155

追波、斜め追波中における二軸二舵 高速痩せ型船の操縦運動とその制御

正員	梅	田	直	哉*	学生員	牧	敦	生*
正員	橋	本	博	公*				

Manoeuvring and Control of a High-Speed Slender Vessel with Twin Screws and Twin Rudders in Following and Quartering Seas

by Naoya Umeda, Member Atsuo Maki, Student Member Hirotada Hashimoto, Member

Summary

Broaching is a phenomenon whereby a ship cannot keep a constant course in severe following and quartering seas with relatively high speed. Once this dangerous phenomenon happens, even a ship complying with the current Intact Stability Code (IS Code) of the International Maritime Organization(IMO) could capsize. This paper focuses on broaching of slender vessels with twin screw propellers and twin rudders because they are often operated in high speed range which make susceptible to broach. First, existing experimental results at the Haslar basin were explained by a mathematical modelling proposed by the authors and extended here to predict broaching of high-speed slender ships in severe following and quartering seas. Second, we discussed the effect of the fin-stabilizer (anti-rolling fin) with which high speed vessels are often equipped, on broaching. Then, we identified an optimal control gains to reduce danger of capsizing due to broaching. Effects of the fin size and its aspect ratio as well as the area of rudder were also investigated. The above results are expected to be used for designing high-speed slender ships with a fin-stabilizer set for avoiding dangerous broaching at seas

1. 緒 言

厳しい追波、斜め追波中を高速で航行する船舶が舵効きを 失い、その針路を保持できなくなる現象はブローチング(操 縦不能現象)と呼ばれ、IMO の IS コードをクリティカルに 満足する船舶においても転覆が発生しうるため、かねてより 危険視されてきた。これまで著者ら¹⁾はこのブローチング を漁船など一軸一舵の小型船舶を対象に研究を実施してき た。しかしながら、二軸二舵方式を採用するような高速 RoPax フェリーや高速艦艇でもブローチングの危険が存在 するため同様な研究が望まれる。

実際にこれらの高速艦艇がブローチングを起こした例と して、1951年にポルトガル海軍の駆逐艦 Lima が荒天下の大 西洋上を高速で追波航行中、大きな波に運ばれ最大限の保針 努力にもかかわらず急回頭し、その間の横揺れ角が 67 度に

* 大阪大学大学院工学研究科 原稿受理 平成 18 年 8 月 4 日 まで達したことや²⁾、Nicholson³⁾がハスラーの角水槽で行った実験において、追波中、ラジオコントロールを用いたマニュアル操舵により航行する長さ5m、二軸二舵方式の模型 船が、左35度の最大舵角をきっていたにもかかわらず、右に回頭してしまう現象を記録したことがあげられる。

最近ではこれらの二軸二舵高速痩せ型船には多くの場合 フィンスタビライザーが装備されており、そのブローチング 発生時の横揺れへの効果も実用上重要であろう。そこで本稿 では、フィンも含めて著者らのこれまでの方法論を拡張した。 そして Lloyd^{4),5)}の自由航走模型実験結果により、本研究に おいて用いる二軸二舵船の数学モデルの検証を試みた。その 後、フィンの有無による斜め追波中における船体運動への影 響を、フィンの面積とアスペクト比の数種類の組み合わせに 対して調査し、それぞれの組み合わせに対するフィンの最適 な制御方法についての検討をした。さらに同様の解析手法を 用いて、舵面積とオートパイロットに関する検討を行った。

2. 対象船について

対象とした船は、Lloyd^{4),5)}が過去ハスラー水槽において 自由航走模型実験を行なったフリゲートタイプの二軸二舵 高速船であり、その正面線図及び主要目を Fig.1、Table1 に 示す。また、この船の方形係数 Cb は 0.49 であり、フルード 数 0.4~0.5 での航行に適した痩せ形であるといえる。

Fig.1 Body plan of the ship

Table.1 Principal particulars of the ship.

L _{BP}	109.7 m
Breadth	12.5 m
Draught	4.2 m
Displacement	2790 t
GM	0.55 m
Natural roll period	12.7 s
Rudder area	7 m ²

3. 数学モデルについて

本研究では、Surge-Sway-Yaw-Roll の4自由度モデルを用 いる。この数学モデルが従う座標系を Fig.2 に示す。 $O - \xi$, η , ζ は原点を波の谷にとり波の位相速度で ξ 方向に進む慣 性座標系であり、G - x, y, z は原点を船体重心にとった船体 固定座標系であるが、 ϕ 方向に回転は行わないものとする。

Fig.2 Coordinate system .

またフィンの作動角 αと舵角 δの定義を Fig.3 に、フィンの 取り付け位置、復原モーメントに対するレバーの長さ、及び 取り付け角度に関する記号の定義を Fig.4 に示す。なお、本 論文における記号の定義は末尾にまとめた。

Fig 4 Definition of the symbols relating to fins

数学モデルの基本的構成は一軸一舵船についての著者ら ¹⁾のものに基づいており、操縦性数学モデルに線型流体力 を考慮している。まず状態ベクトル**X**,制御ベクトル**b**を 以下のように記述する。状態ベクトル**X**は9次元である。

$$\mathbf{x} = (x_1, x_2, \dots, x_9)^T$$

= $(\xi_G / \lambda, u, v, \chi, r, \phi, p, \delta, \alpha)^T$ (1)

$$\mathbf{b}=\left(\boldsymbol{n},\boldsymbol{\chi}_{c}\right)^{T}$$

(2)

その力学系は以下の状態方程式によって表されるとする。

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}; \mathbf{b}) = \left(f_1(\mathbf{x}; \mathbf{b}), f_2(\mathbf{x}; \mathbf{b}), \cdots, f_q(\mathbf{x}; \mathbf{b})\right)^T$$
(3)

$$f_1(\mathbf{x}; \mathbf{b}) = \left\{ u \cos \chi - v \sin \chi - c \right\} / \lambda \tag{4}$$

$$f_{2}(\mathbf{x}; \mathbf{b}) = \{T(\xi_{G} / \lambda, u, \chi; n) - R(u) + X_{F}(\xi_{G} / \lambda, u, \chi, \phi, p, \alpha) + X_{w}(\xi_{G} / \lambda, \chi)\}/(m + m_{\tau})$$
(5)

$$f_{3}(\mathbf{x};\mathbf{b}) = \{-(m+m_{x})ur + Y_{v}(u;n)v + Y_{r}(u;n)r + Y_{\phi}(u)\phi + Y_{\delta}(u;n)\delta + Y_{w}(\xi_{G} / \lambda, u, \chi;n) + Y_{F}(\xi_{G} / \lambda, u, \chi, \phi, p, \alpha)\}/(m+m_{v})$$
(6)

$$f_4(\mathbf{x};\mathbf{b})=r$$

(7)

$$f_{5}(\mathbf{x};\mathbf{b}) = \left\{ N_{v}(u;n)v + N_{r}(u;n)r + N_{\phi}(u)\phi + N_{\delta}(u;n)\delta + N_{w}(\xi_{G} / \lambda, u, \chi;n) + N_{F}(\xi_{G} / \lambda, u, \chi, \phi, p, \alpha) + N_{T}(\xi_{G} / \lambda, u, \chi;n) \right\} / (I_{ZZ} + J_{ZZ})$$

$$(8)$$

$$f_6(\mathbf{x}; \mathbf{b}) = p \tag{9}$$

$$f_{7}(\mathbf{x}; \mathbf{b}) = \{m_{x} z_{H} ur + K_{v}(u; n)v + K_{r}(u; n)r + K_{\phi}(u)\rho + K_{\phi}(u)\phi + K_{\delta}(\xi_{G} / \lambda, u, \chi; n)\delta + K_{w}(\xi_{G} / \lambda, u, \chi; n)$$
(10)
$$-K_{F}(\xi_{G} / \lambda, u, \chi, \phi, p, \alpha) - mgGZ(\phi)\}/(I_{xx} + J_{xx})$$

$$f_{\mathbf{g}}(\mathbf{x};\mathbf{b}) = \left\{-\delta - K_{R}(\boldsymbol{\chi} - \boldsymbol{\chi}_{C}) - K_{R}T_{D}r\right\}/T_{E}$$
(11)

$$f_{9}(\mathbf{x}; \mathbf{b}) = [c_{1}\phi + c_{2}p + c_{3} \{m_{x}z_{H}ur + K_{v}(u; n)v + K_{r}(u; n)r + K_{\phi}(u)p + K_{\phi}(u)\phi + K_{\delta}(\xi_{G} / \lambda, u, \chi; n)\delta + K_{w}(\xi_{G} / \lambda, u, \chi; n) (12) - K_{F}(\xi_{G} / \lambda, u, \chi, \phi, p, \alpha) - mgGZ(\phi) \}$$

$$/(I_{xx} + J_{xx}) - \alpha]/T_{FE}$$

本研究が対象とする二軸二舵船の舵、プロペラにかかわる 数学モデルは李ら⁹のものに基づく。舵角 *d*は(11)式に 示される微分方程式に従い、両舷で同一角をとるものとする。 また、波浪中において船体が波の下り波面に存在するとき、 程度の差こそあれ舵力が変動することはかねてより指摘^{7,8} ^{8,9}されてきた。また本研究と同じ船型の模型を用いた Renilson と Driscoll の実験結果⁴⁾でも、模型船の波との相対 位置により舵力が変動しこれがブローチングの一つの要因 になりうる可能性を示唆している。従って、本論においても 舵流入速度に対する波粒子速度影響を考慮した。

フィンに関する数学モデルは湯室ら^{10),11)}に従いその制 御を表す微分方程式は(12)式に従う。ここで両舷の作動角 は絶対値が同じで、正負の符号が逆の値をとるものとし、横 揺角に対して比例、微分、二階微分制御を行なうとする。 揚力はこの微分方程式を数値的に解くことにより得られた フィンの作動角を用いて計算する。その際、波の粒子速度と 船体の横揺角速度によりフィンへの流入角が変化すること を考慮する。具体的な揚力の計算式は以下に従い、添え字の Pは左舷側、Sは右舷側を表す。

$$L_{P} = \frac{\rho}{2} u_{FP}^{2} A_{FDN} c_{\alpha} \left[-\alpha + \frac{1}{u} \left(-l_{FDN} p - w_{WFP} \cos \beta - v_{WFP} \sin \beta \right) \right]$$

$$L_{S} = \frac{\rho}{2} u_{FS}^{2} A_{FIN} c_{\alpha} \left[\alpha + \frac{1}{u} (l_{FIN} p - w_{WFS} \cos \beta + v_{WFS} \sin \beta) \right]$$
(14)

ただし、揚力係数勾配に関しては、湯室¹⁰⁾ に従い NACA12 翼型のアスペクト比 Λ_{FIN} が ∞ の時の C_a =5.79 に、(15) 式 で表されるアスペクト比の変換を行ったものを用いた。

$$c_{\alpha} = \frac{5.79}{1 + \frac{5.79}{\pi \Lambda_{FIN}}} \tag{15}$$

ここで求められた揚力を用いれば、フィンによる Sway、Yaw、 Roll、Surge の力及びモーメントはそれぞれ以下のものとな る。また(19) 式の Surge 方向力はフィンに生じる誘導抵抗 であり、*Prandtl* の揚力線理論¹²⁾ に基づいて計算をした。

$$Y_F = \left(L_S \sin\beta - L_P \sin\beta\right) \tag{16}$$

$$N_F = -x_F \left(L_P \sin\beta - L_S \sin\beta \right) \tag{17}$$

$$K_F = l_{FIN} \left(L_P - L_S \right) \tag{18}$$

$$X_{F} = -\frac{2}{\pi \Lambda_{FIN} \rho A_{FIN}} \left[\frac{L_{P}^{2}}{\left(u + u_{WFP} \right)^{2}} + \frac{L_{S}^{2}}{\left(u + u_{WFS} \right)^{2}} \right]$$
(19)

また、舵角の最大値、フィンの作動角の最大値、最大作動速 度に関して類似船のデータを用いて制限を設けた。

4. 数値計算結果と考察

4.1 Lloyd の実験との比較

(13)

過去に Lloyd^{4), 5)} がハスラーの角水槽を用いて行ったフ ィンを装備しない状態での二軸二舵高速痩せ型船型につい ての自由航走模型実験結果を、本研究で用いる追波、斜め追 い波中における船体運動予測モデルを用いて説明しうるか どうかを検討した。Lloyd は、波岨度 0.035 かつ目標角 20° の条件のもとで、指令平水中フルード数 Fn と波長船長比え /L を変化させて自由航走模型実験を行い、実験結果を以下 の判定条件の下で Steered と Broached の二つに分類している。

Steered : 3 波に抜かれるまでに波との出会い角が 40° 以 上とならない

日本船舶海洋工学会論文集 第4号

Broached: 3 波に抜かれるまでに波との出会い角が 40° 以 上となる

実験はラジオコントロールによるマニュアル操舵である が、数値シミュレーションではPD制御を仮定しているため、 試行錯誤により概略対応するオートパイロットのパラメー タとして比例ゲイン Kp=0.5,微分時定数 Tp=0.0を推定し、以 下その値に固定して計算を行った。その結果を Fig.5 に示す。 ここで出会い周波数 ω 。が零の条件も参考のため記した。た だしここで、オートパイロットによる影響は副次的なもので あって、主には波力による影響が支配的であったことを付記 しておく。

Fig.5 Comparison between model experiment and numerical simulation.

Fig.5を俯瞰すると、λL が 1.0 から 1.5 付近までの領域で、 実験値と数値シミュレーション結果がよい一致を見せてい ることが分かる。ただし、λL が 1.5 を超える領域において は両者の一致度にやや難があるように見受けられるが、総じ て本研究に用いる、フィンを装備しない状態での、二軸二舵 高速痩せ型船型についての数学モデルが実現象を定性的に 表しうることが理解できる。

ここで Fig.5 において Broached と Steered に判定された典型的な例についての時系列データを以下に示す。

まず Fig.6 は波との出会い角 $_{\chi}$ が40°を超えたために Broached と判定された例である。ブローチング中の横揺角 は最大30°近くにまで達し、ブローチングが危険な現象で あることを物語っている。また、ブローチングを起こすと波 の進行方向に対する速度が低下するため一気に波に追い抜 かれている様子を位相面軌道から読み取ることができる。 Fig.7 は波との出会い角 $_{\chi}$ が40°を超えなかったために Steered と判定された例であり、周期的に波に抜かれながら 平均針路20°をほぼ保持している。

さらに Fn=0.5、 \lambda /L=1.0 付近において Steered と判定され

ていることに着目し、同条件における時系列データを Fig.8 に示す。この例における位相面軌道に着目すると、 ξ/λが 約 0.22 の点、すなわち上り波面で安定な波乗り現象を起こ していることが理解できる。これは、波と等速度で走るより もプロペラ推力が強く、波力が負に作用することで上り波面 において波乗り現象が発生したものであると考えられる。こ の上り波面での波乗り現象中においては、波との出会い角が 大きくなる方向にはモーメントが働かないために、 Yaw 方 向には極めて安定であり、ブローチングに陥る危険はない。

Fig.7.Time series of broaching calculated for Lloyd's condition at Fn=0.35, λ/L =1.6

Fig.8.Time series of broaching calculated for Lloyd's condition at Fn=0.5, $\lambda/L=1.0$

4.2 フィンスタビライザーの有効性の検証

4.1 における検討によって、フィンを装備しない、二軸二 舵高速痩せ型船型についての数学モデルが実現象をよく表 しうると結論が得られた。したがって同モデルを拡張し、フ ィンの要素を付加した数学モデルを用いて、追波、斜め追波 中の船体運動にフィンがいかなる影響を及ぼすのかを検討 した。ここでの海象条件は波岨度 H/λ = 0.06、波長船長比 λ/L=1.0 と設定した。

本解析において用いるフィンの面積 A_{FIN} 、アスペクト比 Λ_{FIN} の組み合わせは Table.2.に示すように、State I、State II、State II、StateIVとして設定した。

Table.2 Investigated	dimensions of	of f	in-stabilizers.
----------------------	---------------	------	-----------------

	$A_{FIN}(\text{m}^2)$	Λ_{FIN}
State I	0	0
State II	5	0.75
State III	10	0.75
State IV	10	1.5

State I はフィンを装備しない状態である。State II は類似船 より推定した状態である。State II は、State II のフィンを2組 取り付けた状態に対応している。ただし、2組のフィンが共 存することで生じる相互干渉の考慮については、本論では行 なっていない。最後に、State IV は取り付け部の長さと、翼端 の長さを変えずに面積を2倍にした状態である。この状態は 既存のフィンの減揺効果を向上させるための改造を施す際 の処置として比較的現実に即したものであると考えられる。 本解析では、指令平水中フルード数 Fn を 0.1~0.5 の区間で、 波との指令出会い角 χ を 0°~45°の区間でそれぞれ分割 し、それらの組み合わせ 90 航走に対する数値シミュレーシ ョンの中で何ケースの転覆が起こりうるかを、フィンの有効 性の評価指標として選ぶこととした。そして、転覆数を最小 とするフィンの制御とはどのようなものかを数値計算を用 いて探索した。具体的には、フィンの比例ゲイン、微分ゲイ ン、二階微分ゲインを、実設計に対応する以下の範囲のすべ ての組み合わせに対し、前述した 90 個の数値計算を行い、 その中で転覆数を最も小さくしうる制御定数の組み合わせ を最適な値として選ぶこととした。

 C_1 : 0, 2, 4, 6, 8, 10, 12, 14, 16 C_2 : 0, 5, 10, 15, 20, 25, 30 C_3 : 0, 5, 10, 15, 20, 25, 30

ここでの転覆判定条件は、平水中における復原力消失角が GM=0.55 mに対して約 50°であることに鑑み、以下のもの とした。

転覆:
$$|\phi| > 65$$
 degrees (20)

以上の事柄をふまえて States II – IVのそれぞれに対して得 られた、上記のフィンの二階微分ゲインに対して比例ゲイン、 微分ゲインを変化させた時の転覆数の変化を各々Figs.9-11 に示す。また、これらの3次元グラフより得られた最適制御 定数を Table.3 に示す。

Fig.9.Number of capsizing with various gain of fin controller in

state II

日本船舶海洋工学会論文集 第4号

Fig.10.Number of capsizing with various gain of fin controller in stateIII

Fig.11.Number of capsizing with various gain of fin controller in stateIV

Table.3. Optimized control parameters of fin-stabilizer.

	<i>C</i> ₁	C 2	C_{3}
State II	0	15	20
StateⅢ	0	10	25
StateIV	0	20	10

Figs.9-11、Table.3 を俯瞰すると、それぞれの状態に対す る最適な制御定数の組み合わせにおいて比例ゲインが 0 と なっていることが読み取れる。このことより、横波中におけ る過去の研究^{10,13)}においても指摘されていることと共通 するが、追波、斜め追波中を航行する際にも、比例ゲインよ り、微分、二階微分ゲインによる減揺効果が高いと結論づけ ることができた。

ここで、得られたフィンの最適制御定数を用い、制御量と してオートパイロット指令コース、指令平水中フルード数の 組み合わせに対して最終的に得られた各種運動の発生領域 での比較検討を、それぞれ States I – IVに対し、Figs.12–15 に示す。この際、最終的に落ち着く運動モードの判定につい ては、定常な周期運動、安定波乗り、ブローチングによる転 覆、それ以外の要因による転覆、転覆しないブローチング、 判定つかずの計6種類に分類を行なった。以下にそれぞれの 判定基準についての説明を記す。まず定常な周期運動の判定 は定められた数値誤差のもとで次の関係式を満たすτが存 在することとした。

$$\cos\left(2\pi x_{1}\left(t\right)\right) = \cos\left(2\pi x_{1}\left(t+\tau\right)\right) \tag{21}$$

$$x_i(t) = x_i(t+\tau), i = 2, \cdots, 9$$
 (22)

また安定波乗りは、全ての状態変数がある一定の誤差範囲 内でそれぞれ一定値に落ち着くという(23)式の条件をもっ て判定を行なう。

$$\dot{x}_i = 0, i = 1, \cdots, 9$$
 (23)

そしてブローチングの定義は、先の Lloyd とは異なり最大 舵角を取ってもなお、その逆方向に回頭角速度が発達するこ と¹⁾ とした。すなわち以下の(24)式を満たす場合にブロ ーチングであるとの判定を行なった。

$$\delta = \delta_{_{MAX}}, r < 0, \dot{r} < 0$$
 or

 $\delta = -\delta_{MAY}, r > 0, \dot{r} > 0$

転覆判定は (20) 式に従い、転覆をした際にブローチング 状態であったか否かの判定は上記 (24) 式に従う。さらに判 定つかずは、定められた計算時間内において他のどの状態に も分類されなかったものであり、これは非周期的な船体運動 を行なっている状況に相当する。

Fig.12 Boundaries of ship motion modes in State I

(24)

Fig.13 Boundaries of ship motion modes in State II

Fig.14 Boundaries of ship motion modes in StateIII

Fig.15 Boundaries of ship motion modes in StateIV

これらの4つの結果より、十分な面積を持ったフィンが追 波、斜め追波中における転覆をよく防ぎうることが理解でき る。しかしながら、ブローチングに関連する領域があまり変 化をしていないことも読み取れ、船の回頭運動自体にフィン は大きな影響を及ぼしえないこともうかがえる。

4.3 舵面積とオートパイロットの最適制御定数の探索

前節ではフィンの最適な制御がいかなるものかについて の検討を行なったが、ここでは舵面積の最適値とオートパイ ロットの最適制御定数を探索する。最適化の順序をこのよう に選らんだ理由は舵特性が推進性能や平水中操縦性能にも 関わってくるためであり、まずは既存の舵特性のもとで斜め 追波中を航行する際におけるフィンの制御に関する最適化 を行い、その後舵特性による転覆数に与える影響を調べるこ ととした。ここでの海象条件、解析手法は、共に4.2 で用い たものと同じとした。この解析において用いるフィンの面積 A_{FIN} 、アスペクト比 Λ_{FIN} の組み合わせは、State I、State IIの みとした。これは StateIII、StateIVでは4.2 において求めた最 適制御定数を用いると、この海象条件下では転覆をほとんど 防ぐため、どの値が最適であるかを判定しがたいためである。 State II におけるフィンの制御定数は4.2 で最適制御定数の組 み合わせとして求めた $C_1=0$ 、 $C_2=15$ 、 $C_3=20$ を用いた。そし て舵面積 A_R 、オートパイロットの比例ゲイン K_P 、微分時定 数 T_D を、実設計に対応する以下の範囲で変化させた。

 A_R : 3.5, 5.25, 7.0, 8.75, 10.5, 12.25, 14.0 (m²) K_P : 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 T_D : 0, 5, 10, 15, 20, 25, 30, 35, 40 (s)

以上の事柄をふまえて State I、State II のそれぞれに対し、 上記すべての舵面積に対するオートパイロットの比例ゲイ ン、微分時定数を変化させた時の転覆数の変化を各々Fig.16、 Fig.17 に示す。またこの図より得られた、State I、State II のそれぞれに対する最適値を Table.4 に示す。Fig.16 と Fig.17 からは、フィンの制御定数に関する比較を行なった場合とは 異なり、舵面積とオートパイロットに関しての定性的知見を 得ることは難しい。舵面積は単に大きいことが望ましいわけ ではなく、最適値がある。これは舵面積が大になると操舵に よる横傾斜が問題になるためであると考えられる。また比例 制御は強く、微分制御は弱い場合に転覆が少なくなる概略の 傾向がうかがえる。

Fig.16. Number of capsizing with various autopilot gains and differential time constants and rudder areas in state I

162

日本船舶海洋工学会論文集 第4号

Fig.17. Number of capsizing with various autopilot gains and differential time constants and rudder areas in state II

Table.4. Optimized rudder area and autopilot parameters.

Fig.18 Boundaries of ship motion modes in State I with

optimized auto pilot.

Fig.19 Boundaries of ship motion modes in State II with optimized auto pilot.

次に、得られた舵面積とオートパイロットの、転覆を最も よく防ぐ上での最適値を用い、制御量としてオートパイロッ ト指令コース、指令平水中フルード数の組み合わせに対して 最終的に得られた各運動の発生領域での比較検討を、それぞ れ State I、State II に対し、Fig.18、Fig.19 に示す。

Fig.18, Fig19とFig.12, Fig.13の比較より、フィンとは異なり、 舵面積とオートパイロットの制御定数が船の回頭運動に大 きな影響を及ぼすことが理解できる。すなわち、これらの値 を最適化することで、ブローチングの発生領域自体を小さく することも可能である。ここでは特に、舵面積や比例ゲイン を単に大きくすることが転覆を防ぐことにつながらないこ とに留意する必要がある。

5. 結言

本研究において用いる二軸二舵船の数学モデルが、Lloyd の行なった実験結果を定性的に表しうることを示し、このモ デルの有効性を確認した。そして同モデルを拡張した、フィ ンを装備した数学モデルを用いてフィンの効果の検討を行 い、フィンが追波、斜め追波中でも減揺効果をよく発揮し、 ブローチングによる転覆を防ぎうることを確認した。また、 フィンの面積、アスペクト比と制御定数をうまく組み合わせ ることにより、ブローチングによる転覆をよく防ぎうること を示した。さらに同様の検討を舵面積とオートパイロットに 関しても行い、フィンに関する検討と同様、ブローチングに よる転覆の危険性を最大限減少せしめうる最適値を見出せ ることも示した。今後はフィンスタビライザーを作動させた 二軸二舵高速痩せ型船に対する追波、斜め追波中における自 由航走模型実験を行い、今回の数値計算結果と比較すること が望まれる。

謝 辞

本研究を実施するにあたって、QinetiQ Sea の deputy technical director である M.R.Renilson 博士、東京大学名誉教 授の藤野正隆先生、(財)日本造船技術センターの鷲尾祐秀博 士、防衛庁技術研究本部の成行英司防衛庁技官より有益なる ご助言を賜った。また本研究の一部は日本学術振興会科学研 究費補助金(基盤 B: 18360415) ここに記して感謝の意を表 する次第である。

参 考 文 献

 Umeda, N., Hashimoto, H. : Qualitative Aspects of Nonlinier Ships Motions in Following and Quartering Seas with High Forward Velocity, Journal Marine Science and Technology, Vol.6, 2002.

2) Saunders, H.E.: Hydrodynamics in Ship Design, Soc Nav

	Archit Mar Eng,(1965).	Izz	z軸周りの慣性モーメント
3)	Nicholson, K. : Some Parametric Model Experiment to	J_{xx}	x 軸周りの付加慣性モーメント
	Investigate Broaching-to, Proc Int Symp Dynamics of	J_{zz}	z軸周りの付加慣性モーメント
	Marine Vehicle and Structure, (1974).	K_F	フィンに起因する roll モーメント
4)	Renilson, M.R., Driscoll, A. : Broaching - An	Κġ	pに関する roll 方向流体力微係数
,	Investigation into the Loss of Directional Control in	K _r	rに関する roll 方向流体力微係数
	Severe Following Seas, Trans. RINA, (1982).	K_{v}	vに関する roll 方向流体力微係数
5)	Renilson, M.R. : An Investigation into the Factors	K_P	オートパイロットの比例ゲイン
-,	Affecting the Likelihood of Broaching-to in Following	K_w	roll 方向波浪強制モーメント
	Seas. Proceeding of the Second International Conference	K _¢	∉に関する roll 方向流体力微係数
	on Stability of Ships and Ocean Vehicles, Tokyo, 1982.	K_{δ}	δに関する roll 方向流体力微係数
6)	李承健、藤野正隆、深沢塔一:二軸二舵船の操縦数	L^{+}	船長
•)	学モデルについて、日本造船学会論文集第 163 号,	l _{FIN}	船体重心からフィンの取り付け位置までの長さ
	1988.	L_P, L_S	フィンで発生する揚力
7)	不破健 吉野泰平 山本德太郎、菅井和夫:小型船	m	船体重量
')	のブローチングに関する実験的研究。日本浩船学会	m _x	x方向の付加質量
	論文集第 150 号 1981	m_y	y 方向の付加質量
8)	一一日就三一藤野正隆 小柳雅志朗 石田茂資 鳥田	n	プロペラ回転数
8)	和英小坂兵を:ブローチング現象発生機構に関する	N_F	フィンに起因する yaw モーメント
	老妪 日本浩船学会論文集第150 号 1981	N_{v}	vに関する yaw 方向流体力微係数
0)	Umeda N Hachimoto H Matsuda A : Broaching	Nr	rに関する yaw 方向流体力微係数
3)	Dradiction in the Light of an Enhanced Mathematical	Nw	yaw 方向波浪強制モーメント
	Model with Higher-Order Terms Taken into Account	Nø	øに関する yaw 方向流体力微係数
	Laural of Marine Science and Technology Vol 7 2003	No	δに関する yaw 方向流体力微係数
10)	Journal of Martine Science and Technology, Vol.7, 2003. 現実影相・Anti Dolling Fin に関する研究(その1) 石	N_T	両舷の推力差による yaw モーメント
10)	lile 採 麻 は 却 第 10 巻 第 1 号 1070	p	横摇角速度
11)	川局御宮以報, 第 10 会第 1 7, 1910. 温安ぎ坦 水公が主: Anti Dolling Fin に関する研究	r	旋回角速度
11)	杨重彰成, 小台御入・And-Konnig Tin に因う 5 m/2	R	船体抵抗
10)	(その2), 4川局浦冶议報, 第10 巻第2 5, 1510.	Т	プロペラ推力
12)	「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	T_D	オートパイロットの微分時定数
13)	尚石敏文、平野准住、 汲口 攻 / 、 向 m 肥心、 丁 % 小	T_E	操舵機の時定数
	大・ノインヘクヒノイリー及び配の横油40転換効本	T_{FE}	フィン制御の時定数
	について,	u	船体速度の x 方向成分
	司日について	u _F	波粒子速度影響を考慮したフィン流入速度
	記方に りいて	UWF	フィンに誘起される波粒子速度のx方向成分
	マーンの工作	v	船体速度のy方向成分
A _{FIN}	ノインの面積	VWF	フィンに誘起される波粒子速度のy方向成分
c	波迷	WWF	フィンに誘起される波粒子速度の z 方向成分
C_I	フィン制御の比例クイン	XF	フィンの長手方向の取り付け位置
C_2	フィン制御の微分ケイン	X_F	フィンに起因する surge 方向力
C_3	フィン制御の一階級分グイン	Xw	surge 方向波浪強制力
Ca	ノインの場力勾配係数	Y _F	- フィンに起因する sway 方向力
g	里刀 加速度	- <u>r</u> . Y.	rに関する sway 方向流体力微係数
GZ	復原礎	-, Y	vに関する swav 方向流体力微係数
Η	波局 	Y .	δに関する swav 方向流体力微係数
Irr	x軸周りの慣性モーメント	- 0	a a serie a conserie a record de la conserie de la La conserie de la cons

NII-Electronic Library Service

Y _¢	♦に関する sway 方向流体力微係数
Yw	sway 方向波浪強制力
$Z_{ m H}$	sway 方向力の着力点高さ
α	フィンの作動角
β	フィンの取り付け角
$\Lambda_{\rm FIN}$	フィンのアスペクト比
δ	舵角
λ	波の波長
ξG	船体重心の波の谷からの水平距離
π	円周率
ρ	水の密度
ϕ	横摇角
x	波方向からの方位角
Хc	オートパイロットの指令コース