-Note-

Flower Fragrance Precursors from Flower Buds of *Citrus unshiu* MARCOV.

KAZUKO YOSHIKAWA,* MICHIKO KOBAYASHI and SHIGENOBU ARIHARA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770 Japan

(Received October 23, 1995)

A new aroma glycoside, unshuoside A, and four known compounds including prenyl glucoside, 2endo-cineolylol glucoside, phenethyl glucoside and solidroside, were isolated from fresh flower buds of *Citrus unshiu* MARCOV.

Keywords——*Citrus unshiu*; Rutaceae; fragrance precursor; aroma glucoside; hemiterpenoid glucoside; terpenyl glucoside

It has been reported that monoterpene glycosides are aroma precursors in tea fruits,^{1–5)} and leaves^{6,7)} contributing to their floral fragrance when hydrolysed. Generally, flower buds do not smell and floral note is released from flowers during anthesis. Watanabe *et al.*⁸⁾ suggested that β -glucosides of linalool, eugenol, borneol, and isoeugenol were precursors of the fragrance compounds in *Gardenia jasminoides* ELLIS.

During our studies⁹⁾ on glycosidically bound volatiles in plants, we isolated a new aroma component together with four known aroma glycosides from fresh flower buds of *Citrus unshiu* MARCOV.

By repeated ordinary-phase (SiO_2) and reversedphase (ODS) column chromatography of an EtOH extract of fresh flower buds of *C. unshiu* (8.5 kg), a new aroma glycoside named unshuoside A (1) was obtained along with known aroma glycosides, prenyl (3,3-dimethylallyl alcohol) glucoside (2), 2-endo-cineolylol glucoside (3), solidroside (4) and phenethyl glucoside (5).

Unshuoside A (1), isolated as an amorphous powder, exhibited an $[M+H]^+$ peak at m/z 333.1950 in the high-resolution chemical ionization (HRCI) MS, consistent with the molecular formula $C_{16}H_{28}O_7$. The ¹H-NMR and ¹H-¹H correlation spectroscopy (COSY) spectra revealed the existence of a vinyl group [δ 5.14 (1H, dd, J = 11.0, 1.7 Hz), 5.30 (1H, dd, J = 17.3, 1.7 Hz),5.88 (1H, dd, J = 17.3, 11.0 Hz)], a 5-methyl-3-pentenyl group [δ 1.59 and 1.65 (each 3H, s), δ 1.50 (1H, ddd, J =12.0, 12.0, 4.0 Hz), 1.58 (1H, ddd, J = 12.0, 12.0, 4.0 Hz), $\delta 1.95-2.05$ (2H, m), $\delta 5.09$ (1H, br t, J = 7.1 Hz)], a hydroxymethyl group [δ 3.43 and 3.88 (each 1H, d, J =10.0 Hz)] and one anomeric proton [δ 4.25 (1H, d, J =7.8 Hz)]. The distorsionless enhancement by polarization transfer (DEPT) spectrum indicated the presence of two methyl carbons, two methylene carbons, one oxygen-bearing methylene carbon, one oxygen-bearing tertiary carbon and one secondary, two tertiary and one quaternary carbons due to two olefinic bonds and a hexosyl moiety. Acid hydrolysis of 1 gave D-glucose, which was confirmed by the specific rotation measurement using HPLC with chiral detection. The β -configuration of the anomeric center of D-glucopyranosyl group was suggested by the coupling constant (J=7.8)Hz). Comparison of the 13 C-NMR spectra of 1 with those of the genin¹⁰⁾ showed glycosylation shifts^{11, 12)} by +9.1 ppm at the C-1 signal and -1.1 ppm at the C-4 signal, demonstrating that the sugar linkage was at C-1-OH. This was further confirmed by the heteronuclear multiple-bond correlation (HMBC) and rotating frame Overhauser enhancement spectroscopy (ROESY) exper-Long-range correlations were seen between iments. H-1' (δ 4.25) (Glc) and C-1 (δ 77.4) in the HMBC spectrum, and NOEs were detected between H-1' (δ 4.25) (Glc) and H-1 (δ 3.88) and between H-1' (δ 4.25) (Glc) and H-1 (δ 3.43). Thus, by analysis of the NMR data including 1H-1H COSY, 1H detected multiple quantum cohence (HMQC), HMBC, and ROESY experiments (TABLE I), the structure of unshuoside A was established to be 6-methyl-2-vinyl-5-heptene-1, 2-diol-1-O- β -D-glucopyranoside. The absolute configuration of the remaining chiral center C-2 is not determined yet.

Prenyl glucoside (2), an amorphous powder, showed an $[M+H]^+$ peak at m/z 249 in the CIMS, corresponding to the molecular formula of $C_{11}H_{20}O_6$. The ¹H-NMR spectrum revealed the existence of a 3-methyl-2butenyl group [δ 5.37 (1H, t, J = 7.7 Hz), 4.27 (2H, d, J= 7.7 Hz), 1.70 and 1.76 (each, 3H, s) and one anomeric proton [δ 4.80 (1H, d, J = 8.0 Hz)]. The DEPT spectrum indicated the presence of two methyl carbons, one oxygen-bearing methylene carbon, and one tertiary and one quaternary carbons due to olefinic bond and a glucosyl moiety. Those data concluded that the structure of this compound was prenyl glucoside, which had been synthesized by Ackermann *et al.*¹³⁾ This is the first report which describes isolation of glucoside from natural sources.

2-Endo-cineolylol glucoside (3), isolated as an amor-

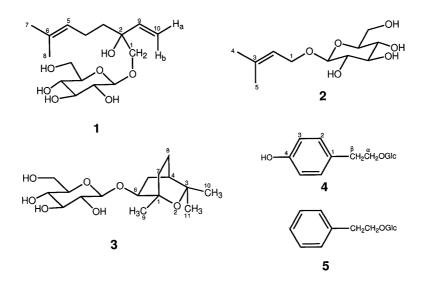


TABLE I. NMR Spectral Data for Unshuoside A (1) in CD₃OD

Carbon	$\delta_{ m c}$	DEPT	$\delta_{ ext{H}}$	HMBC	ROESY
1	77.4	$-CH_2$	3.88 (H _a , d, 10.0)	H-1′	H-1′
			3.43 (H _b , d, 10.0)	H-1′	H-1′
2	76.1	>C<		H _a 10, H _b 10, H-9, H-3	
3	38.5	-CH ₂	1.58 (H _a , ddd, 12.0 , 12.0 , 4.0)	H ₂ -4, H-1	H-4
			$1.50 (H_b, ddd, 12.0, 12.0, 4.0)$		H-4
4	23.0	-CH ₂	2.05-1.95 (2 H, m)	H_2-3	H-3
5	125.6	-CH=	5.09 (br t, 7.1)	H-4, H-7, H-8	H-8
6	132.2	>C=		H-7, H-8	
7	25.9	-CH ₃	1.65 (3 H, s)	H-5, H-8	
8	17.7	-CH ₃	1.59 (3 H, s)	H-5, H-7	
9	142.4	-CH=	5.88 (dd, 17.3, 11.0)	H _a -10	H _b -10
10	114.4	=CH ₂	5.30 (H _a , dd, 17.3, 1.7)		H _b -10
			5.14 (H _b , dd, 11.0, 1.7)		H _a -10
1'	105.1	-CH-	4.25 (d, 7.8)	H-2', H-3', H-5', H-1	H-3′, H-5′, H-1
2'	75.2	-CH-	3.20 (dd, 9.0, 7.8)	H-3′	
3′	77.9	-CH-	3.34 (dd, 9.0, 9.0)	H-2′	
4′	71.6	-CH-	3.27 (dd, 9.0, 9.0)	H-5′, H-6′	
5′	78.0	-CH-	ca. 3.26 (m)	H-1', H-6'	
6'	62.7	-CH ₃	3.86 (H _a , dd, 12.0, 2.5)	H-4′, H _b -6′	
			$3.65 (H_b, dd, 12.0, 5.4)$	H-4′, H _a -6′	

phous powder, showed an $[M+H]^+$ peak at m/z333.1930 in the HRCIMS, consistent with molecular formula $C_{16}H_{28}O_7$. The DEPT spectrum indicated the presence of three methyl carbons, three methylene carbons, one methine carbon, one oxygen-bearing methine carbon, and two oxygen-bearing tertiary carbons in addition to six carbons due to glucosyl moiety. By analysis of the NMR data including ¹H-¹H COSY, HMQC, HMBC and ROESY experiments, the structure of **3** was determined to be (1*S*, 4*R*, 6*S*)-1,3,3trimethyl-2-oxabicyclo[2,2,1]-octane-6-*O*- β -D-glucopyranoside, which had been isolated from peels of young *C*. *unshiu* by SAWABE *et al.*¹⁴)

Compounds 4 and 5 were identified as solidroside and phenethyl glucoside, respectively, by comparing the physical and spectral data with those in the literature.^{15,16)} These compounds, isolated from this plant

(177)

for the first time are considered to be constituents of fragrance precursors in the flower.

EXPERIMENTAL

Optical rotations were taken on a JASCO DIP-140 digital polarimeter. NMR spectra were recorded on a Varian UNITY 200 and 600 spectrometers in CD₃OD solution using TMS as an internal standard. NMR experiments included ¹H-¹H-COSY, ¹³C-¹H-COSY, HMBC and ROESY. Coupling constants (J values) are given in Hz. The CIMS were measured on a JEOL JMS-PX303 mass spectrometer. HPLC was carried out with a Waters ALC/GPC 244 instrument by using Octadecyl-functionalized Si gel (Daiso). Flash chromatography was carried out by using Kiesel gel 60 (230-400 mesh, Merck) and TLC Merck DC-Platten Kiesel

gel 60 F₂₅₄.

Plant materials Flower buds of *C. unshiu* were collected in Tokushima prefecture, in May, 1994. A voucher specimen has been deposited at the Herbarium of the Faculty of Pharmaceutical Sciences, Tokushima Bunri University.

Extraction and isolation Fresh flower buds of *C. unshiu* (8.5 kg) were extracted with EtOH at room temperature for two weeks. After removal of the solvent, the MeOH-soluble portion was subjected to column chromatography {SiO₂ : MeOH : H₂O (25 : 4 : $0.1 \rightarrow 25 : 6 : 0.1$) and subsequently to HPLC on reversephase DAISOPAK ⁵C₁₈ {CH₃CN-H₂O (5 \rightarrow 25%)} to give unshuoside A (1, 5 mg), prenyl (3,3-dimethylallyl alcohol) glucoside (2, 3 mg), 2-endo-cineolylol glucoside (3, 16 mg), solidroside (4, 2 mg) and phenethyl glucoside (5, 4 mg).

Unshuoside A (1): Amorphous powder; $[\alpha]_{\rm D} - 5.0^{\circ}$ (c = 0.4 in MeOH); HRCIMS (isobutane): Calcd. for $[M + H]^+$, $C_{16}H_{29}O_7$: 333.1913. Found: 333.1950. NMR data (600 MHz), see TABLE I.

Prenyl glucoside (2): Amorphous powder, $[\alpha]_{\rm D}-20.0^{\circ}$ (c=0.2 in MeOH). CIMS (isobutane): m/z 249 [M (C₁₁H₂₀O₆)+H]⁺. ¹H-NMR (200 MHz) δ : 1.70 and 1.76 (each 3H, s), 4.27 (2H, t, J=7.7 Hz, H-1), 4.80 (1H, d, J=8.0 Hz, H-1 of Glc), 5.37 (1H, t, J=7.7 Hz, H-2). ¹³C-NMR (50 MHz) δ : 18.1 (C-5), 26.0 (C-4), 62.9 (C-6'), 66.4 (C-1), 71.9 (C-4'), 75.2 (C-2'), 78.1 (C-3'), 78.2 (C-5'), 102.2 (C-1'), 121.8 (C-2), 138.3 (C-3).

2-Endo-cineolylol glucoside (3): Amorphous powder, $[\alpha]_{\rm D}$ + 1.5° (*c* = 0.8 in MeOH). HRCIMS: Calcd. for [M +H]+, C₁₆H₂₉O₇: 333.1913. Found: 333.1930. ¹H-NMR (600 MHz, C₅D₅N) δ: 1.15 (3H, s, H-11), 1.23 (3H, s, H-10), 1.32 (1H, m, H-4), 1.46 (3H, s, H-9), 1.50, 2.12 (each, 1H, m, H₂-7), 1.52, 1.82 (each, 1H, m, H₂-8), 1.91 (1H, ddd, J = 14.5, 4.0, 3.2 Hz, H-5_{exo}), 2.59 (1H, dddd, J = 14.5, 9.6, 3.6, 3.2 Hz, H-5_{endo}), 3.96 (1H, ddd, J = 9.3, 5.1, 2.6 Hz, H-5'), 4.00 (1H, ddd, J = 9.6, 4.0, 2.0 Hz, H-6), 4.03 (1H, dd, J = 8.8, 7.8 Hz, H-2'), 4.22 (1H, dd, J = 8.8, 8.8)Hz, H-3'), 4.29 (1H, dd, J = 9.3, 8.8 Hz, H-4'), 4.44 (1H, dd, J=11.6, 5.1 Hz, H-6'), 4.56 (1H, dd, J=11.6, 2.6 Hz, H-6'), 4.93 (1H, d, J = 7.8 Hz, H-1'). ¹³C-NMR (150 MHz, C₅D₅N) δ: 22.5 (C-8), 24.9 (C-9), 26.3 (C-7), 28.9 (C-10), 29.1 (C-11), 34.3 (C-4 and C-5), 62.9 (C-6'), 71.7 (C-4'), 72.3 (C-1), 73.2 (C-3), 75.6 (C-2'), 78.4 (C-5'), 78.6 (C-3'), 80.1 (C-6), 106.5 (C-1').

Solidroside (4): Amorphous powder, $[\alpha]_{\rm D}-26.9^{\circ}$ (c = 0.2 in MeOH). CIMS (isobutane): m/z 301 [M (C₁₄H₂₀-O₇)+H]⁺. ¹³C-NMR (50 MHz) δ : 36.4 (C- β), 62.8 (C-6'), 71.7 (C-4'), 72.2 (C- α), 75.2 (C-2'), 78.0 (C-3', C-5'),

104.4 (C-1'), 111.6 (C-3, C-5), 130.9 (C-1, C-2, C-6), 157.0 (C-4).

Phenethyl glucoside (5): Amorphous powder, $[\alpha]_{\rm D}$ -25.0° (c=0.4 in MeOH). CIMS (isobutane): m/z 285 [M (C₁₄H₂₀O₆)+H]⁺. ¹³C-NMR (50 MHz) δ : 37.3 (C- β), 62.8 (C-6'), 71.7 (C-4'), 71.8 (C- α), 75.2 (C-2'), 78.0 (C-3'), 78.5 (C-5'), 104.4 (C-1'), 127.3 (C-4), 129.4 (C-2, C-6), 130.3 (C-3, C-5), 140.1 (C-1).

Acid hydrolysis of compound 1 Compound 1 (1 mg) was heated in 5% H_2SO_4 : dioxane (1:1) at 100°C for 1 h. The reaction mixture was diluted with H_2O , neutralized with Amberlite IR-45 and concentrated *in vacuo* to dryness. The sugar was identified and the configuration was determined as D by the RI detection (Waters 410) and chiral detection (Shodex OR-1) in HPLC (Shodex RSpak DC-613, 80% CH₃CN, 1 ml/min, 70°C). In HPLC, the sugar gave a peak at the same location as that of authentic D-(+)-Glc (10.30 min).

REFERENCES

- 1) P. J. Williams, C. R. Strauss, B. Wilson, R. A. Massy-Wastropp, *Phytochemistry*, **21**, 2013 (1982).
- 2) W. Schwab, P. Schreier, Phytochemistry, 29, 161 (1990).
- S. Voirin, R. Baumes, S. Bitteur, Z. Gunata, C. Bayonove, J. Agric. Food Chem., 38, 1373 (1990).
- A. Papst, D. Barron, E. Semon, P. Schreier, *Phytochemistry*, **31**, 3105 (1992).
- N. D. Tommasi, R. Aquino, F. D. Simonen, C. Pizza, J. Nat. Prod., 55, 1025 (1992).
- M. Yano, K. Okada, K. Kubota, A. Kobayashi, Agric. Biol. Chem., 54, 1023 (1990).
- M. Yano, Y. Joki, H. Mutoh, K. Kubota, A. Kobayashi, Agric. Biol. Chem., 55, 1205 (1991).
- N. Watanabe, S. Watanabe, R. Nakajima, J.-H. Moon, K. Shimokihara, J. Inagaki, H. Etoh, T. Asai, K. Sakata, K. Ina, *Biosci. Biotech. Biochem.*, 57, 1101 (1993).
- 9) K. Yoshikawa, M. Nagai, M. Wakabayashi, S. Arihara, *Phytochemistry*, **34**, 1431 (1993).
- 10) J. C. Coll, A. D. Wright, Aust. J. Chem., 42, 1893 (1989).
- R. Kasai, M. Okihara, J. Asakawa, O. Tanaka, *Tetrahe*dron, 35, 1427 (1979).
- 12) K. Tori, Y. Yoshimura, H. Arita, Y. Tomita, *Tetrahedron Lett.*, **1979**, 179.
- 13) I. E. Ackermann, D. V. Banthorpe, W. D. Fordham, J. P. Kinder, I. Poots, *Liebigs Ann. Chem.*, 1989, 79.
- A. Sawabe, Y. Mathubara, Y. Iizuka, Nippon Nögeikagaku Kaishi, 62, 1475 (1988).
- 15) T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Oguchi, *Chem. Pharm. Bull.*, 36, 2475 (1988).
- 16) T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Karasawa, Chem. Pharm. Bull., 35, 1109 (1987).