(昭和 50 年 5 月日本造船学会春季講演会において講演)

二次元水上物体の抵抗について

——半没円柱, 垂直平板——

正員 鈴 木 勝 雄*

On the Drag of Two-Dimensional Bluff Bodies Semi-Submerged in a Surface Flow

by Katsuo Suzuki, Member

Summary

Experiments were carried out for the study of bow breaking waves using two-dimensional circular cylinders and normal plates semi-submerged in a steady surface flow. The influences of the breaking waves on the drag coefficients, the pressure distributions and the surface elevations are discussed.

A theory is presented for the flow past a normal plate with front separation bubbles. The present wake model, two parameters of which are given by the surface elevations on the both sides of the surface-piercing plate, predicts the drag, the pressure distribution on the plate and the surface elevation in front of the plate in good agreement with the experiments.

The drag of two-dimensional semi-submerged bodies is shown to be determined by the surface elevations on the both sides and the equivalent drag which means the one without the effect of free-surface.

The empirical functions for the former is obtained and it is shown that the other one of the plate is calculated from the present theory and the drag of circular cylinder with splitter plate is available to the equivalent one.

1序 言

特に肥大船などの船首部分には波くずれや、それに伴って生ずる船首首飾り渦¹⁾が観察されている。 それのも たらす砕波抵抗成分が、船の全抵抗のうちかなりの割合を占めることもあることが指摘されて以来³, その重要 性が注目されている。波くずれ線とか、砕波抵抗に関する研究^{8,4)}も行われてはいるが、この砕波現象に関する 解析方法も、船の砕波抵抗成分の計算方法も、その研究はまだ発展段階にあると言えよう。

そこで、この砕波現象に関する基礎的資料を得ることを目的として、いくつかの実験を行った。現象としては かなり様相を異にはするが、問題を単純化するために、二次元物体を対象とすることとした。二次元の半円柱、垂 直平板を一様な流れの中に半没させ、砕波現象の観察、圧力分布の計測などを行い、圧力抵抗成分の分解を試みた。

以上の資料はまた,潮流中に浮遊する長いオイル・フェンスなどの二次元的な水上物体に作用する抵抗及び, その成分の値とか,相似則に関する基礎的資料ともなり得るものである。

また波くずれに伴い,物体前方にできる一種の死水領域に注目し,前方剝離渦領域を伴った伴流模型を用いて 波くずれの効果を表わすことを試みた。この伴流模型を用いて,平板前後面の波高の計測値から,半没垂直平板 の抵抗値,及び前方の波くずれ点などを求めることができる。

2 流れの状態

一様流中に半没させた二次元物体のまわりの流れの状態を Fig. 1 に示した。物体前方の水面は、あるフルード 数を越えると (§5), 波くずれの状態を呈し、フルード数増加に伴い激しくくずれ、気泡を吸い込むように なる

* 防衛大学校 機械工学教室

a) Semi-submerged circular cylinder

b) Surface-piercing normal plate Fig. 1 流れの概略図

a)前方の波形

b)後方の波形 Photo.1 半没円柱の波形 (D=0.214 M, H/r=0.463, Re=1.66×10⁵)

(Photo.1)。 この波くずれの位置で流れに 乱 れ が 生 じ,物体前方には表面渦領域が観察される。この渦領 域の物体上にある付着点は停留点で,限界流線はこの 点を境に上下に分かれる。ここで,この波くずれ,渦 領域について,その生成原因,他の現象との類似性な どに関する所見を記してみた。

物体前部の水面近くに停留点ができるため、水面が 上昇する(この量はフルード数に依存する)。水面の 上昇が大きくなると重力と慣性力との釣合がこわれ (§5)、水粒子は水面に沿って前方にすべり落ち、流れ に剥離を、水面に波くずれを起こす。この波くずれの 現象は跳水現象と良く類似しており³、浅水に生ずる 跳水の場合には、跳水の後方の流れは壁面噴流として 取扱うことができると言われている⁵。今の場合には 波くずれの後方の流れは自由噴流現象と見做すことが できよう。ところで自由噴流現象は乱流を起こすほど の充分高いレイノルズ数領域であれば、レイノルズ数 に関係しない現象であるので、この波くずれの現象も レイノルズ数依存性が少ないと予想される。

この自由噴流現象は、水面付近に乱流の剪断流れを 生じたことになり、水面を固定壁と見做せば水面に沿 って乱流境界層が生じたと解釈することもできる。こ のような観点に立つとき、半没物体の前方波くずれに よって生じる現象を乱流境界層内に置かれた(これを over ground という)物体に関する現象から類推する ことによって、理解、予想することができるのではな いかと思われる。実際、乱流境界層内に置かれた物体 の前方には前方剝離渦と呼ばれる渦領域が存在し⁶、

その生成原因は境界層の剪断流れであると言われてい

る^{例えば⁷)}(以降,表面渦領域も前方剝離渦と呼ぶ)。このように固体壁上などの乱流境界層に対するに,自由表面 の波くずれと,その生成原因はまったく異なるにもかかわらず,結果として生ずる現象が類似しているというこ とは興味深い。

また、こうした類推を三次元物体に適用すれば、船首付近の波くずれによって生じる船首首飾り渦と、平板上 に置かれた物体の前方より生ずる馬蹄型渦⁸とを対応して考えることができよう¹。

物体の後方には、剝離に伴う後流渦領域が観察される (Fig. 1)。通常の全役二次元物体の後方には、かなり広 いレイノルズ数領域で、渦を交互に放出する現象が見られるのが普通である。ところが半没物体の場合には、水 面からの水の流出も流入もないため、水面を境界とする流れを形成しており、上述のような運動量の大きな混合 現象は生じない。従って全没物体の現象と比較したとき、水面があたかも固定壁の作用をするかのような効果を 持つと考えられる。こうした現象は、物体に所謂分離板 (splitter plate)を取り付けて後流を制御した流れ、或 いは平らな壁に物体が埋めこまれている時の流れと対応して考えることができる。その意味からは、半没物体の 後方の流れに及ぼす水面の効果を splitter effect 或いは ground effect と呼ぶことができよう。

後流の渦領域の状態及び水面の形状 (Photo. 1) はまた,水路の堰として使われる水門の後側に生ずる水没跳水 (submerged jump) と対応付けて考えることもできる。なお,平板の場合には或るフルード数を越えると平板の背面に水が無くなって,自由表面は噴流の状態となり,その後流は普通の跳水と類似の状態となる。いずれの場合も後流には明らかな波動は見られない。

半没物体の前後に生ずる流れの状態の特徴は、前方では、前方剝離渦が生じ、後方では splitter effect がある

日本造船学会論文集 第137号

ことで、共に水面が固定壁と同じような効果を有していると見做せるので、水面が ground effect を有している と言ってよかろう。半没物体の前後の水面の形状は前方では跳水とよく似た波くずれが生じており、後方では水 没跳水が生じているなど、共に跳水現象という面からながめることもできる。

3 前方剝離渦を伴った伴流模型

水面に半没している物体の前方には、乱流境界層の中に置かれたときに生ずる前方剝離渦と類似した表面渦が 観察されることを述べた。前方剝離渦に関して、Kiya等ⁿは一定強さの剪断流れの中に物体があるとして解析に 成功している。著者は、それとは異なり、所謂 Roshko の伴流模型⁹に自由流線で囲まれた前方剝離渦領域を付

なる関係がある。ここで K = K(k), K' = K(k') はそれぞれ母数を $k, k' = \sqrt{1-k^2}$ とする第一種完全楕円種分, sn 等は Jacobi の楕円関数である。 q_F, q_B は各々,前方,後方剝離流線上の流速である。即ち,前方剝離渦領域 内の圧力係数 $C_{PF}' = 1 - q_F^2$ と背圧係数 $C_{PB} = 1 - q_B^2$ を与えれば、解は求まり、

$$z-z_{0} = \int_{w_{0}}^{w} \frac{dz}{df} \cdot \frac{df}{dw} dw$$
$$= A \int_{w_{0}}^{w} \frac{e^{\zeta}}{(w-w_{I})^{2}} dw$$
$$(3.3)$$
臣力係数 $C_{P} = 1 - e^{-2R_{e}[\zeta]}$

となる。ここでAは正の実数で平板の幅を決める。更に $w_I = \operatorname{nd}(4 \beta | \pi \cdot K, k')$ 。また伴流の半幅 d_W 及び抵抗係 数 C_D は

$$d_{W} = A \frac{\pi^{2}}{4 k^{\prime 2} K} ds \left(\frac{4\beta}{\pi} K, k^{\prime} \right) dc \left(\frac{4\beta}{\pi} K, k^{\prime} \right)$$

$$C_{D} = -C_{PB} d_{W}$$

$$(3.4)$$

により求めることができる。

さて、この伴流模型は C_{PF}', C_{PB} を与えれば完全に解くことができるので、水流中に半役している垂直平板に ついて、この前方剝離渦領域内の圧力係数、背圧係数の計測値を用いれば、その平板の圧力分布、抵抗係数を求 めることができる。その際、伴流模型の平板の半幅としては Fig.1 に示す平板の深さ d と平板前面での水面の 上昇量 η_P とを加えた量に取ることとする。また伴流模型の前方剝離点Aを半没平板の前方に生ずる波くずれの 位置に対応させること、Fig.2の AI 上の圧力係数を半没平板の前方の波形と対応させて考えることも可能であ る。なお、本理論と Kiya 等の理論との比較、乱流境界層内に置かれた平板に関する実験結果との比較を行った 結果¹⁰, 水流中に半没した垂直平板に関しては本理論の方が適しているという考察を得ている。水面の波くずれ に伴う渦運動について、優れた理論的解析方法が開発されていない段階ではこうしたモデル化された流れによる 解析も1つの有効な方法であろう。

4 実験結果

実験は実験部断面が, 1.2 M の回流水槽で行い,使用模型としては, 270 mm , 214 mm の 2 つの半円柱 に垂直壁面を接合したものと,深さ 60 mm, 52 mm, 45 mm, 28 mm の平板を用いた (Fig. 1)。

NII-Electronic Library Service

4.1 波 形

円柱前後の波形を Photo. 1, Fig. 3-1 に示す。ここで、H は上流の 速度水頭でフルード数との間に $H/r = U^2/2 gr = 1/2 F_n^2$ なる関係がある。円柱前方では明らかな波くずれとそれに伴う泡立ち、渦巻きが見られる。円 柱直前では、水流が前壁面に衝突し上方に湧き上がるような 噴流現象が見られる。この湧き上がっている 部分 は、流速が大となる程、顕著に大きくなる (Fig. 3-1)。極く低速では明らかな波くずれは見られず、表面張力波 と思われる波動が観察されたが、今回の実験では波くずれの生じている速度域のみを扱った。Fig. 3-1 はサーボ 式水位計で計測した各流速における波形を示し、各点は約 20 秒程度の時間平均をしたものである。水面の変動 はかなり激しく、水槽の静水面の変動もあるため、精度的には問題はあるが、円柱前方の波くずれの位置と、盛 り上がり量が流速が増すにつれて、前方に圧しつぶされたようになって行くのが判るであろう。また前方の波高 はどの場合にも速度水頭まで上昇していない。一様流速の無限流体中に円柱が置かれている時の速度ボテンシャ ルから計算した、停留点を通る対称軸上の圧力を実線で示した。水面の上昇量の小さい、流速が0の極限で、前 方の波形はこの圧力の値と一致すると考えられるが、H/r = 0.098の場合を除いて高速になる程、波形はこの圧 力を示す曲線から遠ざかっている。円柱後方の水面は水門の後方の流れと同様な湧き立ちを見せるが、全体とし ては Fig. 3-1 に示すように流速にほぼ関係なく一定の形態を示している。

平板の前後方に生ずる波形は円柱についてのそれと 殆んど同じ特徴を 有している。平板の前方の波形を Fig. 3-2 に示す。一様流速の無限流体中の平板のまわりの流れに関する Roshko の伴流模型⁹⁾(背圧係数=-0.8)よ り計算した対称軸上の圧力を点線で図に示す。更に前述した前方剝離渦領域を伴った伴流模型より計算した対称 軸上の圧力を一点鎖線で示した。この伴流模型に使用した C_{PF}', C_{PB} の値は後述するそれらの実験式を用いて計 算した。平板の前面の水面の上昇量が速度水頭まで達しないこと,波くずれによる水面の盛り上がりなど,この 理論の示す波形は実際の波形の特徴をよくとらえていると言えよう。

4.2 前後面波高と前後面圧力係数

物体前面の水面の盛り上った部分の静圧分布を計測し、無限前方の静圧との差を水頭で無次元化した圧力係数

Fig. 3-1 半没円柱 (D=0.214 M) 前後方の波形

25

日本造船学会論文集 第137号

NII-Electronic Library Service

二次元水上物体の抵抗について

は、ほぼ一定である。この静止水面より上の量を平均し前面圧力係数 C_{PF}' と名付ける。波くずれに伴って形成 される前方剝離渦領域内では圧力はほぼ一定であると考えられるから、物体前面の水面の上昇量、即ち前面波高 η_F との間に

$$C_{PF}' = \frac{2 g \eta_F}{U^2} = \frac{\eta_F}{H} \tag{4.1}$$

なる関係が成立する。

それらの計測値を Fig. 4-1, 4-2 に示す。 C_{PF}' と η_F/H は良く一致し,流速が増すにつれて1の値より減少 する傾向がある。模型船に関しても船首端の圧力係数が水面近くで水頭の約9割までしか上昇しないという実験 結果¹¹⁾が得られており、対応して興味深い。

さて、Fig. 4-2 より $C_{PF}', \eta_F/H$ の値はフルード数のみの関数で、レイノルズ数には依存しないことが判る。 このことは §2 で考察した波くずれの現象がレイノルズ数に依存しないであろうという予想と一致 している。 $C_{PF}', \eta_F/H$ がフルード数とどんな関数関係があるかは不明であるが、速度水頭に関して直線で表現すると、最 小自乗法により、平板の場合に次の実験式を得た。

$$C_{PF}' = -0.191 H/d + 0.929$$

$$(4 \cdot 2)$$

 $(4 \cdot 3)$

円柱の場合は計測上の難点があり、実験点が少ないが、平板の実験式と大差ない。なお、後で用いる抵抗算定式 には平均値 $C_{PF}'=0.759$ を採用した。

 $C_{PR} = \eta_R / H$

次に後面圧力係数,即ち背圧係数 *C*_{PB} と後面波高 η_B との間には前側と同様に

Fig. 5-1 背圧係数と後面波高(半没円柱)

値を取っている。平板の場合には両者は一致してフルード数のみの関数であることを示している。速度水頭の一 次式として実験式を作ってみると、

$$-C_{PB}=0.218 H/d+0.691$$

 $(4 \cdot 4)$

となる。

さて、速度を上げて行くと、平板の後面の水面が平板の端より下降する、いわゆる水が切れる状態に至る。こ の状態では平板の端点の圧力は

$$C_{PB} = -d/H \tag{4.5}$$

となる。従って、(4·4)、(4·5)式の交点 H/d=1.080 で水が切れ始まることとなり、実際にこの臨界フルード数は実験的にも確認することができた。

なお、背圧係数の値は平板の後流中に splitter plate を取りつけた場合の値と自由流の場合の値¹²⁾との間にあり、水面の splitter effect を示すものと言えよう。

4.3 圧力分布

半没円柱のまわりの圧力分布を Fig. 6-1 に示す。横軸の θ は半円柱前面の静水面の位置を 0° とし, y/r はその点より鉛直上方の壁面の位置を示す。y/r=0 の付近での圧力分布は 1 より小でほぼ一定である。これは乱流境界層内に置かれた半円柱の前端部付近の圧力分布の特徴と一致している¹³⁾。図中実線は無限領域の完全流体の

日本造船学会論文集 第137号

中に置かれた円柱のまわりの圧力分布である。30° 付近 では実験点は良く理論曲線と一致し、自由表面の波くず れ、前方剝離渦などの影響は少ない。これ は 剪断流の 中に置かれた円柱の場合と異なる点である。90° 付近の 形状は低レイノルズ数の一点が層流域の特徴を示す他は 乱流域の特徴を示している。この付近では自由表面の影 響は特に無い。背圧係数は 90° 付近で層流域の特徴を示 した場合も含めて、ほぼ一定値を取り、平均値は C_{PB} = -0.638 である。この値は円柱後流に splitter plate を 付けて行った Roshko の実験値¹⁴⁾ C_{PB} =-0.5 (Re= 10^4) に近く、前述した水面の spliller effect によるも のと思われる。図中の Θ_B は水没跳水に関する用語に倣 って backed up angle というべき量で⁵,

$$R\sin\Theta_B = -\eta_B \tag{4.6}$$

で定義される。

平板上の圧力分布の一例を Fig. 6-2 に示す。 点線で 示した圧力分布は Roshko の伴流模型による値で, 背圧 係数はその実験点の値を用いている。前面圧力係数 $C_{PF'}$ が1より小さいことなど, Roshko 模型のそのままの適 用は無理である。一点鎖線は本理論による圧力分布で, $C_{PB}, C_{PF'}$ の値は実験式 (4·2), (4·4)式を用いた。端点 付近の不一致を除けば $C_{PF'} < 1$ の効果をよく表わして いる。二点鎖線は Kiya 等の理論による圧力分布で付着 点 (Fig. 2 の点 B) を 0.6 に取ったものである^{7,10}。付 着点,端点付近の状態を良く表わしている。

Fig. 6-2 垂直平板 (d=52 mm) 上の圧力分布

4.4 圧力抵抗とその成分

圧力抵抗は物体に働く圧力を Pi, 大気圧を Po とすれば単位長さあたり

$$R = \int (P_i - P_0) n_x dS \tag{4.7}$$

抵抗係数は

$$C_{D} = \frac{R}{\frac{\rho}{2} U^{2} r} \quad (\exists E h)$$

$$= \frac{R}{\frac{\rho}{2} U^{2} d} \quad (\forall E h)$$

$$(4.8)$$

二次元水上物体の抵抗について

a) of circular cylinder

b) of normal plate Fig. 7 圧力抵抗成分 全抵抗係数は成分の和として

$$C_D = C_1 + C_2 + C_3 \\ C_1 = C_{11} + C_{12}$$

$$(4.9)$$

と書ける。各成分を Fig. 7 に図示した。

 C_1 は物体前後で水面の高さに違いがあることから生じる静水圧抵抗で、 C_{11} は後面で水面が η_B だけ低下したことによる静水圧抵抗、 C_{12} は前面で η_F だけ水面が上昇したことによる静水圧抵抗である。ただし規準面を静止面に取っているため C_{12} は負値を取る。即ち

$$C_{11} = \frac{1}{2} C_{PB}^{2} \frac{H}{r} \qquad ; \frac{1}{2} C_{PB}^{2} \frac{H}{d} \left(\frac{1}{2} \frac{d}{H}\right)$$

$$C_{12} = -\frac{1}{2} C_{PF}^{\prime 2} \frac{H}{r} \qquad ; -\frac{1}{2} C_{PF}^{\prime 2} \frac{H}{d}$$

$$C_{1} = \frac{1}{2} (C_{PB}^{2} - C_{PF}^{\prime 2}) \frac{H}{r} ; \frac{1}{2} (C_{PB}^{2} - C_{PF}^{\prime 2}) \frac{H}{d}$$

$$(4 \cdot 10)$$

第 1, 2 式は,各々円柱,平板に関する式,また()内は臨界フルード数以上の場合の式である。以下,特に 断らない。4.2 で示した平均値,実験式を代入すれば

$$C_{11} = 0.204 \frac{H}{r} ;$$

$$C_{12} = -0.288 \frac{H}{r} ;$$

$$C_{1} = -0.084 \frac{H}{r} ; -0.193 \frac{H}{d} + 0.328 \left(\frac{H}{d}\right)^{2} + 0.006 \left(\frac{H}{d}\right)^{3}$$

$$(4.11)$$

C₂ は静水面より上方の物体の前面の静圧による圧力抵抗で、この静圧はほぼ一定であるので

$$C_2 = C_{PF}'^2 \frac{H}{r}; C_{PF}'^2 \frac{H}{d}$$
 (4.12)

実験式を代入すると

$$C_2 = 0.576 \frac{H}{r}$$
; $0.863 \frac{H}{d} - 0.355 \left(\frac{H}{d}\right)^2 + 0.036 \left(\frac{H}{d}\right)^3$ (4.13)

*C*⁸ は静水面より下方の物体上の静圧分布による圧力抵抗を示す。後方の静止水面下で水の存在しない部分に 背圧に等しい仮空の圧力を加えた式

$$C_{D0} = C_{3} + C_{PB}^{2} \frac{H}{r}; C_{3} + C_{PB}^{2} \frac{H}{d} \left(C_{3} + \frac{d}{H} \right)$$
(4.14)

は全没している物体の抵抗係数に対応すべき量であるので、相当没水抵抗係数と名付ける。

円柱の C_{D0} をレイノルズ数に対してプロットしたのが Fig. 8-1 である。レイノルズ数が 1.2×10⁵ より大の とき、ほぼ一定値を示し、平均値は $C_{D0}=0.298$ である。この値は乱流域の没水円柱の値として適当である。実 線で示した曲線は本実験を行った回流水槽での直立円柱による圧力抵抗係数である。それに較べて、相当没水抵 抗係数がレイノルズ数の低い所で遷移域への立ち上がりを見せているのは、4.3 で指摘した水面の splitter effect などによるものと思われる。この値を(4·14)式に代入すれば

$$C_{3} = C_{D0} - C_{PB}^{2} \frac{H}{r}$$

$$= 0.298 - 0.407 \frac{H}{r}$$

$$(4.15)$$

となり、実験点と比較したのが Fig. 9-1 である。

平板の場合には C₃ を平板の前後の成分に分けて

$$C_3 = C_{31} + C_{32} \tag{4.16}$$

と書き,静止水面下の平板前面の圧力係数の平均値を C_{PF}* と書けば,前面圧力抵抗係数 C₃₁ は

$$C_{31} = C_{PF} \star \tag{4.17}$$

と書け

Fig. 8-2 相当没水抵抗係数(垂直平板)

$$C_{32} = -C_{PB} - C_{PB}^{2} \frac{11}{d} \quad (0) \tag{4.18}$$

と書ける。前面圧力抵抗係数 $C_{31}=C_{PF}$ * を Fig. 9-2 に示す。この値も C_{PF} ' と同様、フルード数のみの関数で 水頭に関する一次式で最小自乗近似すれば

$$C_{PF} \star = 0.745 - 0.089 \frac{H}{d} \tag{4.19}$$

なる実験式を得る。図中一点鎖線は前方剝離渦領域の圧力を(4・2)の実験式,背圧を(4・4)の実験式の値を用いた 本理論より計算,換算した C_{PF} *の値である。(4・19)の実験式と殆ど一致している。 鎖線 は同様 な計算を Kiya 等の理論より求めた値である。臨界フルード数の近くで若干小さめの値をとるようである。さて平板の相 当没水抵抗係数は(4・14),(4・16),(4・18)より

$$C_{D0} = C_{PF} \star - C_{PB} \quad \left(C_{PF} \star + \frac{d}{H} \right) \tag{4.20}$$

となり実験式は

$$C_{D0} = 1.436 + 0.129 \frac{H}{d} \left(-0.089 \frac{H}{d} + 0.745 + \frac{d}{H} \right)$$
 (4.21)

となる。Fig. 8-2 に平板の相当没水抵抗係数と実験式,及び本理論による計算値を示す。 全抵抗係数はまた以上より

$$C_{D} = C_{D0} + \frac{1}{2} (C_{PF}'^{2} - C_{PB}^{2}) \frac{H}{r}; C_{D0} + \frac{1}{2} (C_{PF}'^{2} - C_{PB}^{2}) \frac{H}{d}$$

$$= C_{D0} - C_{1} \qquad \left(C_{D0} + \frac{1}{2} \left(C_{PF}'^{2} \frac{H}{d} - \frac{d}{H} \right) \right) \qquad (4.22)$$

と書ける。二次元の水上物体の圧力抵抗係数は相当没水抵抗係数 C_{DO} と前後面圧力係数 C_{PF}', C_{PB} (或いは前後 面波高 η_F, η_B) とから計算できることをこの式は示している。円柱の場合には C_{DO} は splitter effect を考慮し た全没円柱の圧力抵抗係数を用いればよく,前後面波高のみの計測で全抵抗係数を算出することができる。平板 の場合には C_{DO} は H/d の関数であるが, §3 で開発した理論を適用すれば C_{PF}', C_{PB} の値,すなわち前後面波高 が判っていれば計算することができ,結局全抵抗係数はやはり前後面波高のみの計測で算出することができる。 円柱の場合 C_D の実験式は $C_{DO}=0.298$ を採用すれば

$$C_D = 0.298 + 0.085 \frac{H}{r} \tag{4.23}$$

Fig. 10-1 に円柱の全抵抗係数の実験値と実験式 (4·23), また各抵抗成分の実験式を示した。図中2重丸印は半 没円柱の全抵抗係数 C_T を直接抵抗試験により求めた値である。 C_T が C_D と一致していないのは、 C_T の計測 において直接大きく影響を与える水槽の水位の変化を考慮した修正が困難なために、その影響が含まれていること、二次元流を保つための側板の抵抗が加算されていることなどによるためと思われる。各抵抗成分は H/r に 関して大きな変化をするが C_D に関しては、それらが打ち消し合って結局はほぼ一定値 $C_D \approx C_{DO}$ 、即ち没水円

日本造船学会論文集 第137号

Fig. 10-1 全抵抗係数とその成分(半没円柱)

Fig. 10-2 全抵抗係数とその成分(垂直平板)

 $C_D \doteq C_{DO}$

柱の抵抗係数の値になっていることは興味深いことである。従って工学的には

として半没円柱の抵抗係数を評価することができる。

平板の場合の C_D の実験値,及び実験式と各抵抗成分の実験式を Fig. 10-2 に示した。2 重丸印は抵抗試験に よって直接計測した全抵抗値である。平板の場合には水槽水の水位の変化による修正は容易であるので各実験値 はその修正を施した値を用いている。各抵抗成分の変化については円柱の場合と同じことが指摘できる。全圧力 抵抗 C_D は H/d に関して若干の変動を見せるが,臨界フルード数以下では工学的には $C_D \Rightarrow 1.5$ と評価してよい だろう。

また全体としては円柱の方が平板に較べて自由表面の影響が小さいようである。

5 砕 波 現 象

5.1 臨界条件

ー 一様流中に半没して置かれた二次元物体の前方に生ずる砕波現象の臨界条件などについて,若干の整理を試みる。

 $(4 \cdot 24)$

二次元水上物体の抵抗について

流速が極く低速で、いわゆる波動伝播の臨界速度 23 cm/sec 以下では物体前方には波動は存在せず、波面は滑ら か(もっとも水頭はたかだか3 mm 程度であるが)である。その臨界速度を越えると表面張力波と思われる定常 な波が現われ、その波群には限界線が存在する。流速を増すと、表面張力波の波高が高くなり、その限界線付近 では弱い波くずれが観察される。更に流速を増すと、波くずれが大きくなり、§2 で述べた砕波現象が生ずる。こ のように流速を徐々に増しながら観察を行ってみると、波くずれの初生条件は表面張力波と密接な関係があるこ とがうかがわれる。重力波の波頂前面に生ずる表面張力波に関してはいくつかの文献が知られており、重力波の 波くずれの原因として表面張力が主要な役割を演ずることが指摘されてはいるが^{例えば15},波くずれの初生につい ての明確な条件は知られていない。

Dagan 等¹⁶)は半没物体の前方の波形などを摂動法を用いて解析したが,波くずれについては,それはいわゆる テイラーの不安定性によって生ずるとして,その臨界フルード数を約 1.5 であるとしている。しかしこの値は 我々の実験では不当に大きい値である。しかし,この力の釣合に関するテイラーの不安定性の概念は,実際に生 じている砕波現象を観察している限りでは,波くずれを説明する要因として充分納得できるものである。

さて更に流速を増して行くと、物体直前の水面が激しく噴き上げて来るのが観察される。この噴流的現象が生 ずるフルード数を、種子田は、直立円柱の場合には 1.7 であるとしている(或いは著者の誤解かも知れない)。 我々の二次元的な実験では、この噴流現象は波くずれが起きている場合には、多かれ少なかれ生じており、明確 な臨界条件は得ていない。この噴流現象は物体直前に限られており、湧き上った水は結局前方の波くずれに巻き 込まれて行く。

5.2 砕波抵抗

船の抵抗成分のうち粘性抵抗でありながら、フルード則に従う量を馬場³⁰は発見し、この抵抗成分は砕波によるエネルギー損失であるとして、砕波抵抗と名付けた。二次元砕波現象における、この砕波抵抗成分は跳水現象との類推などから跳水(或いは波くずれ)の後方の表面渦などの渦動流によるレイノルズ応力¹⁷⁾、あるいは、前方剝離渦領域の、いわゆる死水領域形成によるエネルギー損失という言い方も出来よう。ところで、こうした現象は §2 で指摘した如く、渦動流としてエネルギー損失が行われるにも係わらず、レイノルズ数に依存しない現象であって、これは馬場が砕波抵抗について得た結果³とも一致している。

砕波抵抗の計測法は現在のところ wake survey によるしか方法がない。本実験においても、半没円柱直下で それを試みたが、水槽自体の流速分布が一様でない上、下に述べる馬場の方法で推定した砕波抵抗 RwB は

$$C_{WB} = \frac{R_{WB}}{\frac{\rho}{2} U^2 R} = 0.002 \frac{H}{r}$$
(5.1)

と全抵抗に較べて極めて小さいため、精度的に不可能であった。

次に砕波抵抗の算定方法としては,浅水における跳水現象に用いられている方法を応用した馬場の方法³⁰があ るが,仮想の水浅深を仮定しなければならないという難点がある。

Dagan 等¹⁶は, 滑走艇の理論で用いられる bow-returning jet と名付けた噴流による運動量損失として砕波 抵抗を求めたが, 数値計算の結果は馬場による実験値³⁰の約2倍程度になったと述べている。同様な手法が馬場³⁰ により三次元問題に応用されている。

さて、次に砕波抵抗という成分は全抵抗値にとって、どういう意味を持っているかという問題を考えてみたい。具体的に言えば、例えば砕波現象の生じない理想的な状態があると仮定して、その場合の全抵抗値と砕波現象の生じている実際の状態の全抵抗値との差が砕波抵抗になっているかという問題である。そこで半没垂直平板について理想的な状態を想定してみた。すなわち、平板前面の波高は速度水頭と一致して

$$\left.\begin{array}{c}
\frac{\eta_F}{H} = 1 \\
\frac{\eta_B}{H} = C_{PBi}
\end{array}\right\}$$
(5.2)

とする。 C_{DR} を Roshko の伴流模型によって計算される全没平板の抵抗係数とすると、単位幅の平板前面でう ける圧力抵抗 R_F は

$$R_F = (C_{DR} + C_{PBt}) \times \frac{\rho}{2} U^2(d + \eta_F)$$
(5.3)

33

日本造船学会論文集 第137号

平板後面でうける圧力抵抗 R_B は

$$R_B = -C_{PBi} \times \frac{\rho}{2} U^2 \left(d + \eta_B \right) \tag{5.4}$$

静水圧抵抗 Rs は

$$R_{S} = \frac{1}{2} \rho g (\eta_{B}^{2} - \eta_{F}^{2}) \tag{5.5}$$

全抵抗係数は

$$C_{Di} = \frac{R_F + R_B + R_S}{\frac{\rho}{2} U^2 d}$$

$$= C_{DR} \left(1 + \frac{H}{d} \right) - \frac{1}{2} (1 - C_{PBi}^2) \frac{H}{d}$$
(5.6)

ここで C_{DR} として砕波現象の影響の一番少ないと考えられる H/d=0 の場合の全抵抗値 1.436 を採用し, Roshko 模型より C_{PBi} = -0.623 が逆算できる。この値を用いて計算してみると、砕波現象の存在しない場合を 想定した抵抗係数 Cni は

$$C_{Di} = 1.436 + 0.119 \frac{H}{d} \tag{5.7}$$

となり、Fig. 10-2 に示した。相当没水抵抗係数の値に非常に近いのはおそらく偶然であろうが、注目すべきこ とは、この値が実際の全抵抗値 Coをフルード数が1の付近で越えていることである。あるいは上のような設定 とか、算定方法に無理があるかも知れないが、砕波現象を生じさせない理想的な状態は必ずしも抵抗が小さい状 態ではないということは重要なことのように思われる。従って全抵抗のうち、砕波抵抗成分だけを取り出して、 その大小を議論する場合には、他の成分との相関も考えて充分な注意が必要であろう。

5.3 砕 波 点

半没円柱前方の砕波点の位置 #B/r を波 形の写真より読み取り, Fig. 11 に示した (平板については計測していない)。全体と しては H/d について右上りであるが, D= 0.270 M の円柱については低速で左上りの 領域がある。これは表面張力波の限界線を 読み取ったものである。図中実線は平板に ついての本理論の前方剝離点を示したもの で、この実験範囲では円柱の砕波点と傾向 が良く一致しており、本理論による砕波点 推定の可能性が認められる。一点鎖線は Kiya 等⁷の理論の前方剝離点であるが、 砕波点との一致は良好でない。

浅水の跳水現象については, 跳水の長さ 1と跳水の強さ(高さ) 4H との比を求め ることができ¹⁷⁾,入射側のフルード数が大 なるとき

理論値(垂直平板)との比較

 $(5 \cdot 8)$

が成立つ。この式を物体前方の砕波点について適用すれば

x

$$\begin{array}{c|c} \frac{x_B}{\eta_F} \doteq 5\\ \frac{x_B}{d} = 5 \times C_{PF'} \frac{H}{d} \end{array}$$

$$(5 \cdot 9)$$

或いは

CpF' に平板の実験式(4·2)を代入すれば

$$\frac{x_B}{d} \doteq \left(4.5 - 1.0 \frac{H}{d}\right) \frac{H}{d} \tag{5.10}$$

で、図中点線で示した如く実験値と良く一致している。このことは、物体の前方に生ずる砕波現象と跳水現象との類似性を物語っていよう。

6 結 言

船首波くずれ現象,及び,二次元水上物体の抵抗に関する基礎的資料を得るため,半没円柱,垂直平板を用いて,波形観測,圧力分布測定,抵抗試験などの実験を行い,また,前方剝離渦を伴った伴流模型を開発し,以下の結果を得た。

1. 物体前後の砕波現象と跳水現象との類似性が、明らかとなった。

2. また、物体前後の自由表面には ground effect と言えるような効果がある。

3. 砕波現象はフルード則に従う。

4. 前後面波高と速度水頭との比は、前後面圧力係数と一致し、速度水頭の関係として実験式を得た。

5. 水上物体の圧力抵抗は、相当没水抵抗と前後面波高とから求めることができる。

6. 半没円柱の相当没水抵抗は splitter plate を付けた場合の円柱の抵抗とすればよく,他の項は無視しても 大差ない。

7. 平板の場合,各抵抗成分はフルード則に従うが,全抵抗は約1.5としてよい。

8. 砕波現象の初生条件は表面張力波に関係している。

9. 砕波現象が存在しないと仮想した理想的な状態の抵抗は、実際の抵抗よりも必ずしも小さくならない。

10. 前方剝離渦を伴った伴流模型は砕波現象のよいモデルとなっており、 平板の場合には、 前後面波高の計測 によって、圧力抵抗、波形、砕波点の推定ができる。

参考文献

- 1) 種子田定俊:物体まわりの粘性流の観察,粘性抵抗シンポジウム,日本造船学会,(1973), p.35.
- 2) E. Baba: A new component of viscous resistance of ships, 日本造船学会論文集第 125 号, (1969), p. 23.
- .3) E. Baba: Analysis of bow near field of flat ship, 日本造船学会論文集第 135 号, (1974), p.25.
- 4) K. Takekuma: Study on the non-linear free surface problem around bow, 日本造船学会論文集第 132 号, (1972), p. 1.
- 5) N. Rajaratnam : Hydraulic Jumps, Advances in Hydroscience, 4, Academic Press.
- (6) M. C. Good, P. N. Joubert : The form drag of two-dimensional bluff-plates immersed in turbulent boundary layer, J. Fluid Mech., Vol. 31, (1968), p. 547.
- 7) M. Kiya, M. Arie: A free-streamline theory for bluff bodies attached to a plane wall, J. Fluid Mech., Vol. 56, (1972), p. 201.
- (8) B. Thwaites ed.: Incompressible Aerodynamics, Oxford Univ. Press, (1960).
- 9) A. Roshko: On the wake and drag of bluff bodies, J. Aeron. Sci., Vol. 22, (1955), p. 124.
- 10) 鈴木勝雄:前方剝離渦を伴った流れの自由流線理論による解析―その1 平板のまわりの流れ―,防衛大 学校理工学研究報告, 12-4, (1974).
- 11) 並松正明:船体表面圧力の計測例(その 1), 第 34 回 JTTC 第 1 部会資料, (1974).
- 12) S. F. Hoerner : Fluid-dynamic Drag, published by the auther, (1965).
- 13) M. Arie, H. Rouse: Experiments on two-dimensional flow over a normal wall, J. Fluid Mech., Vol. 1, (1956), p. 129.
- 14) A. Roshko: Experiments on the flow past a circular cylinder at very high Reynolds number, J. Fluid Mech., Vol. 10, (1961), p. 345.
- 15) G. D. Crapper : Non-linear capillary waves generated by steep gravity waves, J. Fluid Mech., Vol. 40, (1970), p. 149.
- 16) G. Dagan, M. P. Tulin : Two-dimensional free-surface gravity flow past blunt bodies, J. Fluid Mech., Vol. 51, (1972), p. 529.
- 17) 本間 仁,安芸皎一編:物部水理学,岩波書店.

35