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Summary .

From the flow measurement around the bow of a slowly moving full form it was found that except
in the thin boundary layer near the free surface, velocity components agree well with the calculated
values from the velocxty potential which satisfies r1g1d wall free surface condition. In the thin free
surface layer the velocity components change depthwise very rapidly. Based on this experimental re-
sult a theory to analyze the thin free surface layer around slowly moving full forms was developed.
To verlfy the valrdxty of the present theory wave makmg resistance of geometncally 31mp1er forms,
viz., a vertical, infinite c1rcu1ar cylinder and a semi submerged sphere was calculated in low speed
limit. From this calculation it was found that the order of magnxtude and the trend of wave’ making
resistance with respect to Froude number are in good agreement with those of conventional full forms
determined experimentally. -

1. Introduction ,

‘Free surface dlsturbance induced by a slowly movxng fall form is very $mall éxcept in the bow
region. On ‘the free surface around the blunt bow" rlpple like short waves are observed Wlth increase
of ship speed the short waves are transformed into breakmg waves.

To understand such ﬁow characterlstlcs on the free surface near the bow reglon of slowly moving
full forms, flow measurement by use of a 5-hole pltot tube was conducted in Nagasaki- Expermental
Tank. _ . . . o

From the ﬁow‘_ measurement it was found that except in the thin boundary layer near the free sur-
face, velocity compouents agree well with the calculated values from the double model velocity po-
tential which sat':i‘sﬁes the rigid-i&all free sureface condition. In the thin free surface layer, on the
other hand, the velocity componeuts_‘differ from the rigid-wall solutions and change dépthwise very
rapidly until they reach the values of rigid-wall solufions. .

Based on this ‘experimental result a theory to analyze the thin free surface layer around slowly
moving full forms is developed. The theory supposes that there is a thin free surface layer on the
non-uniform flow derived by the rigid-wall solution which is quite acctrate everywhere except in the
thin layer; here the variables change very rapidly in such a way that the free surface conditions are
satisfied.

The characteristics of wave pattern due to a point disturbance on the non-uniform flow was studied
by Ursell (1960). The equatxons for the wave crests are deduced, not rlgorously from the equation
of motion (as for uniform flow), but from assumptions which appear physically reasonable®. In Ursell’s

theory the velocity components of the non-uniform flow are assumed to vary slowly with space vari-
ables. Relating to the wave resistance problem in the low speed limit Ogilvie (1968) studied a two-
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dimensional problem of the thin free surfacé layer on:the non-uniform fiéw, which is determined by
the rigid-wall solution. Ogilvie assumed also that the basic non-uniform flow vary slowly with space
variables while in the thin layer physwal vanables such as ve1001ty and wave helght are assumed to
vary very rapidly®. Coie ' - B

In a recent paper by Hermans wave resxstance problem in low speed'is treated in the similar manner
as Ogilvie and a theory to ana y the free surface flow around a semi submerged horizontal cylinder,
perpendicular to the mcommg flow is developed"') Timman extended Hermans’ theory further to
study flow around ‘a’ semi submerged three-axial ellipsoid with its middle axis horizontally on the still
water -planev so that the free surface meets the bow over a relatively broad. part of the front. Then
the problem is transformed into two-dimensional one in the plane perpendicular to the middle axis®.
Keller (1974) studied wave patterns of full ships:in low speed by a different manner from those
mentioned above, but based on the. similar assumption on-the water, flow, viz., Keller. assumed that for
small Froude number, the flow consists, of the double .body flow plus an oscillatory flow which  re-
presents the wave motion. _The ray methode like thos_e-of_-,geo_metrical op,tice are applied to the._arratysis
of the wave motion®. o i. ‘. | | .. L : B

- The present study is a dxrect extensxon of Ogllvxe S theory to the three d1men51ona1 case w1th _some
modxﬁcatxons in determining a solution., _Originally Ogllvxe did not intend to apply his theory to a
surface piercing body.. . _Here, however, a theory for the free surface flow around a. floating body in
low speed. limit is, developed smce the result of ﬁow measurements motlvated us to. apply Ogilvie’s
theory to our problem,

2. Flow measurement around bow of a slowly moving full form"

For the flow measurement by use of a 5-hole pitot tibe, a simple hull form M. 2201 as shown in
Fig. 1 was used., The pr1nc1pal partlculars of the sh:p model are shown in Table 1. The flow measure-
ments were cond_u_ct_ed. in :_tw_'o._ different l_oad.-con_drtl_ons, Fig. 2 and 3 show the ﬂow patterns around
the bow of shallow draft (260 mm) and deep draf,t: (.40Q mm) _ . . o -
respectively at -speed .U=1.089m/sec (U/¥9L=0.1420).  Tgapble 1. Principal particulars of M. 2201

With increase of ship-speed short waves observed in Fig.: . . _ - , i

) ' S ‘ A Load “ " Deep Shallow
2 and 3 are transformed into rather confused disturbed

flow (breaking waves):as shown in Fig. 4 and 5 (U=. Lpp (m) | 6.000 6. 000
1.284 m/sec, U] VgL=0.1674). | .. . B@m ) 1000.00 | 1000.00
‘ o "d (mm) 400.00 200.00
dn (kg) 2004.7 - 958.68
Lpp/B 6.00 6.00
"Bld ‘ 2.50 '5.00

o Cb 1. 0.8353 0.7989

Rk Cp 0.8359 | 0.7999

/ Cm ) 0.9993 0.9987

Fig.'1 Lines of M. 2201

Fig. 2 Flow pattern around
bow of a full form at
U=1.089m/sec
(U/¥gL=0.1420)
in shallow draft

Fig. 3 U=1.089 m/sec
in deep draft

NI | -El ectronic Library - Service



The Society of Naval Architects of Japan

A Study on Free-Surface Flow around Bow of Slowly Moving Full Forms 3

Fig. 4 U=1.248m/sec
(Ul vgL =0.1674)

Fig. 5 U=1.248m/sec
in shallow draft

in deep draft

Since there are rather confused short waves on the free surface, only the mean elevatlon of free
surface from the still water level were measured first’ (Flg 6). Then the veloc1ty components (#, v, w)
were measured up to the free surface by use of a 5- holé spherxcal pltot tube of 7mm¢ The measured

restlts are shown in Fig. 7 through 10 comparmg with the veélocity components calculated numerically
from the double model velocity potential

. ~10 fo 7 ====Shiollow.draft | ———Di
which satxsﬁes the rlgld-wall free sur- 100mm - Deep droft

face"condition. In those figures z=0
corresponds to the free surface. The

rigid-wall solutions are extrapolated up

a3 \\
oSt T~

) \wmerlevel
to the free surface from the values on L x
100 mm
the still water level,. since they have o
very little change in depthwise. ‘ Fig. 6 Measured wave heights:at U=1.089 m/sec
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Fig. 9 Velocity components at

Fig. 10 Velocity components at
x=0, y=400mm

2=175mm, y=400mm
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From the comparison it is found that except in the thin boundary layer near the free surface (the
thickness is less than 0.12, where 1=2zU?%/g, ¢ is the acceleration of gravity) the measured velocity
components agree well with the calculated values based on the rigid-wall solution. In the thin free

surface layer measured velocity components show rapid changes with increase of depth while the
calculated values show very little change.

3. Theoretical study

From the results of flow measurements we may assume that the figid-wall solution is quite accurate
everyw‘here except in the thin layer near the free surface.
Taking the rectangular coordinate system fixed on the body with the origin on the still water plane, we
set x-axis directing to the uniform flow U and z-axis
P (x,y,2) Solution of thinsurfoce loyer - directing upwards as shown in Fig. 11. Supposing
- ' ~a ship floating on an inviscid, irrotational,
A Vin’eompressible fluid, we eonsider the velocity

potential for the free sorface problem as the sum
of two parts:

Oz, y, 2)=¢Ax, ¥, 2)+ é(x, ¥, 2), (1)

where ¢,(z, ¥, z) is the potential for the rigid-wall

]
)
|
)
1
i
\

4’r (x.y.2 )

S~

rigid-wall solution

. . i problem, and ¢(x, vy, 2) 1s an. additional potential to
Fig. 11 Scheme ‘of t-he‘m-odeled phenomenon
¢r(x v, z) so that the sum satlsﬁes the free surface
conditions. Fig. 11 shows the modeled scheme of the present problem
Although we are con51dermg short waves appeared in front of the blunt bow of a shlp, the surface
tension effects on wave formatxon is neglected for the sxmphaty of treatment.

The boundary value problem for the present study is wrltten as follows.

w . o= cpm+<pw+¢a, S | I (2)
: i i i o ‘ :
[a] L iy Ur=gH(, y)—l- 3 [¢x2+¢w2+¢22]» on  z=Hy), (3)
Bl | 0=HO.+H~0, on z=Hgzv), (4)
‘[N]‘ S 0=0,, #is a normal unit \.r‘eetof'on body surface, ) (5)
- [0/ 7 -~ for x>0,
[R] o o— Ux—- as x:4-y:— o (6)
o(1) for <0

The last one is ‘the condxtlon insuring that waves only follow the ship.

Accordmg to Og11v1e we assume that wave height H(x, y) is expressed as the sum “of two parts:

H(@; 9)=8Az, 9)+ U@, ), -

whex‘e_“'cr;(x, ) is the wave height due to the rigid-wall potential, viz.,
Cr(.’L‘, y)=§§[U2_¢3x(w7 Y, 0)"'¢¥y(‘7"’ Y, 0)]’ (7 )

since ¢rx, ¥,0)=0, and {(z, y) is a superposed wave on {(z, ¥). .
In the low speed limit we introduce the following assumptions about orders of magnitude. The
detail reasonmg of the assumptions is found in Ogilvie’s paper. o

(2) ¢ulz, v, 2)=0(U),
(b) L=, v)=0(U?),
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2 d .
(c) £ 5;—:0(1) when operating on (x, y,2) or {Ax, ),

(d) ¢(=, y, 2)=0(U?),
(e) C(-r, y)=0(UY), .
(f) 3.7c %, %: U~%) when operating on ¢(x, y,2) or ((x, ).’ |

These assumptions are interpreted physically as follows. To an observer at the free surface around
a slowly moving full form, it appears that there is a uniform stream below him which has speed
equal to the local value +/¢2,+¢2,. This observer can not see the free surface disturbance represented
by {{x, y), for it varies on a length scale which is too large.  Only the small, superposed waves, re-
presented by {(x, y), will be visible to him. '

Under the above assumptions about orders of magmtude, the lowest order terms of the free surface

boundary conditions [A] and [B] are rewritten respectively:

(Al 0U@ ¥)+ral, ¥, 0)6el®, ¥, 2)+ Gral®, ¥, Oyl ¥, 2)=0,  on z={o(x, ). - (8)
Bl e, 4, D)= Lal, Yl ¥, 0= L@, V)l v, 0)

Eliminating {(z, ¥) from (8) and (9), and taking the lowest order terms, which are of O(U?), we have
the following free surface condition.

- ga:(xr Y, 0)(]53;::(.%’, Y Z)+—§—¢TI($’ Y, 0)¢9‘?J(m’ Y, O)¢Ill(x’ Y, Z)+'§“¢?y($, Y, 0)¢yy(1/', Y, Z)

+642, ¥, 2)=D(x,y), on  z={(z,y), . (10)
‘where

D@, 9= [k, e, ¥, O+ {6z, V), 7,0 a

In general, we have to solve the equation (10) on z={«{x, ¥). Here, however, for the simplicity of
treatment we - introduce a following non-conformal transformation of coordinates.
X' =z, Y=y, 2’ =z—{r(x, ¥).
‘The Laplace equation for ¢(x’, y’, z’) is written as
o oy oY e e e+ OO,
[U] [U?] [U3]; order
‘Thus, to leading order, ¢ satisfies the usual Laplace equation in terms of the new variables x/, y, 2/,

Taking the lowest order terms and dropping the primes on the new variables, our boundary value
problem is wntten as: :

¢9-'$(x’ Y, 2)+¢?/’!1(xr Y, z)+¢zz($, Y, Z)io, Z<0 . _ ‘ o (12)

1
910, 9, Oaalz, v, 0>+§¢m<:c, ¥, 0)gri(@, ¥> 0)ges(, ¥, 0)

+—;—¢zy(x, ¥, 065, ¥, 0)+ 6, , 0)=D(x, ), (13)
. ,
Uz, y)= r {$ra(@, ¥, 0)pul, ¥, 0)+ dri(x, ¥, 0)du(, ¥, 0)}, - (149)
IO(I/vx2+y2) for x>0
#x, y, 2)= : as 224y —> o C S (19)
10(1) for x<0. ’
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In addition to these conditions the body boundary condition must be added. Here, howeve, this
condition is omitted, since ¢(z, v, 2) is considered as the solution of the first step of iteration cycle.

When dropping the terms including ¢,y, we have a free surface condition which coincides with the
Ogilvie's two-dimensional expression. Ogilvie obtained an explicit solution by use of complex functions.
In our three-dimensional problem, Fourier’s method is used with slight modification.

First we introduce a double layer potential ¥(x, y, 2) which equals to D{z, %) at z2=0 as

T

Wz, y, )= S: kdk S

0
g dekztik{(z—¢&)eos o+(y-n)sin o} S S
T

a&dnD(¢, ). (16)

Then, we assume the form of velocity poténtial é(x, ¥, z) as

* kdk S dfebe+ikz s st ysn0 (g, y, k, 6), an
0

-

¢(.Z', Y, z)‘_“zg:r? S

where F(x, v, k, §) is determined in such a Way 'th';it‘ é(x, y, z) satisfies Laplace equation and the free
surface condition (13). From (17) we may consider that F(z, v, k, #) is relating to the wave amplitude
which depends on the intensity of disturbaﬁce acting on the free surface. In our problem b(w, IR
the right hand side of (13), is considered as disturbance acting on the free surface. Then we may
assume intuitively that F(x, y, k, 6) is expressed in terms of the rigid-wall potential. This assumption
means that the operation 9/dx or 9/dy on F does not change the order of magnitude due to the as-
sumption (c). ¢(x, ¥, 2) is already assumed to be of O(U?%) in the thin boundary layer near the free
surface where x, y, 2=0(U?). Therefore, from (17), we may deduce the following orders for %k and

F(z,y, k, 6): ,
E=0(U-2), F(z,y, k, 9)=0(U?).
Then,
o * ) ) . oF o*F
P, ¥, 2)= ywe So kdk S_x de ekz+zk(xcos8+'usmv? {_kz cos? §F+2ik cos 0—6;+ Fyor } (18)
sy U7 (9]

The second and third terms in the above bracket are higher order -than the first term. The same
rule is applied to ¢y and ¢zy. When taking the lowest order terms, ‘'we see first that ¢ satisfies
Laplace equation. Then, substituting them into the free surface condition (13), F(x, v, k, ) is deter-
mined as follows. '

- ko(x, Y, 0) Seo ~tk( & cos 8+ sind
F(‘"'f'"y’ k, 0)~Ic{ko(a:, v, O)—F) S _w«dsd” etk st N(E, 7)), (19)

where

ko(z, y, 0)=9/{¢r(, y, 0) cos 0+ ¢ry(x, ¥, 0) sin 6)>. ‘ (20)
We see that F(x, y, k, 0) is expressed in terms of rigid-wall solution. Thus F satisfies the previously
assumed conditions, viz., o0Fjox, dF[dy=0O(F). ‘. v

Substituting (19) into (17), and taking the radiation condition (15) into account, we have the follow-
ing expression of our velocity potential:

1 ® /2 - w - e*cos(kw)
8, v, =55 Sg_w d¢ dy DE, 7) S_m d0 ko(z, y, 6) P.V. So e m o
. o0 =/
+"é!7; SS dé dy D(&, 7) S 2/2 ko(x, y, G)eko=v:02 gin (ko(x, v, 6)d}d8, 1)
where w=(x—¢&) cos 8+ (y—y)sin 4.

The wave height {(x, ¥) due to potential ¢(x, ¥, z) is determined from (14) when taking the lowest
order terms of derivatives of ¢ with respect £ and y (Note that the operation 3/dx, 8/dy=0(1) when
operating on kq(x, ¥, 6)).
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*C(x,y)%iggsw dEdr)D(s,y])S 46 ' S k sin (k@)dk

*/2 {¢n(x, ¥, 0) cos 0+ gy, Y» 0)sin 6} ‘ ko(z, y, )~k

g ([~ cos {ko(x, v, 60)w}do
e | aeannen [ o , 0)cos 0+ gry(a, , O)sind) )
In the far downstream where Grz—> U, ¢ry— 0 the wave helght is expressed as
Lz, ¥)= y y do [S(B) sin. i ng sec? 0 (x cosd+y sm 0)} +C(6) cos { 72 sec? 8 (x cos 0+ sin 0)”
—-z/2
(23)
where :
C(0)+zS(0)— ——-—Ué secd § SSN d¢ dy D(&, ) exp {t L sec? § (§ cos 6+ sin 0)}. (29
Then the wave makmg resxstance Rw is expressed as
Rw-n'p U: S ]C(0)+zS(0) |2 cos? @ de (25)

where p is the density of water.
. In principle, we can calculate wave making resistance of any body shape, since D(x, y) is determmed

from ‘the rlgld-wall solutions which are obtainable numerically or analytically.

4. Calculatlon of wave makmg resxstance of a vertlcal mﬁmte, cu'cular
cylmder and a semi submerged sphere at low speed

-Calculation of wave pattern around bow’ of .a-ship by use of the present theory makes it possible
to'‘compare directly with the observation.  However, this calculation nheeds lengthy numerical work
even for a geometrically simple form. * For the preliminary stage to verify the validity of the present
theory, ‘it may be enough ‘to calculate wave making resistance of simple .forms.. o

For the convenience of analytical work, a vertical, infinite circular “cylinder and a semi submetged
sphere are considered as the examples of full forms T‘he ngld‘vv‘all velocity potentials are written as

follows.
or(x, ¥, )=, y)=U ( +xT+_> for a vertical, circular cyl'ixi"der‘ of radius @, - (26)
. o
o, ¥, 2)=U (x—I-W) for a sexpx}jsubrbn‘_exjgedusphere. L (2?')
From (11) we have the following non-dimensional expression for D(z,v).
D f) 1o Lo onsn SR
sUF: = S,P(s),cos ,B+_vs €Q(s) cos 38, for 51, o _(28)

where the origin is fixed at the center of the crossplane of the -cylinder or the sphere and the still
water plane, and Fp,=U]v2ga, x/a scos B, yla=ssin ﬁ, s_x/:/lr:2 +v¥a,

P(s)=2s"%—s"8, Q(s)=—s? for a vertical, circular cylinder,
_ .P(s)= —%s‘3+ ggs‘e—%g—;s‘9 Q(s)-—— —s 8 +3 —%3"9 for a semi submerged sphere.

Substituting D(s, g) into (24), we have

ssec?f

C(O)+i S(0)=';j'4‘a sec? 0{cos ] S:o P(s)]1< ‘ZF;# >-ds—cos3&_ S:o Q(S.)]aj(s sec? 0 > ds },

2F.2

where /i, Js aré Bessel functions, and the cross area of a body and.-the still water plane is excluded
from the integral range, since D(s, B) =o inside the body.
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The asymptotic-expansion of the amplitude function in the low speed is expressed as

16a 1
3

J—E‘ [P(l) cos 64 6(1) cos 36] cos <2F 5

where P(1)=1, Q(l)—-—l for a cyhnder, and P(1)= 75/128 Q(l)——27/128 for a semi submerged sphere.

The wave making resistance coefficient Cy in low speed hmlt i§ expressed as follows.

() +i S(0)~ —i sec? §— E—) +O(Fr®), (29)

1
Cw=Ruyp / U2(20)2~8——92Fn 6+ O(F,8) for a vertical, circular cylinder, (30)
Cw~%?§Fn +—g— V7 F,7sin <F—}§+{—)+O(F”8) for a semi submerged sphere. (31)
”w

Cw values are shown in Fig' 12 comparing with experimental values of a simple ship model M. 2201
used for the flow measurement in section 2 and of a conventlonal full form of Cy=0.84. It is found
that the order of magnitude of theoretical values agrees with that of expenmental values which are
determined by Hughes’ method (Cw=Cioa~(+Kk)Cruugtes» Kk is the form factor). It is also shown
hat the trend of theoretical Cw curves with respect to Froude number resembles that of experimental
curves. . . . ' .

This result encourages us to apply the present theory to the study of free surface ﬁow around
slowly moving full forms.

For the comparison with other theories we calculated wave making resistance of a vertical circular
cylinder by two other methods. The first method is to calculate wave making resistance due to the
surface source distribution on the cylmder which is determmed by the so-called zero-Froude-number
approximation®. - This is the conventional method of calculating wave making resistance. The second
method is the Brard’s one which includes the contribution of the line singularity around the inter-
section of the body and the still water plane in addition to the above surface source distribution®.

In the conventional method the amplitude function due to the surface source distribution for a vertical,
circular ‘cylinder (b/a=e—1 in (39) of Brard’s paper together with C=-U) is written as .

B0)-+iAd0)=—ida Ji ( . ;,  sec? a). | . (32)

The asymptotic form of Cy» at low speed limit is expressed as

128 (1 = '
| A CwNE‘ F2—8 ﬁFnS sin ( B +z>+O(Fn4). (33)
The order of magﬁitude of Cy is different from (30) by Fxt. Therefore it is evident that this formula

gives practically unacceptable high values in low speed. .
In the second method, the amplitude function due to the line singularity is derived as follows for a

vertical circular cylihder (é;——> 1 in (52) of Brard’s paper):

5Bs(0)+26As(0)_-1 da ]1 ( sec? 0) +i8aFy?sect cos30 ], ( L sec? 6)

2F2

—132aFy* cosf cos36 Ji ( 1 sec? ¢9> . ) (34)

2Fy?
It should be noted that the ﬁrst term cancels the amplltude function due to the surface source dis-
tribution. The asymptotic form of the sum of both amplitude functions (32) and (34) in low speed

is written as

Bs(0)+z As(ﬁ)—l—éBs(G)-H 6As(0)~z J" F,. cos 36 cos (2 :_, 5 sec? 0——2—) + O(Fx?). (35)

This is quite similar to. the amplitude function (29) derived by the present theory. The order of
magnitude of both expressions agrees each other, viz., O(Fz®). The asymptotic form of Cw at low
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speed limit is expressed as
6656

1 = :
v ———s (] 4/ 7q1 — e — 8

Cw values expressed by (36) are also shown in Fig. 12.  Cy curve by Brard’s theory is rather oscillatory
compared with that by the present theory.where the oscillatory term is disappeared as a higher order

."

T _'; — Experiment o 8rord’s theory
o — . Simple formM.2201 2
The‘ory L ::29 droft :‘/ (Circular Cylinder)
Cu= Rw } \ Y
"3 b R B : N/ | p-Present theory
3- - zfut . . 4 {Circular Cylinder)
S hor
L = Lood waterline for M.220l ond - & // .
2 L Conventional form. R P 7 < Simple form
" L= 2a for Cylinder ond Hemisphere/./ Shméﬁ?o%lo«;ra ﬂ
-~ Present theory
1+ Hemisphere)
7 __ &~ Conveational
. full form
e Cob= 0.]84
1 1

. o= [ =B J )
-0 "~ 0.0 o.il 0.2 0.13 0.14 0.15 0.16

Y

Fig. 12 Comparison of wave making resistance

quantity for-the case of a virtical, circular cylinder. The reason for the strong oscillatory property
is due to the linearization of the problem in Brard’s theory as explained in the followings.
For a vertical, circular cylinder D(z, y) is rewritten from (11) as » '

) U 19,
Dz, y)=(U+SDrw){"";¢rxx"Z] 5;(50%‘!‘9’%)} :
U. 132 S
+90ry{—; szl’-z_g_a—y(sagz'l'go?’y)}, ) (37)

wh’ére"¢,4 is the perturbation velocity -péte"htial of the double model approximation:

. 2 .
or(x, y)=¢,(q:, y):~ Ux=‘,gi:2 for a vertical, 'éircula?’ cylinder.
Neglecting the square and the cubic terms of the perturbation velocities, we have

2U3%2 { —.1:3—%—3.70'1/2:'
g L @+ I

The non-dimensional expression of D(x, y) in the polar coordinate system is written as

D(.’I?, '!/)=”‘7 907:1::5(-'1:, y)=

%:—3'3 cos 38. (38)

This expression coincides with the second term of the right hand side of (28), viz., P(s)=0. There-
fore the asymptotic form of the amplitude function in the low speed limit is expressed from (29) as

S (] 1 up®
C(6)+1 S(6)~: ‘/?F,,S cos 34 cos ( 2F sec?f— 1 )—l— O(Fy®), (39)

which is exactly the same as Brard’s amplitude function (35). This theoretical result indicates that
the reason for the strong oscillatory property in Brard’s theory is due to the linearization of the pro-
blem. In the low speed limit, as Brard suspected, the linearized free surface condition becomes less

and less accurate. Then we may say that the present higher order theory is one of the ways to
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overcome the lack of accuracy arising in the low speed problem with the linearized . free ‘surface
condition.

5. Concluding remarks

. The present theoretical study was motivated by the results of flow measurement around bow of a
slowly moving full form. By the extension of Ogilvie’s wave resistance theory in low speed limit, a
theory to analyze the thin boundary layer near the free surface around full forms was developed.
From the calculatron of wave makmo' resistance of a vertical, mﬁmte, circular cylinder and a semi
submerged sphere it was found that the. present theory is apphcable to the analytlcal study of the
free surface flow around .conventional full forms in the low speed »CGalculation of .wave making re-
sistance for conventional full forms is left as a future work. Further the calculatlon of wave pattern
around bow of full forms is also awaited for the direct comparrson wzth observations. As Ogilvie
stated, for reasonable determination of the level of v1scous re31stance curve in 1ow speed limit, the
present theory is hoped to be used. Further the present theory is expected to give a new understand-
ing of complex free surface :phenomena around bow of full forms.
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