Plant & Cell Physiol. 18: 963-968 (1977)

Use of inhibitors to distinguish between C_4 acid decarboxylation mechanisms in bundle sheath cells of C_4 plants

C. K. M. Rathnam¹ and G. E. Edwards

Department of Horticulture, University of Wisconsin, Madison, Wisconsin-53706, U. S. A.

(Received January 28, 1977)

Both malate and aspartate were decarboxylated at the 4-carbon position by isolated bundle sheath strands of C₄ plants but to different extents depending upon the species. In *Digitaria sanguinalis*, an NADP-malic enzyme (NADP-ME) species, 100 μ M oxalic acid blocked malate decarboxylation through NADP-ME without affecting aspartate decarboxylation which apparently occurs through NAD-ME. In several phosphoenolpyruvate carboxykinase (PEP-CK) type C₄ species, 200 μ M 3-mercaptopicolinic acid (3-MPA), an inhibitor of PEP-CK, specifically inhibited the malate decarboxylation and partially inhibited aspartate decarboxylation. The aspartate decarboxylation insensitive to 3-MPA may occur through NAD-ME. Neither inhibitor prevented C₄ acid decarboxylation in bundle sheath cells of NAD-ME species. The inhibitors thus served to differentiate between the decarboxylation of C₄ acids in PEP-CK and NADP-ME type C₄ species through their major decarboxylase from that of their less active decarboxylation through NAD-ME.

In the C₄ pathway of photosynthesis the decarboxylation of C₄-dicarboxylic acids in leaf bundle sheath cells is facilitated, depending upon the species, by specific decarboxylases: NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PEP-CK) (6, 13). Although C₄ plants have been subclassified, based on their major decarboxylase, into NADP-ME type, NAD-ME type and PEP-CK type species (3, 4, 7), we detected substantial amounts of NAD-ME in all the C₄ types, the activity being highest in the NAD-ME species (3, 4, 10). It is still uncertain as to whether the decarboxylation of C₄ acids in C₄ plants is carried solely through their major decarboxylase or in combination with NAD-ME (10). C₄ plants preferentially synthesize either malate or aspartate. Whether only the major C₄ acid formed or both malate and aspartate are transported from mesophyll to bundle sheath cells and decarboxylated to serve as carboxyl donors to the Calvin pathway in bundle sheath cells in a given C₄ species needs to also be considered (1, 10). Presently we are concerned with elucidating specific decarboxylase systems operative in plants representing the

Abbreviations: 3-MPA, 3-mercaptopicolinic acid; DCMU, 3-(3,4-dichlorophenyl) 1,1-dimethylurea; CK, carboxykinase; ME, malic enzyme; PEP, phosphoenolpyruvate.

¹ Present address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08903, U. S. A.

The Japanese Society of Plant Physiologists

C. K. M. Rathnam and G. E. Edwards

three C₄ subgroups (10, 12, 13). Inhibitors of the C₄ acid decarboxylases are used in the present study as a means to identify and differentiate between decarboxylases in C₄ plants.

Materials and methods

Plants used in the present study included *Digitaria sanguinalis* (NADP-ME type), *Panicum miliaceum* (NAD-ME type), *Brachiaria xantholeuca, Eriochloa borumensis*, *Panicum molle* and *Urochloa bulbodes* (all PEP-CK type) (3, 4). Bundle sheath strands were isolated by pectinase-cellulase digestion of leaf segments (8, 12), and the chloroplasts were isolated by disrupting the bundle sheath strands in a ground glass homogenizer as described previously (10, 12).

All assays were run in a standard reaction mixture consisting of 0.3 M sorbitol, 50 mM N-tris (hydroxymethyl)methylglycine at pH 8.5, 1 mM MgCl₂, 1 mM MnCl₂, 2 mM KH₂PO₄ (except 0.2 mM KH₂PO₄ for chloroplasts) and 3 mM sodium iso-ascorbate. Other additions were as indicated for the individual experiments. The reactions were run at 37°C in a final volume of 0.15 ml for 10 min. All reactions were run in the light at intensities at the surface of the vials of 80 nE·cm⁻²·sec⁻¹ (400–700 nm). The ¹⁴CO₂ fixation by bundle sheath strands was assayed as previously described (*11*) in the presence of 6 mM NaH¹⁴CO₂.

Decarboxylation of C₄ acids at the 4-C position by bundle sheath strands was followed directly using 10 mM L-(4-14C) aspartate in the presence of 10 mM α ketoglutarate, and 10 mM L-(4-14C) malate in the presence of 6 mM 3-phosphoglyceric acid (12, 13). Decarboxylation reactions included 25 mM D,L-glyceraldehyde to prevent refixation of released 14CO₂ (for details see Ref. 13). The reactions were stopped by injecting 50 μ l of 20% (w/v) trichloroacetic acid. The released 14CO₂ was trapped into 0.1 ml of 1.0 M hyamine hydroxide placed in a centrally suspended one half of a gelatin capsule (No. 0, Eli Lilly Co., Indianapolis, IN, U.S.A.) with a paper wick and counted by scintillation spectroscopy.

The effect of oxalic acid on C₄ acid decarboxylation activity of bundle sheath strands was studied by incubating bundle sheath preparations with oxalic acid+ the ¹⁴C₄ acids in the light for 2 min to allow the binding of inhibitor to the decarboxylase (for details see ref. 15). The reactions were started by adding 6 mm 3-phosphoglycerate (for L-4-14C malate decarboxylation) or 10 mm a-ketoglutarate (for L-4-14C asparatte decarboxylation) in the light. A control reaction (2 min preincubation with oxalic+L-4-14C malate) indicated the residual malate decarboxylation in the presence of oxalate in Fig. 1 with *D. sanguinalis* was due to decarboxylation occurring before starting the reactions were also preincubated 2 min in light before initiating the reaction with 6 mm H¹⁴CO₃⁻. With 3-mercaptopicolinic acid reactions were initiated by adding the labeled C₄ acids or H¹⁴CO₃⁻.

Chlorophyll was determined according to Wintermans and De Mots (16).

Results and discussion

Distinction between different decarboxylase systems was made in the present study by the use of specific inhibitors of the three known C_4 acid decarboxylases in C_4 plants.

964

Group and species	$^{14}\mathrm{CO}_2$ fixation		Malate decarboxylation		Aspartate decarboxylation	
I I	Control	+Oxalate	Control	+Oxalate	Control	+Oxalate
NADP-ME Type						
Digitaria sanguinalis	40	42	294	40	79	74
NAD-ME Type						
Panicum miliaceum	177	173	176	173	342	362
PEP-CK Type						
Eriochloa borumensis	203	195	405	413	256	249

Table 1 Effect of oxalate on ${}^{14}CO_2$ fixation and C_4 acid decarboxylation activities of bundle sheath strands of C_4 plants^a

^a Experimental conditions and substrate concentrations used were as described in Materials and methods. Oxalate, 0.4 mm.

The rates are expressed as $\mu moles$ $^{14}\mathrm{CO}_2$ fixed or C_4 acid decarboxylated/mg chl hr.

See Ref. 3, 4 for the basis of subdividing the C_4 species into three groups.

Oxalate has been shown to be a potent inhibitor of NADP-ME in potato tubers (15). Fig. 1 shows that oxalate at a concentration of 100 μ M almost completely inhibited malate decarboxylation by isolated bundle sheath strands of *D. sanguinalis*, an NADP-ME type species; while it had no effect on the ¹⁴CO₂ fixation and aspartate decarboxylation activities. Also, oxalate at 100 μ M had no effect on the ¹⁴CO₂ fixation and C₄ acid decarboxylation activities of NAD-ME and PEP-CK species (Table 1). Based on enzyme localization and C₄ acid decarboxylation by cells and chloroplasts we previously proposed that in NADP-ME species, malate is decarboxylated through NADP-ME and aspartate decarboxylation is carried through NAD-ME (10, 13). This suggests that oxalate specifically blocks malate inhibition of aspartate decarboxylation in *D. sanguinalis* (Fig. 1 and Table 1) further suggests the decarboxylation of aspartate through a decarboxylation of 30 mM

Fig. 1. Effect of oxalate concentration on ${}^{14}CO_2$ fixation $(\bigcirc -\bigcirc)$, malate $(\bigcirc -\bigcirc)$ and aspartate $(\land -\land)$ decarboxylation by bundle sheath strands of Digitaria sanguinalis, an NADP-ME type C_4 species. The experimental conditions and the substrate concentrations were as described in Materials and methods.

C. K. M. Rathnam and G. E. Edwards

Table 2 Effect of DCMU, malate and oxalate on $^{14}CO_2$ fixation activities of Digitaria sanguinalis bundle sheath strands

· · · · · · · · · · · · · · · · · · ·	Conditions ^a	$^{14}\mathrm{CO}_2$ fixation $(\mu\mathrm{moles}/\mathrm{mg}~\mathrm{chl}\cdot\mathrm{hr})$
a)	$H^{14}CO_3^-$	40
b)	$\rm H^{14}CO_{3}^{-} + DCMU$	0
c)	$\rm H^{14}CO_3^- + Malate$	140
d)	$\rm H^{14}CO_3^- + Malate + DCMU$	100
e)	$\rm H^{14}CO_{3}^{-} + Oxalate$	41
f)	$\rm H^{14}CO_3^- + Malate + Oxalate$	44
$\mathbf{g})$	$\rm H^{14}CO_{3^-} + Malate + Oxalate + DCMU$	5

^a ¹⁴CO₂ fixation was followed as described in Ref. 11. Substrate concentrations used were 6 mm NaH¹⁴CO₃, 10 mm malate, 1 μm DCMU, and 100 μm oxalate.

inhibited the decarboxylation of both malate and aspartate by about 50% in bundle sheath cells of *D. sanguinalis*, suggesting both NADP-ME and NAD-ME are partially inhibited. No further inhibition was apparent even when the inhibitor concentration was increased 3–4 fold.

We have further examined the interaction between DCMU and oxalic acid in inhibiting photosynthetic functions of bundle sheath cells of *D. sanguinalis*. The low CO₂ fixation capacity of the bundle sheath strands of *D. sanguinalis*, when compared to NAD-ME species, has generally been attributed to a deficient photosystem II in their chloroplasts (5, 6, 9, 13). The malate stimulation of ¹⁴CO₂ fixation by bundle sheath strands of *D. sanguinalis* (Table 2) can be explained on the basis that the NADPH generated during malate decarboxylation by NADP-ME in the chloroplasts is utilized for the reduction of additional 3-phosphoglycerate (2, 6). DCMU (1 μ M) completely abolished the ¹⁴CO₂ fixation in the absence of malate apparently by inhibiting NADP reduction during non-cyclic photosynthetic

Group and species	$^{14}\mathrm{CO}_2$ Fixation		Malate decarboxylation		Aspartate decarboxylation	
	Control	+3-MPA	Control	+3-MPA	Control	+3-MPA
NADP-ME Type						
Digitaria sanguinalis	31	31(0)	176	173(2)	56	57(0)
NAD-ME Type						
Panicum miliaceum	140	136(3)	220	223(0)	353	345(2)
PEP-CK Type						
Brachiaria xantholeuca	75	74(1)	165	0(100)	179	24(87)
Eriochloa borumensis	241	239(1)	502	0(100)	281	65(77)
Panicum molle	66	64(3)	117	0(100)	139	25(82)
Urochloa bulbodes	141	148(0)	235	0(100)	208	37(82)

Table 3 Effect of 3-MPA on $^{14}CO_2$ fixation and C₄ acid decarboxylation activities of bundle strands of C₄ plants^a

^a Experimental conditions and substrate concentrations used were as described in **Materials and** methods. 3-MPA, 0.2 mm.

The rates are expressed as $\mu moles~^{14}\mathrm{CO}_2$ fixated or C4 acid decarboxylated/mg chl·hr.

The values in parentheses indicate percent inhibition by 3-MPA.

966

electron transport. However, in the presence of malate, DCMU partly inhibited CO_2 fixation roughly in proportion to the rate of CO_2 fixation with bicarbonate alone. This is expected if DCMU inhibits photochemical production of NADPH but not NADPH generated from NADP-ME. Oxalic acid did not inhibit CO_2 fixation with bicarbonate alone but gave substantial inhibition of CO_2 fixation in the presence of malate (Table 2). The inhibition is proportional to the malate dependent stimulation of CO_2 fixation suggesting that oxalate inhibits by preventing malate decarboxylation as a source of reducing power. When both oxalate and DCMU were added together, conditions which should prevent NADP reduction either through NADP-ME or photochemically, there was little CO_2 fixation by the bundle sheath strands. These results suggest that the NADPH supplies by photosystem II and NADP-ME are independent and additive in their effect.

Recently evidence was presented that 3-mercaptopicolinic acid (3-MPA) is a specific inhibitor of PEP-CK in C₄ plants (12, 14). Table 3 shows the effect of 3-MPA on the photosynthetic activities of the bundle sheath strands of various types of C_4 plants. 3-MPA had no effect on the light-dependent ${}^{14}CO_2$ fixation activities of the bundle sheath strands from species representing the three C₄ groups. 3-MPA did not affect the C_4 acid decarboxylation activities of bundle sheath strands of NADP-ME and NAD-ME type C4 species. However, in PEP-CK species, it completely inhibited the decarboxylation of malate, while causing only a 77-87%inhibition of aspartate decarboxylation by bundle sheath strands. 3-MPA also almost completely inhibited the decarboxylation of malate by the bundle sheath chloroplasts of PEP-CK species, while it had no effect on the malate decarboxylation activity of bundle sheath chloroplasts from NADP-ME species (data not shown). There was no C_4 acid decarboxylation activity of aspartate or malate by bundle sheath chloroplasts of NAD-ME species, and there was also no aspartate decarboxylation by the bundle sheath chloroplasts of any of the species examined.

The complete inhibition of malate decarboxylation by 3-MPA in bundle sheath chloroplasts indicates that the decarboxylation was through PEP-CK only and is consistant with the chloroplastic localization of PEP-CK (10). A 77 to 87% inhibition by 3-MPA of aspartate decarboxylation by strands of PEP-CK species suggests that in these species from 13 to 23% of the aspartate decarboxylation is through an alternate decarboxylase, probably NAD-ME. These results support our earlier observation on 3-MPA inhibition with *E. borumensis* suggesting about 75% of the aspartate decarboxylation is through PEP-CK (12). Considering malate and aspartate together it follows that about 90% of the total decarboxylation capacity of bundle sheath cells in the PEP-CK species examined is through PEP-CK.

That aspartate decarboxylation by bundle sheath strands of D. sanguinalis and E. borumensis which is insensitive to 3-MPA or oxalic acid may be through another decarboxylase such as NAD-ME. Alternatively, with aspartate conversion to oxalo-acetate there may be some nonenzymatic decarboxylation of oxaloacetate. To further clarify the relative roles of various decarboxylases in C₄ species a relatively specific inhibitor of NAD-ME would be quite useful.

Conclusions

Oxalate and 3-MPA appear to be specific inhibitors of NADP-ME and PEP-CK-dependent C_4 acid decarboxylations in C_4 plants respectively. The inhibitors

C. K. M. Rathnam and G. E. Edwards

help to distinguish different decarboxylase systems operating in C₄ plants. It is concluded that in PEP-CK species malate decarboxylation and 75–90% of aspartate decarboxylation is through PEP-CK. About 10–25% of aspartate decarboxylation in PEP-CK species is thus suggested through their NAD-ME system. In NADP-ME species malate decarboxylation is solely through NADP-ME, while aspartate decarboxylation may proceed through the NAD-ME system. In NAD-ME type C₄ species both malate and aspartate decarboxylations may occur only through NAD-ME as no other decarboxylase has been found in this C₄ group.

This research was supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, and by the National Science Foundation Grant, BMS-74-09611. 3-MPA was a generous gift from Dr. H. A. Lardy, Institute for Enzyme Research, University of Wisconsin. Helpful discussions with Drs. Barbara Zilinskas and Cecil C. Still are gratefully acknowledged.

References

- (1) Downton, W. J. S.: Adaptive and evolutionary aspects of C₄ photosynthesis. In *Photosynthesis and Photorespiration*. Edited by M. D. Hatch, C. B. Osmond and R. O. Slatyer. p. 3-17. Wiley-Interscience, New York, 1971.
- (2) Farineau, J.: Photoassimilation of CO₂ by isolated bundle-sheath strands of Zea mays II. Role of malate as a source of CO₂ and reducing power for the photosynthetic activity of isolated bundle-sheath cells of Zea mays. Physiol. Plant. 33: 310-315 (1975).
- (3) Gutierrez, M., G. E. Edwards and W. V. Brown: PEP carboxykinase containing species in the Brachiaria group of the subfamily Panicoideae. Biochem. System. Ecol. 4: 47-49 (1976).
- (4) Gutierrez, M., V. E. Gracen and G. E. Edwards: Biochemical and cytological relationships in C₄ plants. *Planta* 119: 279-300 (1974).
- (5) Hatch, M. D.: The C₄ pathway of photosynthesis: Mechanism and function. In CO₂ Metabolism and Plant Productivity. Edited by R. H. Burris and C. C. Black. p. 59-81. University Park Press, Baltimore, 1976.
- (6) Hatch, M. D. and T. Kagawa: Photosynthetic activities of isolated bundle-sheath cells in relation to different mechanisms of C₄ pathway photosynthesis. Arch. Biochem. Biophys. 157: 39-53 (1976).
- (7) Hatch, M. D., T. Kagawa and S. Craig: Subdivision of C₄-pathway species based on differing C₄ acid decarboxylating systems and ultrastructural features. *Aust. J. Plant Physiol.* 2: 111-128 (1975).
- (8) Kanai, R. and G. E. Edwards: Spearation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies. *Plant Physiol.* 51: 1133–1137 (1973).
- (9) Mayne, B. C., A. M. Dee and G. E. Edwards. Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C₄ plants. III. Fluorescence emmission spectra, delayed light emission, and P. 700 content. Z. Pflanzenphysiol. 74: 275-291 (1974).
- (10) Rathnam, C. K. M. and G. E. Edwards: Intracellular localization of certain photosynthetic enzymes in bundle sheath cells of plants possessing the C₄ pathway of photosynthesis. Arch. Biochem. Biophys. 171: 214-225 (1975).
- (11) Rathnam, C. K. M. and G. E. Edwards: Protoplasts as a tool for isolating functional chloroplasts from leaves. *Plant & Cell Physiol.* 17: 177-186 (1976).
- (12) Rathnam, C. K. M. and G. E. Edwards: C₄-Dicarboxylic acid metabolism in bundle-sheath chloroplasts, mitochondria and strands of *Eriochloa borumensis* Hack., a phosphoenolpyruvate carboxykinase type C₄ species. *Planta* 133: 135-144 (1977).
- carboxykinase type C₄ species. Planta 133: 135-144 (1977).
 (13) Rathnam, C. K. M. and G. E. Edwards: C₄ Acid decarboxylation and CO₂ donation to photosynthesis in bundle sheath strands and chloroplasts from species representing three groups of C₄ plants. Arch. Biochem. Biophys. 182: 1-13 (1977).
- (14) Ray, T. B. and C. C. Black: Inhibition of oxalacetate decarboxylation during C₄ photosynthesis by 3-mercaptopicolinic acid. J. Biol. Chem. 251: 5824-5826 (1976).
- (15) Sarawek, S. and D. D. Davies: The identification and properties of naturally occurring inhibitor of malic enzyme. *Phytochem.* 15: 479–481 (1976).
- (16) Wintermans, J. F. G. M. and A. De Mots: Spectrophotometric characteristics of chlorophyll and their pheophytins in ethanol. *Biochim. Biophys. Acta* 109: 448-453 (1965).

968