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ABSTRACT

To drain or to reserve? That is the question discussed in this paper. The capacities of drainage
and storage facilities are determined to minimize the total cost under the condition that chances of flood-
ing do not exceed a tolerable level, This paper presents a pilot work to derive an analytical expression
of the chance constraint for a flood contro! system with a storage facility.

1. INTRODUCTION

Storage facilities have assumed a major role in flood control planning. As an example,
the design flood discharge of the Neya River system, one of the most intractable urban rivers in
Japan, is shown in Fig. 1. On the average, in this system, 25% of the peak discharge is handled
by pumps, and another 25% by detention reservoirs (detention parks). These percentages, how-
ever, vary from one area to another within the system. For example, upstream on the second
Neya River, the peak discharge is released through the river channel at the rate of 100 m*/sec,
and is stored in the Onji River detention park at 240 m®/sec. Therefore, in this particular area,
up to 709 of the peak discharge is stored in the storage facility. The Neya-Ohkawa River system
(the old Yodo River system) presents another example of storage. All three of the large gates
at the river mouths can be closed against storm surge. With all the gates closed, a large portion
of the storm rainfall must be stored in the basin, some of it being pumped out. This trend of
giving an increasingly major role for storage facilities is seen in flood control planning for most
major rivers as well as for urban river networks in Japan.

If a flood is to be contrelled only by a drainage facility such as a channel or a drainage pump,
the facility must be designed so that the chance of the peak discharge of a flood exceeding the
drainage capacity stays within a given risk level. Thus, the capacity of a drainage facility is based
on a frequency analysis of the *“peak discharge” of floods. By contrast, if a storage facility alone,
such as a dam, or a detention or underground reservoir, is responsible for the control of floods,
its capacity must be large enough to store the total volume of the runcff. Therefore, it should
be evaluated through a frequency analysis of the ‘“total runoff”’. Consequently, when both drain-
age and storage facilities are used, the risk in a flood control system may be reasonably evaluated
from the joint frequency distribution of the “peak discharge’ and the ‘“total runoff” of a flood.
The capacities of the drainage and storage facilities then can be determined taking into account
both the risk and the total cost.

Footnote: Most of this work was presented at the 4th JAHR International Symposium on Stochastic
Hydraulics [1].
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Note: Discussion open until 1 December, 1985
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Fig. | Design flood discharge of the Neya River system (m?/s)

Using joint frequency distribution, the authors derived an expression for the contour of risk
on a plane on which the lateral and vertical axes represent the respective drainage and storage
capacities (Fig. 2). Hereafter, this contour will be called the “equi-risk line”. On this plane,
the chance constraint is defined as the lower area to the left of the equi-risk line (Fi.g 2).

Expressions of the equi-risk line are derived for two types of flood control systems: (1) a
single storage facility and a single drainage facility (module 1 in Fig. 3), and (2) a single storage
facility and two drainage facilities (module 2). A theoretical analysis of the equi-risk line for
module 1 is presented here. Analysis of module 2 has been presented elsewhere in Japanese
[2] and is not given in this paper because of its complexity and the limitations of space. Its re-
sults, however, are a straightforward extension of the results for module 1, and are rather simple and
practical. So, the final result is presented later in “Additional Comments™.

The results of the theoretical analysis for module 1 are applied to risk-evaluation in flood
control by an actual detention reservoir. The application proves the validity of the presented

analysis.
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Fig. 2 Schematic explanation of an equi-risk Fig. 3 Modules of flood control systems
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2. THEORETICAL ANALYSIS

Fundamental Equations
a. Definition of the Equi-Risk Line

Let y, denote the drainage capacity and z, the storage capacity. Let 1 and ¢ be the re-
spective average annual frequencies of flood and of failure in flood control. Then, ¢ or ¢/2 is
the risk level. If the risk level is constant, when y, is sufficient, z, may be small or even non-existent.
The converse is also true; a small drainage capacity y, requires a large storage capacity z,. From
this, we can assume the functional relation between y, and z,

G(yo, 20) = ¢ or G(yo, 29) = €/2. )

This equation represents the equi-risk line.

Typical examples of release rules for a storage facility are shown in Fig. 4: They are the
constant release rule, the constant-ratio release rule and their combined rule. We shall derive
equations of the equi-risk line for the constant and constant-ratio release rules.

b. Constant Release Rule

Let y, z, and z’, respectively, denote peak discharge, total volume and the total volume of
discharge that exceeds the drainage capacity y,, The average annual frequency with which the
peak discharge y exceeds y, is expressed as

{I=Fu(y0} 2 @

in which F, is the cumulative distribution function (c.d.f.) of the peak discharge, y. When y>
¥o, some discharge must be cut or stored in a storage facility. The probability that, subject to
¥>,, the storage facility becomes full and fails to control flooding is expressed as

{1 —-Fx(z0)| v>v0} 3

q

™t

Fig. 4 Typical patterns of the release rule
(a) Constant release rule
(b) Constant-ratio release rule
(¢) Combined rule of (a) and (b)
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in which F/(z")| 4>y, is the c.d.f. of z". Therefore, the equation of the equi-risk line is
{I=Fy(y} 2 {1 —Fz'(zo)|y>yo} = €. @
In Eq. (4)

1—Fy(y)) = Prob (y>,),
I—Fz’(zo)|y>vo = Prob (z'>2z,| y> y,)
= Prob (z">z,N y> 3o)/Prob (> y,) . &)

Substituting (5) in (4),
Prob (z'>z,Ny>y,) = €/A. ©)

When the peak discharge y is less than the drainage capacity y,, no water is stored in the
facility when the constant release rule is applied. Thus,

Prob (z'>z,Ny=y,) = 0.
Therefore,

Prob (z'>z,)
= Prob (z’>z,N y> yo)+Prob (z'>z,Ny = y,)
= Prob (z'>z,Ny>y,) . _ ™

Substituting (7) in (6), the equation for the equi-risk line is reduced to
Prob (z'>z,) = ¢/A. ®

Eq. (4) or (8) is the fundamental equation of the equi-risk line for the constant release rule.

We shall discuss some special cases. Let y% represent the capacity of a drainage facility when
there is no storage facility and floods are controlled solely by means of the drainage facility. Then,
2o=0 and F;(z¢)| y>y,=0, and eq. (4) is reduced to

1-F,(»%) = €/2. ®

Eq. (9) shows that y¥ can be estimated easily using the c.d.f. of the peak discharge without
any information about the joint distribution of the peak discharge and the total volume of runoff.
Similarly, the capacity of a storage facility z§ which is necessary to control a flood solely by storage
without drainage can be estimated using only the c.d.f. of the total volume of the runoff. There-
fore, the equi-risk line for the constant release rule begins or ends at two points (¥, 0) and
(0, z¥, which can be easily spotted only if the risk level and the c.d.f.s of the peak discharge and
of the total volume are given individually. Then, all we have to do is to derive the expression
of the equi-risk line between the two points.

c. Constant-Ratio Release Rule

Let a denote the rate of discharge from a storage facility. We shall assume that a is con-
stant. The peak release discharge and the total volume of water to be stored then are expressed
as ay and (1-a)z. When ay>y, or (1—a)z>z, the system fails to control flooding. The
failure probability is

Prob {ay>y,U(l —a} 2>z}
= 1—Prob {ay<y,N(1—a) z<z,}
= 1—Prob {y<ylJanz<z/(1—a)}. (10)
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Fig. 5 Triangular hydrograph

Therefore, the equation of the equi-risk line is

{1-Fu.(yo/a, z/(1—a))} 2 = ¢ an
in which Fy,(y, z) is the joint c.d.f. of the peak discharge y and the total volume of the runoff
z. Eq. (11) is the fundamental equation of the equi-risk line for constant-ratio release rule.

Triangular Hydrograph
a. Expression for Partially-Correlated x and y

Proceeding further with the analysis, we assume that the hydrograph of each flood can be
approximated by a triangular shape (see Fig. 5). The duration of some floods may be long and
others short, and some floods may have high peaks, others not. Therefore, let both the duration
x and the peak discharge y of a flood hydrograph be stochastic variables. The combination of
the values of x and y realizes hydrographs of various shapes, such as flat or sharp ones, under a
given probability law.

We assume the constant release rule in the following analysis. In Fig. 5,

2/ =12k x (y—yoP[y . (12)
Therefore, the condition z’ >z, becomes
x>2[kyezo* yI(y —yo)* . 13)
Then, eq. (8) is represented in terms of x and y with the parameters y, and z,:
Prob {x>2/k,zo-y/(y — yo)*} = ¢/A. (14)

On the y,—z, plane, the domain represented by (13) is the hatched area shown in Fig. 6.

y A
Yy ¢
v -
Z'=Zo=const.
A »
O -

2Zoylky[(y=-yo)* X

Fig. 6 Domain of integration for Module 1
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Therefore, the equation of the equi-risk line is

I et dxdy = e (15)

0

in which g(x, y) is the joint probability density function of x and y, and
a = 2/kyzo*y/(y—0)* . ae)

Consequently, if the joint probability law of duration and peak discharge of a flood
hydrograph is provided, the equation of equi-risk line is specified by the integration of the joint

p.d.f.

To outline the basic characteristics of an equi-risk line, we shall derive the equation of equi-
risk line for two extreme conditions:
1) duration x and peak y are linearly and perfectly dependent (or proportional), and
2) x and y are independent.
Usually, x and y are partially dependent. Thus, the equi-risk line for a general condition may
lie between the lines depicted for the two extreme conditions.

b. Linearly Dependent x and y
Peak y is proportional to duration, x. Thus,

y=kx 17)
in which k, is a constant.
Substituting (17) in (14),
Prob {x>2/ks*zo=ky x/(kes x— yo)*}
= Prob {x>yolki+v 2z,/(k, k) }
= 1-Fdylkitv 2zl k) } = €/ (18)
Therefor,
yolka+v 22k, k) = ¢ (19)
in which
¢ = F;' (1—¢/2) = Const.
After some arithmetical manipulation, eq. (19) is reduced to
zo/28 = {(V§—yoy8}* (20)
in which
Ve =kyc,z§ = 1[2-k ks .
Eq. (20) shows that an equi-risk line for linearly dependent x and y is precisely a quadratic para-

bola as shown in Fig. 7, regardless of the type of distribution of the durations or of the peak dis-
charge of the hydrographs.

c. Independent x and y,

When y is independent of x, no explicit solution of the equation of the equi-risk line can be
derived. Thus, some numerical calculation is unavoidable to make clear its characteristics. To
reduce the number of cases required for analysis, we shall additionally assume that both the
duration x and the peak discharge y are exponentially distributed, an assumption which should
be accepted as realistic. Then,
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Fig. 7 Equi-risk line for linearly dependent x and y and
for the constant release rule

g(x,y) = £00)-fy(»)
fo(x) = B, exp (— B, %)
f,(») = By exp (=B y) @n

in which 3, and #y are scale parameters of x and y.
Substituting (21) in (15), and nondimensionalizing it,

[ exo [—tn+ Zenitr— Yo dn = efa @
0
in which Y, and Z, are the respective dimensionless drainage and storage capacities, i.e.,

Zy= 2P zo/(k1 k2), Yo = ByYe, 7= Fuy.

Eq. (22) is the dimensionless expression of the equi-risk line for independently and exponen-
tially distributed x and y.

By differentiating (22) with respect to Y,, the derivative dZ,/dY, is derived. The authors
have shown that [3] .

() dz,/dY,=0at (Y% 0) and
2 dZy,/dY,<0at (0, Z%.

(1) indicates that an equi-risk line is in contact with the Y,-axis, and (2) shows that the line
intersects with the Zj-axis at a negative inclination. These results predict that the shape of an
equi-risk line for independently and exponentially distributed x and y may be similar to that for
linearly dependent x and y which is expressed by eq. (20) or in Fig. 7. Thus, the authors have pro-
posed the following approximate expression for the equation of the equi-risk line for independent
x and y;

Z)Z§ = {(Y§-Y)/Y§} or
zo/z§ = {(V5—y)/¥5}° . (23)

Equi-risk lines can be drawn from numerical calculation using (22). An example of the nu-
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Fig. 8 Comparison of exact and approximate expressions
((22) and (23)) for independent x and y

Table 1. s for various risk levels estimated by
the Least Squares Method

e/ s
1/10 2.974
1/100 3.039
1/1000 3.288
1/10000 3.172

merical calculation is shown with a solid line in Fig. 8. Other lines in the figure represent the ap-
proximate expression (23) for s=2, 3 and 3.5. This indicates that eq. (23) can approximate the
exact expression (22) when s=3. The values of s estimated by the least squares method for vari-
ous risk-levels ¢/2 are shown in Table 1. It is clear from the figure and the table that the equi-
risk line for independently and exponentially distributed x and y is approximated by a cubic par-
abola, which leads us to the conclusion that (1) an equi-risk line can be approximated by a simpel
expression (23), and (2) that s=2 to 3 for general conditions.

3. ESTIMATION OF ‘s’ FROM OBSERVED DATA

The authors proposed a practical procedure to estimate the value of s from observed
hydrographs or hyetgraphs. Logarithmic transformation of (23) leads to

log (zo/z%) = s-log {(¥§—y0)/¥5} . 29

In eq. (24), y% and z§ can be estimated individually from the probability distributions of
peak discharge and total runoff volume. Therefore, if a pair of values, y, and z,, are given, s
can be estimated by substituting the values of (4, z§) and (3, zo) in eq. (24). Practically, the
following procedure is useful for estimating s.

a. Selection of Flood Hydrographs
1) Set the threshold discharge yg.
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2) 1If the observed discharge ¢’ is equal to or less than yg, discharge ¢ at that time is set to zero.

And if ¢'>ys, g=¢'—ys>0.

It is recommended to set yg so as to keep the number of flood hydrographs at a suitable nu-
mber, say, about one hundred. A hydrograph in which the peak discharge is greater than ys is
regarded as a flood hydrograph. Then, y=y”— yg, in which y” is an actually observed peak dis-
charge. If the number of hydrographs selected is &, we have N sets of observed data for y and
z’.

Note that equi-risk lines drawn from the transformed discharge data should be moved parallel

to the ys-axis by ys,

b. Estimation of y¥ and z§

1) Fix the risk level ¢/1 at some level.
2) Estimate y¥ and z§, where

¥4 = Fy'(1—¢/2), and z§ = F;}(1—¢/2). 25)

¥% can be estimated either by parametric statistical analysis of the observed peak discharge
data, as shown in eq. (25), or by graphic analysis such as Weibull plotting of the data on pro-
bability paper.
¢. Sets of y,and z,
1) Fix y,.
2) Select hydrographs of which peaks are greater than y,.
3) Calculate z’, the total volume of discharge that exceeds y,, for each selected hydrograph.
4) Estimate z, for the given y, and ¢/1” from '

2o = F7/(1—¢/2) (26)

or from Weibull plot of z/. 1’ is defined by eq. (27) and (28).
The shift of y, in steps and the repetition of procedures 1) to 4) produce sets of values for y, and
Zy.
d. Estimation of ‘s’
1) Plot a point at {(J&— yo)/¥%, zo/z§} on full-log paper for each set of ), and z,.
2) Then, the value of s can be estimated as the gradient of a straight line fitted to the points.
The proposed procedure seems complicated when explained in words, but in fact it is not.
Readers will find the whole procedure straightforward after actually tracing it once using ob-
served data.
We have applied this procedure to discharge and precipitation sequences. The values of s
obtained in the applications range from 1.5 to 4. Taking into account statistical errors, these
results support the theoretical prediction that the value of s should be between 2 and 3.

4. APPLICATION

The Basin and the Data

The proposed procedure was applied to a flood control system with a detention reservoir
(Fig. 9). The hourly rainfall sequence recorded from Jan. 1974 to July 1983 (9.54 years) was
tyansformed into a discharge sequence through runoff analysis and used as the basic data. The
threshold yg was set at a discharge level corresponding to 5 mm/hr of rainfall intensity. Eighty-
four flood hydrographs then were selected.
Analysis

The plot of the peak discharge is shown in Fig. 10. Similar plots had to be made for the
total volume z, and for the total volume of discharge exceeding ¥, i.e., z’, for some levels of y,.
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Fig. 9 Model of an existing flood control system with a
detention reservoir

Let 7 denote the average recurrence interval of failure of flood control. When T is sufficient
and the drainage capacity is y,, the frequency of failure is expressed as:

e=1T=X-p @n

in which 1’ is the average frequency of floods exceeding y,, and p is the frequency at which the storage
facility becomes full and fails to control a flood exceeding y,. Therefore,

N =NI[T,, p=1/Q T)=¢ell (28)

in which N’ is the number of floods exceeding y, and T, is the peirod of observation of discharge
or precipitation.

The values of z” that correspond to the exceedance probability p represent the storage capa-
city z, for the risk-level 1/T.

A plot such as that in Fig. 10 and a value for z, can be obtained for each level of y,; therefore,
the same number of points as the number of y, levels are plotted on full-log paper for each risk
level 1/T (see Fig. 11). The value of s is estimated from Fig. 11.

N
O Zg log((-)iy)
zgo T=5

(:02/°z)Bo]

5S=2 34

N ygu yo

Fig. 10 Example of a frequency analysis using Fig. 11 The estimation of ‘s’
Weibull plot (peak discharge)
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In the case presented, s ranges from about 3 for T=35 to 4 for larger T values. Thus, s is
fixed at 3.5 for all 7 values in the following analysis. Fig. 11 proves the validity of the theory with
it’s close agreement between the points and eq. (23) (solid line, s=3.5).

Equi-Risk Lines

The resulting equi-risk lines are shown in Figs. 12 and 13. Fig. 12 gives the equi-risk lines
for the present state of the basin. In the near future, urbanization may encroach on the low-
lying paddy fields and hillside forest and cause an increase in the runoff discharge. Therefore,
for the future state of the basin, larger facilities should be installed to keep the flood risk within
a specified tolerable level, as shown in Fig. 13.

In these figures, the 1st, 2nd and 3rd stages represent the staged capacity expansion of the
drainage and storage facilities. For example, point B in Fig. 12 represents the state in which
first-stage constructions of both the drainage and storage facilities are complete, and point C the
state in which the second-stage capacity expansion of the detention reservoir is complete. A
decision-maker can easily ascertain from these figures the shifting of risk-level associated with
each capacity expansion, the proper final capacities, and even the preferable sequence of capacity
expansions, by jointly considering the economic, environmental and political conditions.

Some Considerations

a. For the Present State of the Basin

1) When the first capacity expansions of the drainage channel and the detention reservoir are
completed, the risk level will fall to about 87, per year (T=13).

2) To keep the risk level at about 19, (7=100), there are two alternatives; expand the drainage
channel to its second stage (full capacity) or expand the detention reservoir to its second stage.

3) Expansion of both facilities to their second stages (E) or to their full capacities (D) would be
excessive at present.

b. For the Future State of the Basin
1) First-stage expansions are not safe because the values obtained for T are less than 5 years.

y() Yo
3rd -l-?--QD 3rd |-
' !
b : Data :1974-1983.7 :1974-1983.7
! 1
‘ 11— 15235 :5:35
' 1 '
ot eme=15:20 :5=2.0
[} 1
P
P
i t
[y 1
XY 1
URY '
(]
2ndi- v C_\‘ E 2nd |-
I
\
R
)
1 ‘\
Isti-r \ 1st } .
' :/0 \\ \\
1 ‘. J‘\&\\\\ ‘\\
LAl S —a [ap \\_\ e
Yg Ist 2nd Stage Z, Yg Ist  2nd . Stage Zo

Fig. 12 Equi-risk lines and risk evaluation for  Fig. 13 Equi-risk lines and risk evaluation for
the present state of the basin the future state of the basin
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2) Expansion of both facilities to their second stages (E) must be completed before the basin
becomes fully developed.

5. ADDITIONAL COMMENTS

Optimum Capacities

Estimation of construction costs for a drainage facility of capacity y, and a storage facility
of capacity z, is not as difficult as the evaluation of risk. Therefore, equi-cost lines can easily
be drawn on the y,~z, plane. Connecting the contact points between the equi-risk and equi-
cost lines produces a curve that represents the optimum capacities of the drainage and storage
facilities, for the case where flood risk and construction cost are substantial.
Simplest Procedure for Drawing Equi-Risk Lines

The value of s ranges approximately from 2 to 3, and, as in Figs. 8, 12 and 13, s=2 gives a
safety-side or conservative estimation of an equi-risk line. Therefore, the following simple
procedure can be applied to the actual design, for which some allowance is usually required.
1) Estimate y§ and z§ for a given risk level.
2) Connect (¥4, 0) and (0, z¥) simply with a quadratic parabola.
Hydrograph Equivalent to an Equi-Risk Line

A hydrograph equivalent to the equi-risk line represented by (23) is shown in Fig. 14. The
volume of the area exceeding y, in the hydrograph is equal to z,. In the mathematical expre-
ssion, the discharge rate y is expressed in terms of time z, as follows:

y = yg—c|c|/ED - 29)
in which
¢ = YA [z)"/C™D, 7| S1o, o = 8/2-25/V5 .

When s=2, the equivalent hydrograph is triangular. When s=3, it is represented by two
horizontal quadratic parabolas which face each other. Since s=2 gives a safety-side approxima-
tion, a triangular hydrograph with a peak discharge of y§ and a total volume of z¥ (thus, r,=2z¥/y%)
can be used in practical designs.

Module 2

The authors have derived an approximate expression of an equi-risk line for module 2 in
Fig. 3 [2]. The derivation is complicated, but the derived expression is relatively simple. Thus,
the final result is presented here. The equi-risk line for point C in Fig. 3 can be approximated
by an equirisk line drawn by the following procedure:

!
= e~
-~ To To™T

~

s

Fig. 14 A hydrograph equivalent to the equi-risk line
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A Ly
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Fig. 15 A typical example of equi-risk lines for ~ Fig. 16 An example of equi-risk lines (Module
Module 2 2, linearly dependent x and y): similar

to the lines obtained by the simplified
practical procedure

1) Estimate yga, ¥§B, ¥6c and zg,
where y¥; = F;}(1—¢/2), 28 = FA(l—¢/3),
and i=A,BorC.

F,; and F,; are the c.d.f. of peak discharge and total volume at point 7.
2) Calculate y%; and z¥ by the following equation:

%5, z8) = S4B, z§) (30)

in which Sy=1.0to 1.1.
3) Connect (¥ig, z5) and (J%, 0) with a quadratic parabola and draw a vertical straight line

Yoc=y45 for z,=z¥. The resulting equi-risk lines are similar to the ones shown in Fig. 16,
whereas equi-risk lines for module 2 generally have the shapes shown in Fig. 15.

4) The optimum release discharge d« from the storage facility is approximately represented by
a straight line connecting the following two points:

{d*=Y’6A at yoc = Yoc and
de« =0 atyc=y%. €2))

Under appropriate conditions, a complex flood control system with many drainage and storage
facilities may be lumped into a simplified total system or divided into individual subsystems. Both
cases may be considered as module 2. Thus, the extension of the theory to module 2 produces
a wider applicability of the theory of the equi-risk line.

6. CONCLUDING REMARKS

The expressions of flood-chance constraint are analytically derived. They are expressed
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by the equation of the equi-risk line, which represents the functional relation between the capacities
of drainage and storage facilities to keep the risk of flooding within certain tolerable levels.
The derived approximate expression of the equation of the equi-risk line is

zolz§ = {(5—ya)/¥5}" . (23)

Theoretically, s=2 to 3. z§ and y§ can be estimated easily from the observed peak-discharge
and total-volume data.

A practical procedure for estimating s is proposed. The value obtained from the observed
data ranges from 1.5 to 4, which is in good agreement with the theoretical prediction. The
application of the theory to the design of an actual detention reservoir is presented, which proves
the validity of the theory in practical applications.
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