生 薬 学 雑 誌 Shoyakugaku Zasshi 47(3), 301~304 (1993)

Phytochemical Studies of Seeds of Medicinal Plants IV¹⁾ Flavonoids and Triterpenoids from *Patrinia villosa* (Thunb.) Juss.²⁾

AKIRA INADA, HIROKO MURATA, KEISHI TANAKA, MIDORI SOMEKAWA, TAISUKE NAKAZAWA, MASATOSHI NISHI and TSUTOMU NAKANISHI*

Faculty of Pharmaceutical Sciences, Setsunan University, Nagaotoge-cho, Hirakata, Osaka 573-01, Japan

(Received February 22, 1993)

A flavonol glycoside, flavovilloside (1), was isolated from seeds (including a small amount of pericarps) of *Patrinia villosa* (Thunb.) Juss. (Valerianaceae), and its structure was determined as $3-O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)-\beta$ -D-galactopyranosyl quercetin. Five known compounds, kaempferol- $3-O-\beta$ -rhamninoside (2), 23-sulfates (as sodium salts) of 3β -hydroxyurs-12-en-28-oic acid (3) and 3β -hydroxyolean-12-en-28-oic acid (4), sulfapatrinosides I (5) and II (6), were also isolated. Of them, compounds 3 and 4 were isolated as naturally occurring products for the first time.

Keywords—*Patrinia villosa*; seed; flavonol glycoside; sulfated triterpenoid; sulfated triterpenoid glycoside

The Chinese crude drug, "Bai Jiang" (Haisho in Japanese), whole plants of *Patrinia scabiosaefolia* Fischer (Ominaeshi in Japanese) and *P. villosa* (Thunb.) Juss. (Otokoeshi in Japanese) (Valerianaceae), has been used in China as a diuretic, for treatment of fever and inflammation along with detoxication ("Qing Re Jie Du"), and for mobilization of blood circulation and treatment of statis ("Huo Xue Hua Yu").³⁾

In our recent studies,^{1,4)} two glycosides of triterpenoid sulfates, sulfapatrinosides I (5) and II (6),⁴⁾ and three isomeric pairs of ursolic acid and oleanolic acid glycosides¹⁾ were characterized as predominant constituents of seeds of *P. scabiosaefolia*. In our continuing phytochemical research of the genus Patrinia, we isolated a flavonol glycoside, flavovilloside (1) and five known compounds, *i.e.*, kaempferol-3-O- β -rhamninoside (2),⁵⁾ 23-sulfates (in the forms of sodium salts) of 3β -hydroxyurs-12-en-28-oic acid (3)⁴⁾ and 3β -hydroxyolean-12-en-28-oic acid (4),⁴⁾ sulfapatrinosides I (5) and II (6),⁴⁾ from seeds (including a small amount of pericarps) of *P. villosa*.

A *n*-BuOH soluble portion from a MeOH extract of the seeds was subjected to chromatographic and high-performance liquid chromatographic (HPLC) separations to give six compounds (1–6).

Flavovilloside (1), fine yellow plates of mp 210–213°C (decomp.), $[\alpha]_D$ –43.6° (MeOH), gave UV absorption maxima at 260 and 365 nm. The negative ion FAB-MS spectrum of 1 gave a quasimolecular ion (M-H)⁻ at m/z 755 and three significant fragment ions at m/z 609 [(M-H)-146 (deoxyhexose unit)]⁻, m/z 463 [609-146 (deoxyhexose unit)]⁻ and m/z 301 [463-162 (hexose unit)]⁻.

On methanolysis, 1 gave methyl galactoside and methyl rhamnoside in the sugar portion. The aglycone moiety of 1 was determined as quercetin (7), by the comparisons of the ¹H-NMR (TABLE I) and ¹³C-NMR (TABLE II) data of 1 with the published data.⁷⁾

When the ¹³C-NMR spectrum of 1 was compared with that of 7, glycosylation shifts were observed at 2-C, 3-C, and 4-C of 1. These results and UV absorption peak shifts produced on addition of some shift reagents⁸ indicated 1 to be a quercetin 3-O-dirhamnosyl-galactoside. Determination of the sugar portions: In the ¹H-NMR spectrum measured in MeOH- d_4 , all protons of 1 were properly assigned with the aid of ¹H-¹H shift correlation spectroscopy (COSY), nuclear Overhauser effect spectroscopy (NO-ESY) and ¹H-¹³C COSY, as shown in Table I. The doublet at δ 5.05 with a diaxial coupling (J=7.8 Hz) between 1"-H and 2"-H was assigned to the anomeric proton of β -galactopyranose (1"-H) linked to the 3-OH of 7. The other two signals at δ 4.52 and 4.94 with a diequatorial coupling constant (each

TABLE I. ¹H-NMR Spectral Data for 1 and 2 (600 MHz, in MeOH- d_4 , δ)^{a)}

	Aglycone		Inner galactosyl				
	1	2		1	2		
6-H	6. 20 (br. s)	6. 21 (d, 2.0)	1"-H	5. 05 (d, 7.8)	5. 02 (d, 8.1)		
8-H	6. 38 (br. s)	6. 39 (d, 2.0)	2"-H	3. 85 (dd, 9.5, 7.8)	3. 79 (dd, 8.1, 7.8)		
2′-H	7. 89 (d, 2.0)	8. 09 (d, 8.9)	3"-H	3. 61 (dd, 9.5, 3.5)	3. 68 (dd, 7.8, 2.4)		
3'-H		6. 88 (d, 8.9)	4''-H	3. 83 (d, 3.5)	3. 77 (d, 2.4)		
5'-H	6. 87 (d, 8.5)	6.88 (d, 8.9)	5"-H	3. 69 (br. t, 6.0)	3. 66 (br. t, 6.0)		
6'-H	7. 61 (dd, 8.5, 2.0)	8. 09 (d, 8.9)	$6''$ - H_2	3. 43 (dd, 10.0, 6.0)	3. 41 (dd, 9.7, 6.0)		
				3. 76 (dd, 10.0, 6.0)	3. 73 (dd, 9.7, 6.0)		
	Middle rhamnosyl			Terminal rhamnosyl			
	1	2		1	2		
1′′′-H	4. 52 (d, 1.5)	4. 51 (d, 1.6)	1''''-H	4. 94 (d, 1.5)	4. 93 (d, 1.6)		
2′′′-H	3. 65-3. 69 ^{b)}	3. 69 (dd, 3.2, 1.6)	2""-H	3. 94 (dd, 3.5, 1.5)	3. 93 (dd, 3.2, 1.6)		
3′′′-H	3. 60 (dd, 9.5, 2.5)	3. 55-3. 58 ^{c)}	3''''-H	3. 73 (dd, 9.5, 3.5)	3. 73 (dd, 9.0, 3.2)		
4′′′-H	3. 43 (t, 9.5)	3. 42 (t, 9.0)	4''''-H	3. 35 (t, 9.5)	3. 35 (t, 9.0)		
5'''-H	3. 57 (dq, 9.5, 6.0)	3. 55-3. 58 ^{c)}	5''''-H	3. 65-3. 69 ^b	3. 60 (dq, 9.0, 6.0)		
6′′′-H ₃	1. 20 (d, 6.0)	1. 18 (d, 6.0)	6''''-H ₃	1. 14 (d, 6.0)	1. 14 (d, 6.0)		

a) Chemical shifts are given in δ -values with tetramethylsilane (TMS) as internal standard. Signs and figures given in parentheses refer to multiplicities and coupling constants (Hz).

Table II. 13 C-NMR Spectral Data for 1 and 2 (150 MHz, in MeOH- d_4 , $\delta_{\rm C}$)

Aglycone moiety			Sugar moiety			
	1	2		1	2	
	Inner galactosyl					
2-C	159. 0 ^{a)}	159. 5 ^{b)}	1″-C	106. 2	105. 8	
3-C	136. 0	135. 9	2″-C	73. 2	73. 1	
4-C	179. 5	179. 6	3″-C	75. 2	75. 1	
5-C	162. 9	163. 0	4"-C	70. 3	70. 2	
6-C	100. 2	100. 1	5″-C	75. 3	75. 4	
7-C	166. 3	166. 2	6"-C	67. 5	67. 6	
8-C	95. 0	95. 1	Middle rhamnosyl			
9-C	158. 4 ^{a)}	158. 6 ^{b)}	1′′′-C	101. 9	101. 9	
10-C	105. 6	105. 7	2′′′-C	71. 9	71. 9	
1'-C	122. 8	122. 7	3′′′-C	79. 6	79. 6	
2′-C	118. 1	132. 5	4′′′-C	73. 2	73. 2	
3'-C	145. 8	116. 2	5′′′-C	70. 0	70. 1	
4'-C	150. 1	161. 7	6′′′-C	18. 0	18. 0	
5′-C	116. 2	116. 2	Terminal rhamnosyl			
6′ - C	123. 1	132. 5	1""-C	104. 0	104. 0	
			2''''-C	72. 2	72. 2	
			3′′′′-C	72. 3	72. 3	
			4''''-C	74. 1	74. 1	
			5''''-C	70. 0	70. 1	
			6''''-C	18. 0	18. 0	

a,b) Assignments may be interchangeable in each column.

b,c) Both multiplicities and coupling constants are not clear as they partly overlap.

HO

1:
$$R_1 = A$$
, $R_2 = OH$

2: $R_1 = A$, $R_2 = H$

7: $R_1 = H$, $R_2 = OH$

4: $R_1 = H$, $R_2 = H$, $R_3 = CH_3$

7: $R_1 = H$, $R_2 = OH$

5: $R_1 = B$, $R_2 = CH_3$, $R_3 = H$

6: $R_1 = B$, $R_2 = CH_3$, $R_3 = H$

6: $R_1 = B$, $R_2 = CH_3$, $R_3 = H$

6: $R_1 = B$, $R_2 = CH_3$, $R_3 = CH_3$

1.5 Hz) were assigned to the anomeric protons of two α -rhamnopyranoses (1"'-H and 1""-H) linked to inner galactose and to middle rhamnose, respectively. The α -configurations of two rhamnopyranosyl moieties in 1 were also substantiated by the large ¹³C-H coupling constants (J_{C1-H1} = each 169 Hz) of the anomeric carbons (1"'-C and 1""-C). ⁹

Interglycosidic linkages in the dirhamnosyl-galactosyl part of 1: In the 13 C-NMR spectrum (Table II), the galactosyl 6"-C and rhamnosyl 3"'-C, resonating at δ 67.5 and 79.6 ppm, were observed in more downfield (by ca. 7 and ca. 9 ppm, respectively) than the corresponding signals of usual galactopyranosyl and rhamnopyranosyl residues. In the NOESY experiments, two significant NOE cross peaks were observed between the anomeric H (1""-H) of terminal rhamnose and 3""-H of middle rhamnose, and between the anomeric H (1""-H) of middle rhamnose and 6"-H₂ of inner galactose. Three significant cross peaks (between 1""-H and 3"'-C, 1""-H and 6"-C, and 1"-H and 3-C) were shown in the heteronuclear multiple bond connectivity (HMBC) spectrum. On the basis of these evidences, 1 was assigned as 3-0- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-galactopyranosyl quercetin. Compound 1 per-0-acetate was characterized as a compound from rhamnaceous plants, Ahamnus catharticus and R. saxatilis subsp. saxatilis. But no data on 1 itself have been given in literature. So, this is the first report of isolation of the original glycoside (1) and its 1 H- and 13 C-NMR data (Tables I and II, respectively).

Compound 2, fine yellow crystals of mp $198-200^{\circ}$ C, $[\alpha]_{D} - 37.6^{\circ}$ (MeOH), has been characterized as $3-O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)-\beta$ -D-galactopyranosyl kaempferol (= kaempferol- $3-O-\beta$ -rhamninoside). Compounds 3 and 4 showed a carboxyl band at 1690 cm⁻¹ and a typical sulfate S=O stretching vibration at 1240 cm⁻¹ in the IR spectra. These compounds were determined to be 23-sulfates (in the forms of sodium salts) of 3β -hydroxyurs-12-en-28-oic acid and 3β -hydroxyolean-12-en-28-oic acid, respectively, by direct comparisons with the respective authentic samples. In this work, both compounds were isolated for the first time as naturally occurring compounds. Isolated triterpenoid glycosyl sulfates, 5 and 6, were identified as sulfapatrinosides I and II by direct comparison with the respective authentic specimens.

Experimental

All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR and UV spectra were run with a JASCO A-302 instrument and a Shimadzu UV-3000 spectrometer, respectively. 1 H- (600 MHz) and 13 C-NMR (150 MHz) spectra were measured with a GE-OMEGA 600 spectrometer in MeOH- d_4 (as a solvent) with tetramethylsilane as an internal standard. Negative ion FAB-MS spectra were obtained

with a JEOL JNM-DX300 spectrometer under the following conditions: accelerating voltage, 2–3 kV; emission current, 30 mA; matrix, triethanolamine; collision gas, Xe. Optical rotations were determined on a JASCO DIP-140 digital polarimeter. GLC was carried out on a Shimadzu GC-7AG gas chromatograph under the following conditions: column, 1.5% SE-52 on Chromosorb WAW DMCS (2 m×3 mm i.d.); detector, flame ionization detector (FID); column temperature, 180°C; carrier N₂ gas, 30 ml/min. Preparative HPLC was carried out on a Waters 600E instrument with a U6K septum-less injector, a Lambda-Max Model 480 photospectrometer or on a Waters instrument with an M 6000A pump and a series R-401 differential refractometer. In each case, a reversed-phase TSK-GEL ODS-120T column was used.

Plant material—Seeds of *P. villosa* were harvested at the Kitakuwata-gun, Kyoto Pref. in 1987. The plants used in the present study was identified by one of us (H.M.). A voucher specimen is deposited in the herbarium of the Faculty of Pharmaceutical Science, Setsunan University.

Extraction and isolation of compounds 1-6—Crushed seeds (including a small amount of pericarps) (233 g) were extracted three times with MeOH (1.5 1×3). The combined extracts (39.1 g) were dissolved in MeOH (100 ml) and poured into Et₂O (1.2 l). The resultant insoluble precipitate (23.3 g), collected by filtration, was suspended in H₂O and extracted with *n*-BuOH. The residue (13.3 g) obtained from the *n*-BuOH layer was subjected to silica gel column chromatography and the fractions containing 1-6 were further purified by Amberlite XAD-2 chromatography and/or reversed phase HPLC to give 1 (56 mg), 2 (22 mg), 3 (33 mg), 4 (66 mg), 5 (18 mg), and 6 (30 mg). The physical and spectral properties of 1-6 were as follows.

Flavovilloside (1), yellow fine plates of mp 210–213°C (decomp.) (MeOH), $[\alpha]_D$ –43.6° (c=0.40, MeOH). UV λ_{max} (MeOH) nm (log ε): 260 (4.27), 365 (4.19). +NaOMe: 275, 330, 410; +AcONa: 275, 325, 380; +AlCl₃: 275, 435. IR ν(KBr) cm⁻¹: 3400, 1645, 1595, 1060. Negative ion FAB-MS m/z (%): 755 {[M(C₃₃H₄₀O₂₀)-H]⁻, 100}, 609 [(M-H-146)⁻, 21], 463 [(609-146)⁻, 21], 301 [(463-162)⁻, 77]. ¹H- and ¹³C-NMR data are given in TABLES I and II, respectively. Kaempferol-3-O-β-rhamninoside (2),^{5,6}) yellow fine crystals of mp 198–200°C (decomp.) (MeOH-Et₂O) (ref. 6a, mp 205–210°C), $[\alpha]_D$ –37.6° (c=0.25, MeOH) [ref. 6a, –38.6° (MeOH); 6b, –42.7° (MeOH)]. UV λ_{max} (MeOH) nm (log ε): 268 (4.25), 350 (4.18). +NaOMe: 276, 327, 402; +AcONa; 274, 306, 372; +AlCl₃: 276, 306, 352, 400. IR ν(KBr) cm⁻: 3400, 1640, 1595, 1060. Negative ion FAB-MS m/z (%): 739 {[M(C₃₃H₄₀O₁₉)-H]⁻, 100}, 593 [(M-H-146)⁻, 10], 447 [(593-146)⁻, 7], 285 [(447-162)⁻, 70]. ¹H- and ¹³C-NMR data are given in TABLES I and II, respectively. Compounds 3 (mp 228–230°C), 4 (mp 223–225°C), 5 (mp 239–242°C), and 6 (mp 242–244°C) were identified as 23-sulfate (as sodium salt) of 3β-hydroxy-urs-12-en-28-oic acid, 23-sulfate (as sodium salts) of 3β-hydroxy-olean-12-en-28-oic acid, sulfapatrinoside I, and sulfapatrinoside II, respectively, by direct comparisons with the respective authentic samples.⁴⁾

Methanolysis of 1—A solution of 1 (ca. 3 mg) in 5% anhydrous HCl-MeOH (2 ml) was refluxed for 5 h. The reaction mixture was neutralized with Ag_2CO_3 . The inorganic precipitate was filtered off and the filtrate was concentrated under reduced pressure to give a residue. The residue was trimethylsilylated with N,O-bis(trimethylsilyl)-trifluoroacetamide-py., and subjected to GLC analysis to demonstrate the presence of methyl galactoside and methyl rhamnoside.

References and Notes

- 1) Part III in the series on phytochemical studies of seeds of medicinal plants, see T. Nakanishi, K. Tanaka, H. Murata, M. Somekawa, A. Inada, *Chem. Pharm. Bull.*, 41, 183 (1993).
- 2) A part of this work was presented at the 42nd Meeting of Kinki Branch, Pharmaceutical Society of Japan, Kyoto, 1992, Abstract of Papers, p. 67.
- 3) "Dictionary of Chinese Crude Drugs (Zhong-Yao-Da-Ci-Dian in Chinese)," ed. by Chiang Su New Medical College, Shanghai Scientific Technologic Publisher, Shanghai, 1977, p. 1340.
- 4) A. Inada, M. Yamada, H. Murata, M. Kobayashi, H. Toya, Y. Kato, T. Nakanishi, Chem. Pharm. Bull., 36, 4269 (1988).
- 5) This compound has been isolated from *Rhamnus catharticus*, ^{6a)} R. alaternus, ^{6a)} and R. leptophylla^{6b)} (Rhamnaceae). This is the first report of isolation of 2 from another family. Further, this compound was characterized as its per-O-acetate in the literature. The ¹H- and ¹³C-NMR data (Tables I and II, respectively) of the original glycoside are reported here for the first time.
- 6) a) I. Riess-Maurer, H. Wagner, Tetrahedron, 38, 1269 (1982); b) J. Wang, R. Kasai, M. Sakimori, M. Miyakoshi, O. Tanaka, M.R. Jia, Y.K. Ling, Phytochemistry, 27, 3995 (1988).
- 7) J.B. Harborne, T.J. Mabry, "The Flavonoids, Advances in Research," Chapmann and Hall Ltd., New York, 1982, pp. 19-134.
- 8) J.B. Harborne, T.J. Mabry, H. Mabry, "The Flavonoids," Academic Press, New York, 1975, pp. 45-62.
- 9) R. Kasai, M. Okihara, J. Asakawa, T. Tanaka, *Tetrahedron*, 35, 1427 (1979); A. Liptak, P. Nanasi, A. Neszmelyi, H. Wagner, *ibid.*, 36, 1261 (1980).
- 10) Whether the sugars are D or L was not determined. But, galactose and rhamnose in 1 were probably in D and L forms, respectively, as these sugars occur in these forms in natural products.