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The Forces on a Body moving under the
Surface of Water (second report)

By Hajime Maruo, Kogakushi, Member

Abstract
In this paper, a general formula for the forces acting on a body moving under the surface of
water is obtained as an application of the extended Lagally’s formula. The problem of the wave
resistance experienced by a body moving under the regular sea waves is also discussed.

1. Introduction

The formula given in the first report is quite incomplete, because, first, 11 m
we can apbly this to the pure translatory motion but it is inadequate for g s
the motion including rotation. The other reason is that it is applicable

only when the body is represented by a special distribution of singularit- Fig. 1

ies since the expression involves integrals over the surface of the body. Recently W. Cummins
extended Lagally’s formula to the general unsteady motion. {111 Applying this result, we can
find more general expression for the forces acting on a body moving under the surface of water

with a quite arbitrary manner.
2. Extended Lagally’s formula

Consider an arbitrary potential flow outside a moving body whose surface S is realized by some
distribution of singularities imagined within S. Assume a control surface S’ within S which en~
closes the singularities, and consider the region V; between the surfaces S and S’. (Fig.1)

When the unit normal to the surface S or S’ drawn inward to V;is denoted by n, the force
acting on the surface S is expressd by

fspnd5=pfs[~:—?--—;—(q-q)—92]ndS, (1)

where g=—p¢, the velocity of the fluid. From the last term in the brackets we obtain the
statical buoyancy in the direction of z taken vertically upwards.
Fy=pgV. (2)
The surface integral of the first term can be transformed by means of Gauss’ theorem. If we
assume the surface S or S’ moves or deforms with the normal velocity v, we can write.

9¢ L as=— 8o i3
s o8 IS VXV( at )d" oot "9
=2 [ qirt[ vagas—[ -2 nas (3)
dt Jv, S48 s, Ot )
Again making use of Gauss’ theorem
d d
at J v, 9 dT——E;_ s+s/¢nd$, (4

2. 7R 11 H
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If the position vector of a point on the surface is denoted by r;, we can express
n=0ridon, ) (5)
and making use of Green’s reciprocal theorem, we have T

or

dt S+S’¢nds=7t— ‘s+s/¢ on ds
__a % o _4_ _
0t ) 505 0n TT T a1 ) gy 5 (RODT1ES: (6)
Since on the surface of the body
vn=nq, ) ' C7>
we can write '
/vuqu=f (ng)q ds. (8)
s K] .

If the control surface moves with the velocity v, we have
Un=nv on S

and the last term of (3) is transformed into

fg g—‘:—nds— _ddt— ¢nds—f @p)e. nds—-/ ¢——ds

on
_dvt_ on ds-l—fs/(vq) n ds—fS,cp 3t ds. (9)

If the control surface has a velocity of translation ¥ and the angular velocity of rotation @
about a point ro=r—ri;, we have
v=¥Vi1+w1Xr: and on/dt=a1Xn, (¢}

and we can readily prove

[, [ @oma—@an+ ey Jas=o D

Collecting the above results and making use of the relation [ 2]
1
f l:*—(tz-q)n—(nq)q]ds= 0 (12)
s+s/L 2 .

we obtain finally

=—of | ) a5 @) n|as—pf [ [apriton|ds—pof vards  (13)

When the boundary form of the body is given, the last term of (13) is a known quantity and
the force is expressed completely by the integrals over the control surface.

If the singularities generating the boundary surface S are discrete, the control surface is
taken as infinitely small spheres having their centres at the position of each singularity and
the formula becomes a quite simple form. Consider a body moving with the velocity of trans—
lation ¥V, and the angular velocity @ about a point ry, and the boundary surface being gener—
ated by a distribution of sources of strength o and doublets of the vector moment #, which are
situated at points denoted by the vector ry+r; fixed to the body. Now we write the velocity
potential in the form

=i+ e (19
in which ¢; is the velocity potential due to singularities within the body. Then the force is ex~
pressed by the formula
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d
F=—4 ﬂP/[{d+(PV)}Qs—a(Vo+wxn)+rrz—:—+—£—]df—{rqx %ﬁ:—

—o(rw)+ry(oe)— id?— }P v, ' (15)

where

qe=—p¢e al 14, (16)
rg is the position vector of the centre of gravity of the body relative to the centre of rota-
tion, and V is the volume of the body.

3. A body moving under the surface of water

Now we assume a body moving under the surface of water, and the boundary condition of
the rigid surface is satisfied by a surface distribution of sources of strength o (t) and doublets
of the vector moment p (t) whose position is denoted by r’=ro+r;. Then the velocity potent-
ial is

1 1 . L
o=/ fo= )t —ds—5—[ as[” d8[ "o+ kBpexleB (1)1 de

+—= asf ‘ dr[” a8[” {o(r)+ e Bp(r)YexpkB(D)]sindy i (-1} gic die
TJS —~o0 -n 0
’ - an
where ri=|r—r’'|, E is a vector (icosd, ising, 1), and -
&) =rE+r' o E, ' (18)
When we define the integral

H (. 6, )= {o(®+rBp®}expler' (O E1ds, . a9
the velocity of the external motion becomes
=" a0 "H (x,0 E)Ed
Qe—z—“ L 0/0 (x,0,t)exp(«krE)xE dx
L1 anf" a0f " HGe, 0.09expCer B sindy gt~} G kB (20)
4 — o0 : — . 0 ' : g g . Ad . :

Then the first part of the force due to the external motion, viz. the effect of the free surface,

becomes

' Fl=—4zp/{o-+(p.[7)}q¢ds= ~zpf:defo°°/ﬂ (x,0,8) B(k,0,)cE di

+4pf _t”df [ _"‘de "Bk, 0,6 H(x, 6, Dsiny g (¢~ g kE d. (21

Now we consider a pure translation. According to Green’s formula, the density of the surface
distribution of sources and doublets on the surface S is given by » _

o= (1/4 7) (3)3n) @ p=—fAm)n (23)
If the body is regarded as a very slender symmetric body with respect to the direction of mo~
tion, the contribution of the doublet is comparatively small. Hence the usual approximation in
such a case is to take only the sources.into accouht. Thus we have

o=—1/47)Von, . 29
where ¥, is the velocity of the body, on accunt of the boundary condition, or we have a uni-
form space distribution of doublets of the vector moment (1/4zx) ¥, within the body. In this

case we can write
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H(x, 8, 1) = (1/4 ) (Vo (£) EDexp[kro(t) E1G (k. §) (25)
where
G= f exp(er1 E)dr (26)
1 4 .
Then we find

p
8 »*

k.4 =] —
Fi=— [ _ﬁdefo G (k, 8)|2e™= |V  E|* Eic*dre

+gaaef D16 0)]’[(Vo(t)E’)]E_,/-5x—,cs de

X f jw[Vc('r)E:]exp[lcE_’ro(t) +/cEro('r)]sin{,/ gk (¢—7)}dT, @n

where ry (#) is the instantaneous position of a point fixed to the body whose z componenent is
2o The remainder of the force is given by the formula

F._.=—47zpf (aVotridaldt)ds+pVaVodt, (28)

and substituting (24) we find

F.

0. , (29

Thus the inertia force does not exist and the force is solely due to the effect of the free sur-
face. This result is paradoxical. The reason lies in the fact that the inertia force is induced by
the doublet distribution of (23) which has been omitted. In fact, substitution of (23) into the
formula (15) shows

Fao=p fs(&p/an)nds, (30)

that is the inertia force. If we wish to express the fluid motion by means of the source distri~
bution only, we have to adopt a source strength-(1/4x) (1+k) (Von) where k is the inertia
coefficient of the body in the direction of motion. Then the resulting wave resistance is aug-
mented by the rate of (1+k)% This result has been obtained more explicitly by M. Bessho.[ 3]
On the other hand, if we compare the effect of the free surface given by (27) with the result
in the previous paper, some difference still exists.

‘This is also due to the omission of the doublet distribution. Now consider the doublet
pe=—(1/47)¢en, ' (31

which is attributed to the external motion. Since ¢, is harmonic within the surface S, Green’ s
theorem gives ‘

—(—)ds=[ =% ——dgs,

'/84)5 on\ n s son n N
and the doublet distribution given by (31) is equivalent to the source distribution of the inten-
sity—=(1/4 ) 9¢e/On on the surface S, or by virtue of Gauss' theorem, it is equivalent to the

volume distribution of doublets of the vector moment-(1/4 #) g. within the body. Again taking
an approximation of (25) we find the force due to the effect of the free surface being

LI 4 _
F.,= 8 ::,3 _/_‘defo {—E;LE'FZ kV, (VOE)}IG(K, 6)1382“°K2Edlc
P

£ 4 o A
T8t ./_,dofo |G(x, O)|2e*|V  E|*Ex3dk
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- f;defole(rc,O)l’Exsdlcf_;(Vo(T)E)exP [cEro(t)+rxEro(r)]

xcos{y” gx (t—m}dr, (32)

where V,is the z component of ¥V,. This result coincides with the previous one.* If the motion
includes rotation, G is also a function of time and the expression for the force becomes some—

what complicated.
4. A body moving under waves

The wave resistance of a ship in a seaway has been considered first by T.Hanaoka( 4). He
treated the effect of the on-coming waves in a rather approximate way. Now we can apply the
formula developed in the previous paragraph to this problem.

When a body is moving in the direction of x with a uniform speed of advance V, under waves
whose direction of propagation makes an angle & with the axis of x, it makes small oscillations.
Then the velocity potential is written in the form,

o=0dw+t+ i+ e, : . 33

where ¢y is a velocity potential of the incident waves, ¢; is that due to singularities generating
the surface of the body and ¢, is the effect of the free surface. Then we have

¢w=(ghlo)exp(kz—ikzcosa—ikysina+iot), ' (34)
» =/["'_ (@p)Intds : 5
where
k=2n/A=w?/g. -
If we pnt

H(k,0,8)= f [o+x(pE)]explk (r(H) E)1ds

=exp(ik Votcos®) {Ho(k, 6) +etort Hy(k, 6)} 3N
substitute in (17) and perform the integration with respect to T, we find

___L/“de m{H( g+ iwltH 0 E
P ="ox) f., o(x, 0+e'r*Hi(k, 0)}explk(r1E)]dk

” o0 _
—=-f 48P [ | G cost—r) ~HoCk, 0)expl(riB)1dx

. —-r/2 x/2 x .
+ mo{ f - + L 2} Hy(kosec?d, @)exp[rosectd(r E )]secddd

- -2

KO et " ° L 74
“-eten /_‘dep. v. [, G cos B o] 7oy — e ik, O)exp e(ri )] de

-%/2 -8
+ircoe‘“’1‘{ / - ’ f ‘/2} - H1Ca1, Oexpla(riE)]sec 8d8

- —K/Z

-0
—ucoe‘“x‘{ / ’ f }
-x 0, a1—

Hx(a»_», Dexpla(riE)]sect 4d9, (38)

where

* There are errors of signs in the expressions of the previous report.
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w1=w—FkVcose, r1=r-‘—Vjot, ko=g|Vo?
al} B ko—2cos€(a1/ Vo) Ly ks®— 4 ko cos 0 (@1/ V) (39
a» 2 cos*d ,
61=cos~1(Vyko/dw1)

Then the mean value of the force during one period is given by

where

=the mean value of 4 mpf[a'-i-(pV)]thedS
— b * a. __1_ L1,
__2p/ _“dﬁfo {uar0 (vlc,a)]‘-.’r o1 HiCe, 0)] }xde
—4 pko f _‘ d6P.V. f :(Icéos 20—ko) Y Ho(k, )2k Edk
- 2 /2 L 4 .
+4 m'pxoﬂ{ f — f + }IHo(xosec’ﬁ, O|2E sect 849
-q -2 "2

—2pk0 _' 9PV fom{(,c cos 0401/ Vo)i—kon} 1| Hi (k, 0) |22 Edic

-2,2 -0y
+2mplco{ /- /_ fm } | Hi(ay, ) E sec*0df

—-0, 7 ’
—Zniplco{ 7 } —|H1(az,e)|"Esecﬂede 4
- ;2% a1—

F,,=the mean value of 47rpf[a+(}b7)37¢wds

=2 p(ghle) Hi(k, )k E(). : (42)
E (@) is the value of £ when @=«, and only the real part is to be taken. The x component
of F, gives the usual wave resistance which is the same thing as Hanaoka’s findings.. On the
other hand, the x component of Fou gives the resistance increase due to waves indicated by
Havelock. (5] When the translatory oscillation is expressed by the vector k exp iwif and the
rotational oscillation by the vector @ exp iwif, the velocity on the surface S becomes
v=Votioelnt(h+0xr1), ' (43)
where ¥, means the uniform velocity in x direction. If we take the approximate source distri—
bution due to the motion of the body
o=—(1/4r)vn, ' (44

on the surface S (the slender body assumption), we get

HiCk, @)= — (14 ) kY oE(e)) +ia} ([ exp [krE(a)]n ds

+0 [ explrriE(a)] (rixn)ds} (45)

On the other hand, the force eva‘luat‘éd‘by the undisturbed wave pressure (Froude Kriloff hy-
pothesis) may be written as

ipghe wf explirE(e)]n ds=ewif,, (46)
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and the moment is expressed by'
ipghe ‘wa‘f Sexp [kriE(a)]1(ri X n)ds=et*1tmy,. “n
Then the mean force becomes
Fu=real part of ——& E(e))(hfu-+8m), (48)

since
RV E(a) +ior=io,
This is equivalent to Havelock’s result.

5. Conclusion

The author has obtained a general formula for the force acting on the body moving under the
surface of water, taking the ‘surface disturbance of water into consideration,
Vast applications of this formula are permitted if a suitable distribution of singularities is found
so as to satisfy the boundary condition on the surface of the body.
The problem of the wave resistance of a ship in a sea way is an application of practical impor—-
tance and will be discussed in future.

This work is a part of the researches about the propulsive performance of a ship in a sea
way subsidized by the Ministry of Education.

References

1) W. Cummins, The forces and moments acting on a2 body moving in an arbitrary potential
stream. T.M. B. Rep. No. 780 (1953)

(2] L.M.Milne-Thomson, Theoretical hydrodynamics, 3rd ed. (1955) p.84

{3) M. Bessho, On the wave resistance theory of a submerged body. J.Z.K. vol.99 (1956)

{41 T. Hanaoka, The motion of a ship among waves and the theory of wave resistance.
J.Z.K. vol.98 (1956)

(5] T.H.Havelock, Notes on the theory oy heaving and pitching. T.I.N. A.vol.87 (1945)

{6 H.Maruo, The forces on a body moving under the surface of water' J.Z.K.vol.97 (1955)

NI | -El ectronic Library Service



