Technical note

Hardness and Fracture Toughness of Commercial Core Composite Resins

Hiromasa MIYAWAKI, Masayuki TAIRA, Hiroo TOYOOKA, Kunio WAKASA and Masao YAMAKI

Department of Dental Materials, Hiroshima University School of Dentistry, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan

Received October 12, 1992/Accepted April 9, 1993

One important mechanical property of core composite resins is fracture toughness, K_{IC} , which expresses serviceability in the oral cavity, such as the resistance to marginal fracture. K_{IC} values of eight commercial core composite resins were examined by the single-edge notched-beam (S. E. N. B.) method. Two composites containing about 80wt% Si₃N₄ fillers exhibited both the highest K_{IC} value of around 2.0 MN·m^{-3/2} and the highest hardness value. The other six composites containing 66 to 86wt% SiO₂-based fillers had K_{IC} values of around 1.2 to 2.0 MN·m^{-3/2}, and there was a tendency toward higher K_{IC} values as hardness increased. It was speculated that the clinical acceptability of core composite resins could be broadened, if dental clinicians selected composites with higher K_{IC} values.

Key words: Core composite resin, Hardness, Fracture toughness

INTRODUCTION

Endodontically treated teeth are usually re-constructed with post and core restorations^{1–3)}. Although metal cores are generally recognized as superior in durability and reliability, there exists a wide-spread trend toward increased usage of composite resin cores due to ease in handling and shorter chair time³⁾. The drawback of composite resin cores is, however, their weakness, leading to bulk fracture and interfacial separations between composite and metal screw and between composite and remaining teeth^{4,5)}.

Fracture toughness, K_{IC} , provides a quantitative measure of strain-energy absorption ability during structural deformation, or a measure of the resistance to brittle fracture⁶). The K_{IC} of composite resins is important in evaluating their usefulness. Although the K_{IC} of direct filling⁷⁻⁹ and indirect¹⁰ composites have been measured, there have been few studies in which the K_{IC} of core composites was examined.

This study, therefore, determined the K_{IC} values of eight commercial core composite resins and two core cements (as reference) by the single-edge notched-beam method. Knoop and Micro Brinell hardness were also measured. Furthermore, the fillers in the composites were investigated by thermogravimetric thermal analysis and X-ray diffraction.

MATERIALS AND METHODS

Materials

Table 1 lists the eight core composite resins and two glass ionomer-based cements used for core build-up that were examined in this study. The six chemically-cured composites and two

Туре	Sample code	
Chemically cured core composite	MC ^{@1}	
Chemically cured core composite	CL ^{@2}	
Chemically cured core composite	CC ^{@3}	
Chemically cured core composite	CM ^{@4}	
Chemically cured core composite	BC ^{@5}	
Chemically cured core composite	$\mathrm{HD}^{@6}$	
Visible-light-cured core composite	PC ^{@7}	
Visible-light-cured core composite	BL ^{@8}	
Glass ionomer-based core cement	$MM^{@9}$	
Glass ionomer-based core cement	CS ^{@10}	

Table 1 Eight commercial core composite resins and two core glass ionomer-based cements

^{@1} Microrest Core, GC Co., Tokyo, Japan (Lot No.: base=180991, catalyst=191211)

@2 Corelite, GC Co., Tokyo, Japan (Lot No.: base=300511, catalyst=071291)

^{@3} Clearfil Core, Kuraray Co., Osaka, Japan (Lot No.: universal= RU-1846, catalyst=RC-1743)

- @4 Core Max II, Sankin Kougyou Co., Tochigi, Japan (Lot No.: powder=229, liquid=218)
- ^{@5} Belfeel Core, Kanebo Co., Tokyo, Japan (Lot No.: universal= 1NJ9N, catalyst=1NJ9N)
- ^{@6} Belfeel Core HD, Kanebo Co., Tokyo, Japan (Lot No.: universal=19B10, catalyst=10B1D)
- ^{@7} Clearfil Photo Core, Kuraray Co., Osaka, Japan (Lot No.: 1154)
- ^{@8} Blue Core, Teledyne Getz Co., Ill. U. S. A. (Lot No.: 76070)
- ^{@9} Miraclemix, GC Co., Tokyo, Japan (Lot No.: powder=010812, liquid=271111)
- @10 Chelon-silver, ESPE Co., Germany (Lot No.: powder=0120, liquid=0026)

core cements were mixed with plastic spatulas on mixing pads, following the manufacturers' instructions, and, successively, filled into teflon molds, 4mm high×3mm wide×20mm long with two open longitudinal surfaces which were covered with slide glasses. The two visible-light-cured composites were directly condensed into the similar teflon molds, the two open surfaces of which were covered by plastic strips, and photocured with a visible light source*. The tip of the light source (5mm in diameter) was first located on one end of the specimen, and photo-cured for 40 s. Following the first photo-cure, the tip of the light source was moved 2.5mm toward the other end of the specimen and irradiated with visible-light. This step-wise photo-curing was repeated until the tip of the light source reached the other end of the specimen. The plate specimen was then turned upside-down, and successively photo-cured from the reverse side. After setting, surfaces of all specimens were metallographically polished to a final finish with 1500 grit sand paper. For each material, five samples were made. After determination of the K_{IC} , the plate specimens, broken into two, were used for hardness measurements.

^{*} Quick Light, Model VL-1, Morita Co., Kyoto, Japan.

64 FRACTURE TOUGHNESS OF CORE COMPOSITES

Fracture toughness measurements

Fig. 1 shows the sample configuration and loading condition for three-point-bending test, by which K_{IC} values were determined. A notch, about 0.3mm wide and 1.6mm deep, was carved at the center of the long axis of the specimen, using a dental diamond disk* driven by a dental micro-engine[#]. The flexure tests were performed in a universal testing machine^{##} at a crosshead speed of 0.5mm/min. K_{IC} was calculated by the following formula⁶.

 $K_{IC} = 3PL/2BW^2 \cdot a^{1/2} \cdot \{1.93 - 3.07 \ (a/W) + 14.53 \ (a/W)^2 - 25.11 \ (a/W)^3 + 25.80 \ (a/W)^4 \}$ Where a = depth of the notch (mm)

W = height of the specimen (mm)

B = width of the specimen (mm)

L = span of the specimen (mm)

P = breaking load (N)

Hardness measurements

Knoop hardness, Hk, was measured by indenting the surface of the specimen at a load of 9.8 N (1 kgf) for 30 s with a microhardness tester[®]. Micro Brinell hardness, MBH, was determined by pressing the surface of the specimen with a steel ball indenter, 5.0mm in diameter, at a load of 5 kgf for 30 s with a hardness testing machine^{®®}. For each material, five hardness measurements were taken.

for three-point-bending test, which measured fracture toughness, K_{IC} , using the single-edge notched-beam method.

^{*} Gemflex thin, Jelenco Co., N.Y., U.S.A.

[#] Volver 8, Nakanishi Dental Machine Co., Tochigi, Japan

^{# #} Autograph, Shimadzu Co., Kyoto, Japan

[@] HMV-2000, Shimadzu Co., Kyoto, Japan

^{@ @} Mori Testing Machine Co., Tokyo, Japan

MIYAWAKI et al.

Characterization of fillers

To determine the inorganic filler contents in set core composite resins, thermogravimetric thermal analysis (TG) was performed with a thermal analyzer^{\$}, under the following experimental conditions: sample weight, $20\pm1\,$ mg; reference material, *a*-alumina; TG sensitivity, 20mg; heating rate, 5°C/min; temperature range, room temperature to 800°C; and atmosphere, air under a flow of 30 ml/min N₂. The weight of the composite specimen at 575°C was recorded here as the filler content with relative accordance to international standard¹¹.

The composite resin paste was dissolved in acetone and centrifuged, the liquid was removed, and the residue was freeze-dried. To identify the phase of the inorganic filler, X-ray diffraction (XRD) analysis of the extracted fillers was performed with a diffractometer^{\$ \$}, under the following experimental conditions: diffraction beam, Cu•K_{α} ray; accelerated voltage, 30 kV; current, 10 mA; scan rate (2 θ /min), 2°/min; and scan range (2 θ), 10 to 50°. The phase of the filler was labelled by matching with J. C. P. D. S. (Joint Committee on Powder Diffraction Standards) files¹².

RESULTS

Fig. 2 indicates the K_{IC} of eight core composites and two core cements. Three composites (CM, BC and HD) demonstrated the maximum K_{IC} at around 2.0 MN·m^{-3/2}, followed by those of three composites (CL, CC and PC), while two composites (MC and BL) showed the minimum K_{IC} at around 1.2 MN·m^{-3/2}. The two core cements (MM and CS) had much smaller K_{IC} values at around 0.6 MN·m^{-3/2}, one third to one half those of core composite resins.

resins and two core cements.

NII-Electronic Library Service

^{\$} DT-30, Shimadzu Co., Kyoto, Japan

^{\$ \$} Geigerflex D-2, Rigaku Co., Tokyo, Japan

66

FRACTURE TOUGHNESS OF CORE COMPOSITES

Fig. 3 shows the Hk and MBH hardness of the eight core composites and two core cements. The two hardness values were basically analogous to each other, although there were larger variations in the Hk data. One composite (HD) was the hardest with an MBH of about 68, four composites (CL, CM, BC and PC) belonged to the group with the second highest MBH score ranging from 30 to 40, while three composites (MC, CC and BL) and the two core cements (MM and CS) were in the softest group with MBH values between 20 and 30.

Table 2 summarizes the contents and main phases of fillers in eight core composite resins. The phase identification of the fillers in two composites (MC and CL), presumably labelled as SiO_2 -based glass+BaO, is still under confirmation. The filler content of MC was the smallest, at around 66wt%, while those of CL and BL exceeded 80wt%. Three composites (CC, CM and PC) contained quartz fillers with concentrations of 74 to 87wt%. Two composites (BC and HD) had Si₃N₄-based fillers with contents of around 80wt%.

ness, MBH, of eight core composite resins and two core cements.

Sample code	Content at 575°C (wt%)	Main phase
MC	65.64 ± 1.13	Glass+BaO (?)
CL	80.03 ± 1.97	Glass+BaO (?)
CC	81.35 ± 1.78	Quartz
CM	73.66 ± 1.04	Quartz
BC	81.45 ± 0.07	$\rm Si_3N_4$
HD	79.28 ± 1.22	$\mathrm{Si}_3\mathrm{N}_4$
PC	86.53 ± 0.13	Quartz
BL	84.28 ± 0.65	Glass

Table 2 Contents and main phases of fillers in eight core composite resins

MIYAWAKI et al.

DISCUSSION

The single-edge notched-beam method is a popular way to determine the K_{IC} of core composite resins⁷⁻¹⁰. Considering the K_{IC} values of natural enamel (at around 1.0 MN• m^{-3/2})^{13,14}) and those of natural dentin (at around 3.0 MN•m^{-3/2})¹⁵), it was noted that K_{IC} values of commercial core composites lie between those of enamel and dentin. To reduce the likelihood of brittle fracture or marginal fracture under tension of core composites, selecting composites with a higher K_{IC} value, such as one of the two composites containing Si₃N₄ fillers or one of those containing SiO₂-based fillers with a high filler content of more than 80wt%, is recommended.

Yamauchi *et al.*¹⁶⁾ already reported the Hk hardness of core composite resins. Our data were consistent with theirs. Hardness of all core composites and cements examined were comparable to, or lower than, those of natural dentin (Hk of about 60). Hk hardness readings had larger data variation, compared with those of MBH hardness. This might be attributed to the fact that the indenter of the latter hit larger and more homogeneous areas including both filler and resin matrix. Although Yamauchi *et al.*¹⁶⁾ found a linear correlation between filler content and Hk, we could not obtain the same results. However, we noticed a weak linear correlation between MBH hardness and K_{IC} values (linear correlation coefficient, r = 0.742). The reason for this is not clear. It appears that not only the filler content¹⁷⁾ but also the resin matrix plays a significant role in determining both hardness and K_{IC} .

The two core cements had very low K_{IC} values. When selecting core cements, dental clinicians must consider advantages other than mechanical properties, such as anti-cariogenic action from the delayed release of fluoride ions or strong radiopacity from metal ingredients.

ACKNOWLEDGMENT

The authors wish to express their deep appreciation to the manufacturers of eight core composite resins and two core cements for providing their products.

(This study was supported in part by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science and Culture, Japan (A) -04857237.)

REFERENCES

- 1) Landwerlen, J. R.: The composite resin and cores, J Prosthet Dent 28: 500-503, 1972.
- 2) Fedrich, D. R.: An application of the dowel and composite resin core technique, *J Prosthet Dent* **32**: 420-424, 1974.
- 3) Baraban, D. J.: The restoration of endodontically treated teeth: An update, J Prosthet Dent 59: 553 -558, 1988.
- 4) Moll, J. F. P., Howe, D. F. and Svare, C. W.: Cast gold post core and pin-retained composite resin bases: A comparative study in strength, *J Prosthet Dent* 40: 642-644, 1978.
- 5) Noguchi, H.: Bonding strength and durability of composite resin cores and bonding agents, *Dental out look* **70**: 1265-1280, 1987. (in Japanese)
- 6) Shih, T. T. and Opoku, J.: Application of fracture mechanics to ceramic materials-A state-of-the-art review, *Engng Fracture Mech* 12: 428-498, 1979.
- 7) Feraccane, J. L., Antonio, R. C. and Matsumoto, H.: Variables affecting the fracture toughness of

68

FRACTURE TOUGHNESS OF CORE COMPOSITES

dental composites, J Dent Res 66: 1140-1145, 1987.

- 8) De Groot, R., Van Elst, H. C. and Peters, M. C. R. B.: Fracture mechanics parameters for failure prediction of composite resins, *J Dent Res* 67: 919-924, 1988.
- 9) Kondo, S., Ohkawa, S., Sugawara, S. and Ohta, M.: Fracture toughness of composite resins by three-point-bending, J J Dent Mater 6 (Spec. 9) : 171-172, 1987. (in Japanese)
- 10) Fujishima, A., Miyazaki, T., Aoyama, M., Suzuki, E. and Miyaji, T.: Fracture toughness of composite resin inlay, *J J Dent Mater* 10: 137-145, 1991. (in Japanese)
- 11) I. S. O.: Resin-based dental filling materials. ISO 4049. International Organization for Standardization, Geneva, Switzerland, 1979.
- 12) J. C. P. D. S.: Hanawalt (d-spacing) listings. In: Inorganic index to the powder diffraction file. *Joint Committee on Powder Diffraction Standards*, Pennsylvania, U. S. A., 1971.
- 13) Hassan, R., Caputo, A. A. and Bunshah, R. F.: Fracture toughness of human enamel. J Dent Res 60: 820-827, 1981.
- 14) Taira, M., Nomura, Y., Wakasa, K., Yamaki, M. and Matsui, A. : Studies on fracture toughness of dental ceramics, *J Oral Rehabil* 17: 551-563, 1990.
- 15) EL Mowafy, O. M. and Watts, D. C. : Fracture toughness of human dentin, *J Dent Res* **65**: 677-681, 1986.
- 16) Yamauchi, M., Cho, E., Iwahori, M., Koda, T. and Kawano, J.: Basic studies on cutting of composite resin cores, *J Japan Prosthodont Soc* 33: 1350-1358, 1989. (in Japanese)
- 17) Yamada, T., Hosoda, H. and Tsurugai, T. : Classification and several mechanical properties of core composite resins, J J Dent Mater 9: 205-217, 1990. (in Japanese)

結果,1日目では,GIC へ HY 剤を1.5%配合すること によって,接着強さを向上させることができた。経時的 には,いずれの配合割合のものでも接着強さは低下し, HY 剤を配合したものも,しないものでも,各配合割合間 での差は認められなくなった.フッ化ジアンミン銀の併用によってGICの接着強さは向上し,HY0およびHY1.5では,経時的な接着強さの低下も防止できた.

微小圧子圧入法による歯科用陶材の疲れ寿命の推定

S. M. Akkas Ali

徳島大学歯学部歯科理工学講座

Radial Crack の,水中及び大気中での,成長速度を測定することにより,炉冷,空冷した歯科焼付用歯冠色陶材の疲れ寿命を推定した.測定した Crack は Vickers 圧子を 9.8 Nの荷重で陶材表面に圧入して導入した.応力腐食係数 n は crack 長さを 5ヶ月まで測定して求めた。計算された n 値から,陶材の使用応力の評価を試みた.その結果,炉冷後,水中保存したガラス質及び長石系陶

材の使用応力は,寿命が10年以上になるためには,その 破壊強さの47,69%であると計算された.風冷強化(空 冷)した陶材では,それぞれ58,67%であった.以上の ことから,風冷により導入された残留応力はガラス質陶 材の使用寿命を伸ばすのには有効であるが,長石系陶材 では有意な違いが生じないことが明らかになった.

直接的な観察法によるコンポジットレジンの口腔内磨耗像

岡本 明, 関矢一仁, 福島正義, 子田晃一, 岩久正明 新潟大学歯学部歯科保存学第-教室

本研究の目的は、コンポジットレジンの磨耗を口腔内 で評価するための簡便な方法を開発し、磨耗の進行過程 で果たすフィラーの役割を明らかにすることである。2 種類の異なるフィラーシステム、81 wt%の粉砕フィラー (従来型)及び73 wt%の有機複合フィラー (MFR型), を有する試作光重合型コンポジットレジンが用いられ た.なお、試作レジンには、Bis-GMA (50 wt%)と TEGDMA (50 wt%)からなるレジンモノマーが用いら れた。Au-Pd 合金製クラウンの咬合接触部 (OCA)と非

接触部 (CFA) に設けた直径 2 mm の円筒形窩洞に試作 レジンを充填し、ボランティアの口腔内にクラウンを仮 着した. クラウンは 1 月毎に撤去され、SEM による連続 的観察が行われた. その結果,新しく開発された方法は, コンポジットレジンの口腔内磨耗パターンの観察に有用 なことが明かとなった. また,異なるフイラーシステム を有する試作コンポジットレジンは,著しく異なる口腔 内磨耗パターンを示した.

市販コアー用コンポジットレジンの硬さと破壊靱性値測定

宮脇博正,平 雅之,豊岡博夫,若狭邦男,山木昌雄 広島大学歯学部歯科理工学講座

8種類の市販コアー用コンポジットレジンと2種類の 市販コアー用グラスアイオノマーセメントについて、片

側切り欠き試験片(S.E.N.B.法)による破壊靱性値 (K_{1c})測定を行った.また, Knoop 硬さと Micro Brinell

91

92

硬き測定を行った. その結果, Si₃N₄を 80 wt%程度含有 する 2 つのコンポジットレジンが最大の K_{Ic} 値(=約 2.0 #MNm^{-3/2})と最大の硬さを有することが判明した. 他の 6 種類のコンポジットレジンは 66 から 86 #wt%の SiO₂ 系フィラーを含有し,硬い試料程大きな K_{Ic} 値(1.2 から 2.0 $MNm^{-3/2}$) を有する傾向を示した. 2 種類のコ アー用セメントの $K_{\rm lc}$ 値は, コアー用コンポジットレジ ンの半分以下であった. これらの材料を臨床応用する際 には, 縁端部の破折等を防止する目的で, 高めの $K_{\rm lc}$ 値 を有する材料を選択すべきことが示唆された.

歯科用接着剤含有 Methacryloyloxydecyl Dihydrogen Phosphate (MDP)と りん脂質リポソーム相互作用の NMR スペクトロスコピー研究(続報)

藤沢盛一郎, 菰田泰夫1

東京医科歯科大学歯学部総合診断部 ¹東京医科歯科大学医用器剤材研究所

MDP がりん脂質リポソームとどのように相互作用す るかを見出すために,DPPC/MDP リポソーム及びジラ ウロイルフォスファチジルエタノールアミン (DLEA)/ コレステロール (CS)/MDP リポソーム両系の NMR ケ ミカルシフトの変化を pH 7.0 で研究した.この結果 DPPC 系でリポソームの流動化を伴って MDP の¹H 遮 蔽が見られた.DLEA/CS 系で MDP の¹H シグナルは飽 和して観測できなかった。一般にイオン化する化合物は りん脂質2重層より成る生体膜を透過しにくい。本研究 から,pH7.0でイオン化した MDP のリポソーム相互作 用が大きいことが明らかになった。これは MDP 分子中 のデカメチレングループとりん脂質のアシル鎖との疎水 性相互作用に起因すると推察された。