,Measurementconditions.

Characteristic
X-rayDiffractionDiffractionangle2e.degScanningrange,deg

t]smV(O.1step)BreadthmethodCoslip

Cu-Kct, 323 141.260 138-145 O--O.6 4/5 O.708

Co-Ka, 203 148.091 145-152 O-O.6 415 O.920

251 155.332 152-158 O-O.6 215 O.116

610 149.299 146-l52 O-O.6 2f5 o
Fe-Kct

142 142,S53 139-t45 O-O.6 1/2 O.494

232 135.059 130.5-l37"5O-O.6 lf2 O.519

212 131.649 129-134 O--O.6 1/2 O.745

Cr-Ka 330 129.479 127-131 O--O.6 lf2 o

411 125.668 123-128 O--O.6 1/2 O.196

V-Ka 411 152,682 149'v155 O--O,6 lf2 0,196
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compliances  are net  large and  close  to the mechanical
values  drawn  with  the dot-dash line in the figures. The
regression  relations  for S,'12 (10'i/GPa) and  for - SI (10'`
IGPa) are by  the second  order  polynomial of  cosiip are

sy5=1+vlq=
 3,90 +  2. 12 cos2  ¢ 

-
 2,50 cos4  ip ,

    v'-S;
 
=

 e, =

 
g.go

 
+
 
s.s7

 
cosi ¢ -8.42cos`ip .

(15)

(16)

5. ELASTIC  CONSTANTS  OF  SINGLE  CRYSTAL
OF  SILICON  NITRIDE

  The elastic constants  of  single crystals can  be deter-
mined  from the measured  values  of  the  difftaction elastic
constants  by  the simplex  method  []4]. Figure 2 shows  the
fiowchart for the  determination of  the single  crysta!

elastic constants. Veigt-Reuss average  model  and  Kr6ner's
model  are  used  for the  calculation  of  the  X-ray elastic

constants  and  the  polycrystalline elastic  constants,  The
isotropic mechanical  elastic  constants  shown  in Table 1
were  used  as the initial values  of  the single  crystal  elastic

constants  for the simplex  method.  The  initial values  of

the X-ray elastic constants,  El and  vA are  the same  as the

mechanical  values. The sum  of  the square  of  the differ-
ence  between the calculated  and  experimental  yalues  of

Table 3, X-ray elastic  constants  and  stress constant  for SN1.

X-raycompliances X-rayelasticconstants
Characteristic

X-rayDiffraction(1+vk)IE", vklEl,

10']IGPa 10'`IGPaEY(1+vk),E
£,

v}

GPa GPa

Stressconstant
K,MPaldeg

Mechanical 4,36 9.56 230 294 O.281

Cu-Ka, 323 4.29± O.159.68 ± O.63 233 301 O,292 -719

Co-Kai 203 3,73± O,328,18 ± O,76 268 343 O.281 -677

251 4.10± O.069.65 ± O.13 244 319 O.308 -470

610 3.93± O,82929 ± O,28 254 333 O.309 -612
Fe-Kct

142 421 ± O.4111,3 ± O.53 237 325 O,368 -706

232 4.31± O.0312.1 ± O,29 232 322 O.388 -841

212 4.06± O.107,98 ± 2,37 246 306 O,244 -966

Cr-Ka 330 3.84± O.4111.7 ± O.74 261 375 O.438 .1079

41] 4.38± O,159.88 ± 221228 295 O.292 -1025

V-Kct 411 422 ± O.119.88 ± O.25 237 309 O.306 -507

apto"o--EtixtAx4=llaj"cOos

6

5

4

3o.o

Si,N,,SN1

O.2 OA  O.6 O.8
       Cos2ip

 (a) (1+vft )IEA vs.  cos2 ¢

Fig. 1.

1.0

20

£
g  159'[laSLXxir,

 loHcO-

 1

5o.o

Si,N,,SNI

O.2 O.4 O.6

       COs  
2ip

  (b) vftIEII  vs.  cos2ip

Relation between X-ray compliances  and  cosiip  (Experiment).

O.81.0
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X-rayelasticcenstants
Ex,Vx

Self-consistentmodel
Ei･yk

Calculatingerror
ofE?(1+vk)

Initlat values,

   EZv'

Calculating Eo, vo

Renewal  c
      ij

Simplex  method

Fig, 2, Procedure foT determining elastic  constants  of

          single  crystal  silicon  nitride.

S2'12=(1+vA)/ E{ fbr all  the measured  diffractions is used
as  the  error  function. The  accuracy  of  the  experimental

data for SX is 1arger than that fbr Si', se the only  the S;
value  is adopted  in the  error  function, The simplex

method  is used  to reduce  the error function, New  yalues

of  the single crystal elastic constants  are obtained,  and

then the second  approximations  of  the mechanical  elastic

constants  of  polycrystals are obtained  by Voigt-Reuss
average  oT  Kneer's equation.  From  the second  approxi-

mations,  the X-ray  elastic  constants,  Ex  and  v.,  were

determined by Eqs, (1) to (7), Then, the X-ray elastic
constants  of  El and  vA are calculated  by  Eqs. (8) and  (9).
The simplex  method  is again  adopted  to reduce  the error
function, The  third approximations  of  the  single  crystal

elastic constants  are  obtained,  This calculation  loop is
repeated  until  te get the  minimum  value  of  the  error

function.

  The resutts  of  single  crystal  elastic  constants  obtained

by the simplex  method  are shown  in Table 4, together
with  the  data reported  by Hay  et al [5]. The poly-
crystalline  elastic constants  calculated  by Voigt-Reuss
average  or Kneer's equation  are also  shown  in the last
two columns,  The  c,, value  is larger than the the c.  yalue.

The  ratio  of  c33/c,,  is slightly  smaller  for the  case  of

Kr6ner's model.  The calculated  values  by Voigt-Reuss
average  and  Kr6ner"s model  are different from the data
reported  by Hay et al [5]. Especially, the ratio of  c3i/c,i is
smaller  fbr the present material.  The elastic constants  of

single  crystals may  be dependent on  the doping agents.
  Using the estimated  values  of  single-crystal  elastic

constants,  the Sr and  SI values  were  calculated  on  the
basis of  Voigt-Reuss and  Kr6ner's models  combined  with

the selficonsistent  model.  The changes  of Sr and  S2' with
cos2 ¢ aFe shown  in Fig. 3. Similar results obtained  using

the data by Hay  et al, are shown  in Fig. 4. In the figures,
the symbols  of  data are the same  as Fig. 1, As  seen  in
Fig. 4, the results calculated  by Hay's data are different
from the measured  values.  Hay`s data is not  applicable  to
the  present material.  For  Sr value,  the  difference

between model  predictions is very  small.  In Fig. 3, the
calculated  line for S2' by two  medels  are  identical, and
nicely  approximates  the measured  values.  For Sr value,

the  line calculated  based on  KrOner's model  gives the  best
approximation  to the  measured  data. The  variation  of  the

measured  values  of  Sr is larger than  the rneasured  values

of  $. More  precise measurements  are necessary  fbr Sr
values.

   Kr6ner's model  assumes  the grain shape  is spherical,
On  the  other  hand, real  grain shapes  of  P SiiN4 are
needle-like  with  the mean  aspect  ratio  of  4.2. In the
future study, the effect of  the aspect  ratio on  the elastic
constants  should  be taken into account  in KrOner's model,
and  also  the  accuracy  of  the  measurements  of  X-ray

elastic constants  need  to be improved, Still, the method

presented in the  present study  will  be  useful  for

measuring  single  crystal  elastic constants  of  the other
new  materials  such  as  nanocrystals,  where  single  crystal

samples  are  not  be available.

6. CONCLUSIONS

(1) The  X-ray elastic constants  of  pressureless sintered  6
Si,N, (SNI) were  experimentally  determined with  the

sin:v  method  for ten different difftactions by using  Kct
radiatien  of  Cu. Co, Fe, Cr and  V. The X-ray com-
pliances, (i+vl)/Ei and  vllEft (Ek =  Young's modulus,
vk  =  Poisson's ratio),  change  as a second  power function
of cos2 ¢ (ip =  angle  between the diffi/action plane normal
and  the  c-axis  of  hexagonal crystal).

(2) Using the simplex  method,  the elastic constants  of

Table 4. Elastic constants  of  fi Si,N, (SN1).

Model
CITSinglecrystalelasticconstant,GPaCT2 Ct3 C33 cag EoPolycrystal,GPa Vo

Voigt-Reussaverage413 173 60 553 122 350 O.245
KrOnermodel 439 166 142 494 106 330 O.282

Hayetal.[5] 343 I36 120 600 124 319' O.259
**O.259

318

***

***Calculated
 by  Voigt-Reuss average  model

Calculated by Krdner's model  (Kneer's equation)
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 5LajX>.SC+u411qLct)N

3o,o

Si3 N4 SN1

O.2O,4Cos
 
2

¢
O,6

(a) (1+vl)/EA vs. cos20

O,81,O

20

8Y
 15b--itLix>K>

 1011"-eq1

5e.o

Si3N4SNI

O.2O.4COs
 
2ipO,6

(b) vftfEl  vs.  cos'ip

O.81,O

Fig, 3. Relation between X-ray compliances  and  cos2¢ (Prediction).

6espto"sb

  5-.E,SctS.S4e9/Lct]pt

3o.o

Si3 N4  SNI

O.2O.4COs
 
iipO.6O.81.0

20

8P
 ls9

IajX.>
 101;--

℃

5o.o

Si3N4SNI

O.2O.4COsl
¢

O.6e.s1,O

(a) (1+vk)tEl vs, cos2 ¢ (b) vilEl  vs.  cos2 ¢

Fig. 4, Relation between X-ray compliances  and  cos2ip (Prediction based on  Hay"s data),

single  crystals  were  determined from the  measured

values  of  the diffi/action elastic constants  on  the basis of
Voigt-Reuss average  model  and  Krdner's model,  com-

bined with  the self-consistent  analysis  of  the effect of the
secondary  phases. The  estimated  results  of  fi Si3N4
showed  a  high stiffhess in the c-direction  of  hexagonal
crystals,  but the degree of  anisetropy  is not  so  larger as
the  whisker's  data reported  by Hay  et  al.
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