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New  Element Models in Discrete Structural Analvsi,s                                                                            "

                             by Tadahiko  Kawai'

                                    Summary

    A  family ol  new  element  models  in discrete structural  analysis  i･s proposed  in thi,s
             '                       tt
paper.

    These rnodels  consist  of  finite number  of  small  rigid  bodies ccnnected  with  springs

distributed over  the contact  area  of two  neighbouring  bodies. In general size  of  stiff'ness

rnatrices  of  these  elements  are  at most  (6x6) which  are  equal  to or  even  smaller  than

 II2 of  those  of  conventional  finite elements  so  that considerable  reduction  of  computing

time  can  be  expected.

    Effectlveness of these e!ements  in nonlinear  structural  analysis  will  be  dernonstratect

by  seyeral  numerical  examples,

1. Theoretical Basis of  New  Element  Mode}s

  Recently  the  present author  proposed  new  physical

models  for beam  and  plate bending  problerns in

order  to reduce  computing  time  especialiy  in non-

Iinear analysisi)**,  and  shortly  after  the same  idea

has been  extended  to analysis  of  the  plane strain

and  plane stress problems,
  In what  iollows derivation of  new  elements  for

analysis  of  bearn bending,  plate bending  and  plane
strain  problems  will  be briefiy describedL
  First of  all, theoretical  basis of  new  element

models  is explained  briefiy. Consider  the  bending

problem  of a beam  under  lateral loads. Within

elastic range  of  deformation, deformation  is dis-

tributed  throughout  the beam,  but  once  plastic de-
formation starts  either  at  the  point of  load appli-

cation  or  at the  beam  ends,  elastic  deiermation  will

be  absorbed  in the  narrow  portion of  a  beam  where

plastic deiormation  takes place  and  at the ultimate

stage  of  loadiing a  number  of  the so-called  the
"plastic

 hinge" wlll  be formed so that  the  beam
structure  will  collapse  just like a  link mechanism.

  This  mechaRism  consists  ef  rigid  bars and  plastic

hinge$.
  In case  of  bending  problems  of  cencrete  slabs,

similar  experimental  evidence  will be observed.

  Tbat  is, within  the range  of  elastic  bending, de-
formation is distributed over  the whole  plate area,

however,  at  the  limiting stage  of  load applicatien

the plate  will  collapse  under  a  certain  mechanism

 *
 Institute o ± Industrial Science, University of

   Tokyo
**  The  number  in bracket  indicates the  number

  of Iiterature at  the end  of  this paper.

which  censists  of  rigid  plate seglnents,  and  plastic
hinge  lines connecting  those  plate segments.  The

so-called  
"slip

 line theory''  is also  wel!  known  in

plane  stress  as  well  as  plane  strain  preblems  in the
theory  of  plasticity.2)-8]

  According  to this theory,  it is assumed  that  two

dimensional  solids  will  move  under  a  certain  mecha-

nism  which  consists  of  two  dimensional rigid

$egments  and  slip  lines connecting  rigid  segments

and  along  which  they allow  the relative  sliding  of

two  neighboring  segments.  Frem  observation  of

these three experimental  evidence,  the present

author  conceived  concept  oi  the following "Rigid

Bodies-Spring  Models".

  (-i) Beam  bending  element

  Censider  deformatien  of  two  rigid  bars connected

by one  rotational sprin'g  as  shown  in Fig. 1. It is
assumed  that  two  bars are  displaced as  shown  in
this figure under  some  lateral loading.

            I,-,                            lc
      lt--  t-･---- rt
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                                  Jl,.!

      Fig. 1 A  new  beam  bendiilg element

  Denoting  the  displacements  of  the point A,  B  and

C  by  zti-L, ttt, rti+i,  the  following str･ain  energy

expression  can  be derived easily
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  The  similar  expressions  for gOLt3 L'fm  be  clrived.
In the  deformed  state  dO12 and  ]e23  are  inclined
each  other  through  the  retation  angle  eAB and  the
following relation  can  be  easily  obtained

                 ez.
       coseAei?1-
                  2 

=:IAIBtTpiAmB+nAnE

 (7)

When  OAB is small,  the  strain  ener.ay  stored  in the
connectien  spring  will  be given  as  fo!loxvs:

   V(w)=';'kpaelR= 
= d,,ld,, (siiL""iL, +dnAw･･)

                     1 1

                  
+iag(d!,,+gr,)+2tii,,,(d;,+si!.,.)

                                         (8)
where  u7T=two,  zvi, w2,  wsj

  Applying  Castigliano's theorem,  the iollowing
reaction  force vecter  R  can  be  derived

                     Ov

                
R=

 o.  
=KW

 (9)

where  Kis  the stiffness  matrix  to be  obtained.  The

final form  of  the  stiffness  matrix  is shown  in the

Table  1.
  (iii) A  physical model  in plane  strain  problem

  Consider  two  rigid  triangular  pla"tes which  are

connected  by  three  different types  cf  sprSngs  kct, hs
and  kr at  the  middle  point of  boundary  edges  as

shown  in Fig. 3, Centroidal displacements of  each

plate is denoted  by (eti,v2,0i) and  (u!,it2,eL,) respec-

tively.

yt
                          pcints  ･S, oT,ti IOt"1=E  [Entroids
                          of  ME:  :nj  tiICD respectively

  l A<3) m･ iti-Ett--L' ?c
                                 2

                     D CS) t. ,M,  ,, .,,,,
  , }vl .2 1,, i4s

  
f
 B<4J 

i+ t 
.}:.u,n,inE

 l[:[t,or 
y,,.v,.v,

                          ks=  len:.[1', or'  AC

                 C(5)

Structural Analysis

  v(ui-1, tt,, tti+1)=  
k2b
 
/(
 (.Z{.+lli 

U!)2H(
 
ui:f.tlt-IN)21

                                        (1)
where  kb is a  spring  constant.

  It is net  diMcult te derive the  following stiffness

matrix  of a given  system  by  applying  Castigliano's
Theorem
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     2 A  new  plate  bending

         IAx+mAy+nAz=:pA

    @  (x2,y2) by wo,  wi, and

      Alt

 Vegn,M+"Z'!i,-+LA':1't 
MA=d-1/tzii,

      Aie

Zli-1

ui (2)

t{i+l

        1
Mi

 
==

 
kbL

 t,H, (3)

  It can  be  size  of  this

rnatrix  is  and  it is lf2 of
that  of  the  bending  element.

  (ii) Plate

  Consider assemblage  of  rigid  plate elements  shown

in Fig. 2. anda023  are

      Fig. element

connected  whose  constant  is kp. Before
loading these gy plane  and

under  a  given displaced to the

position  whose  the  following
     .equatlon

                                        (4)
Deneting  lateral displacement  of  the  point @(xo, ye),
C) (Xi, Yi), iv2  respectively,

direction cosines  (IA, mA,  nA)  and  pA  can  be  expressed

as  feliows

IA : ±

nA= ± VA?1+rl?2+ztro 
'

where

     xel yDlglo=
     X12 Y12

xij  
--

 xi-xj  ,

ti11 ==  -

PA= ±

     A12

    +Ar:+ltr,

xogll+yoA12+wodilo

ZVDIZV12

yij=yt-'yj,

.'wtt'T+dii}'"Z?3'

          (5)

'YOI
            XOI tVOI
     A12=-
Y12            X12  ZV12

               (6)
and  wij=tvt-tvj

)x

       Fig. 3 A  new  plane  strain  element

  The  displacements  of an  arbitrary  peint  in d  ABC,
for exarnple,  can  be given  b}r the following equation

               u=tti+(y-yi)et,  )
                              i- (10)
               V=Vl-(M-Xl)0i  )

where  the rotatienal  displacement ei is assumed  to

be very  small.

  After some  loading, two  plates are  displaced to

positiens  as  shown  in Fig. 4. The  relative  displace-

ment  of  the  edge  AC  in each  plate  is given  by  6r,

6u and  g. From  simple  consideratien  of 
.creometry,

the relative  displacement vector  of  the  rniddlepoint
                       '

ild'  on  the edge  AC,  M'Our' can  be  given by  the

following equation

NII-Electronic  
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Table  1 Stiffness matrix  of  a  newplate
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 Fig. 4 Two  plates' positions after  deformation

  (i-t4,ilf-y'o.=:S{2u,,+(y,,+ys2)et-(y3i+yst)ei}l
  (A-d7t,)y.,{i-{2v.-(x,,+y,,)e,+(x,t+vst)ei})
                                      (11)
where

           uij=ui-uj,  vtj=vi-vj  (12)
  Denoting  an  unit  vector  along  the  edge  AC  by  t

before deformation  as  shown  in Fig. 3, the  displace-
                             -

ment  component  eu  of  the vector  M'fldi' along  the

edge  AC  can  be  given  as  follows:

     - 1

            
=

 21,, [XS3{2U21+(Y32+ys3)0, fiEEi(MTiff,t)

              -(y3i+ysDOi}÷ ys3{2v2i

              -(Xs2+Xs2)e2+(X3i+xsDei}] (13)

where  lss is length of  the  edge  AC  before deformation.

 Sirnilarly the displacement  6v component  of  the
      -

vector  MM"  perpendicular  to the  edge  AC  can  be

given by the  following equation

         
---

 1

  
i?JiltxAl'M"IZ=ofzs[xss{2vm-(xs2-xso-)e2

                 +(xa!+xsDei}-ys2{2um
                 +(Y32+Y5Z)eE-(Y3i+Ysl)Oi}]2
                                      (14>
Relative angle  change  p of  the  edges  AC  and  A'C'

is also  obtained  frem  following equation

                           P?
             cos  p=(t,  t,)ij1- 2 (15)

where  t' is the unit  vector  along  the  edge  A'C'

after  deformation.

      o!  1

  "" 
`2

 
=
 l2. [(US3+Ug3)M53+(V53+Vg3)Ys3           bn

          +arssU:-a+VssVE3] (16)

  Now  strain  energy  Vto  be stored  in the spring

kd, ks and  kr after  deformation  will  be  given  as

iollows:

           V==-;-kdia?,+-i'ks6UH+Skrp! (17)

  In view  ef  (13), (14), (16) andi (17) it is clearly

seen  that  the $train  energy  V  is a  quadratic  func-
tion  of  (ui,vi,eD and  (u2,v2,e) and  therefore apply-

ing Castigliano's theorem  again,  the  stiffness  matnx

for analysis  of plane strain  problems  can  be  derived･
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 Table 2

ElementModels  inDisgreteStructuralAnalysis

Stiffnessmatrix  of  anewplane  strainelement(xIIIg,)

Xl
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   +ksys3A2i

kctAna22+tesA2i42

  -krlgs

   tttt                .t.ttt..tt-...

  2dn=xs3(x3t+vsl)+Ys3(Ysi+Yil)

  2ti1}=Xs3(Y32--Ys2)-Y53(XS2+X52)

  2db!i=:-xs3(y3i+ysi)+Ys3(Xat+Xii)

  2d22=-Xs3(XaE+Xs2)-Ys3(Ys2+Ys2)

SYMr'  

'

1
)

leayZ3+hsxZ3

          
.....L/

             F
-{kd-ks)xs3ys3Lkam:3+ksyZ3

I
 -(kayssA!2

    -ksxs3niz)
/

hdXs3ti22
  +ksys3di:1･Ikdd:2+ksti']n  +krl:s

  The  final form  of  the  stiffness  matrix  is given
in the Table 2.

  (iv) Method  oi  determinatlon  ef  the  spring  con-

      stants

  The  spring  censtants  in these  stiffness  matrices

can  be  determined  theoretically as  follows:

  In case  of  a beam  element  (Fig. 1), for example,
the curvature  r  can  be  expressed  by

                   2
                      <ei-eiT,) (18)             

'r=-
                li+li-,

From  the inoment-curvature  relation  the  following
equation  is derived

             M=:kb(ei-et-!)==Efr  (19)
Substituting eq.  (18) inte eq.  (19) the following
relation  is easily  Qbtained

      
'
 

･
 2EI

      . 
kb.==it.+t,rl

 <20)

  It is not  d'iMcult to qeTive the iollowing forrnula

lehroi;\iei 
Piiigff

 g?nSt9. 
nt

 
Qf
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given

 
plate

 
element
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                           '         '                ..

  . . ei  .
'

e
 

'

11
           l            d

         -t
                    @

  Fig, 5 Determination  of the spring  constant

        in  the plate  bending element

                     2Dl
                

kp==I"i'h-,
 (21)

  On  the  other  hand  spring  constants  kd, lts and  kr
in the plane  strain  problems  can  be determined  in

                 3
             6

             

           4

                           5
  Fig. 6 Determination of  the spring  constants

         in the plane strain  element

the following way.  Considering two  plates shown

in Fig. 6 the  normal  strains  e  and  shearing  strain

r in these  springs  may  be  given as  follows;

6ve=

   d,+d,
'
 fiur==

 dl+d2

Frorn whic

          ic

          k

And  kr can  be

  Thegiven

 by  the

-(1+u)(1-2v)on  (1+p)(1-2v)ica6r
     E(1-v)  E(1-p)l3s

  Tns  (1+v)lasarr 

'

  2G  EJ,,

                 . (22)
h the  following formulae can  be obtained

E(1-v)l3i

           
"m

 a+y)(1:fi2p)(di+d2)

                  Elas
           s=

              (1+v)(d,+d,)
             determined  as  follows

      rotational  moment  Ml, of  the

           following equation

            .,  =  y3i,lz,, Zf
         ･'･ icr=: 

k,ti21:'

  (v) Convergency  te$t

      solutions

  Fig. 7
clamped  at both  ends  under  a  single

(23)

kr

t

                        :

                         sprlng  ls

                (sg)sds:=krg

                              (24)

              of beam  and  plate bending

shows  the result  of  lirnit analysis  ef  a  beam

                         concentrated
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 Fig. 9 Collapse load analysis  o± a  rectangular

        plate under  a  uniformly  distributed load

corner  of  two  neighbouring  free edges  as  shown  in

Fig. 9.

  Using  mesh  division shown  in the  figure and

adopting  the  standard  load incrernental procedure
in the finite element  analysis  of  inelastie problems,
the loacl-deflection characterlstics  was  searched

under  the assumption  of  uniformly  distributed as

well  as  a  concentrated  load. Results of  analysis

are  shown  in Figs. 9 and  10. Agreement  between

the  present calcu!ation  and  experiment  made  by

other  investigators2) was  found to be extremely

good.

l

Fig,

2

8 Result of

4

convergency

 8
   ntests

load.

  Fig. 8 shows  the  result  of  convergency  test ei  a

rectangular  plate  bending solutions  under  a cen-

centrated  as  well  as  uniformly  distributed leads.

2. Some  Numerical Examples on  the Limit
'
 Analyses of  Plate Bending  and

           PlaRe  Strain Problems

  Currently a  series  of  numerlctil  studies  on  the

applicability  and  eficiency  of  these  new  elements

to analysis  ef structural  problerns have  been made

including linear and  nonlinear  problems  (static,
dynamic  and  instability). Due  to spaee  limitation,

however,  some  examples  on  the  collapse  Ioad

analysis  oi  square  plates under  lateral loads and

limit analysis  of  the  punch  problem  and  elaste-

plastic analysis  of  a  slit  notch  tensile  specimen

under  tensile loading will  be  briefly discussed.

  (or) Colrapse load  analysis  of  square  piates under

       laternl load
  Consider a  square  plate whose  two  neighbouring

edges  are  simply  supported  while  the  other  edges

are  made  iree, but supported  by a  column  at  the

p  i..3.33."- @
MLoL  @}xr

  L ,f
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 ?/ttt / ul /
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  I j kvv
  / t-

J

e.
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 ,. ,, , W' .3 
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 L", lg: fcitt',e,Se- 
,O.",al･",,g

 
.,.ber

 
ef
 
ioading

              stepswherethecen'espondlnghinge]ineappearecl

Fig. 10 Collapse load analysis  of  a  rectangular

       plate under  centrally  concentrated  load

  Calculations were  made  by using  the  domestic

computer  
"HITAC

 8700-8800'' which  is approxi-

mate!y  comparabte  to the  IBM  36e-195. CPU  time

for beth cases  was  10 seconds.

  (S) Analysis of  the punch  problern

  The  punch  problem  of  an  elasto-plastic  slab  as

shown  in Fig. 11 is considered.  This  preblem  isa

standard  plane  strain  problem  in plasticity and  it

was  studied  by  many  invest'igators for ;rarious  cases

of h/b ratios  using  the so-called  
"slip

 Iine theory  
'L

  In the present analysis  a  given  material  is as-
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 sumed  to be  ideal plastic and  the  maximum  sheur-

 ing stress  theDry is used  as  the  yielcl criterien.

 Since the material  is assumed  {nccmpressible after

 yielding, the plastic strain  increment  is purely

 shearing  deiormation. Analysis  was  made  for three

  pJ!p.

                          /lo/t

   i･ .o. .L .

          pmillt=1.oe

          (1.00, exatt)

   ,O.S H.
      I

            t-  ufi  
Sb

                   -2
        O.1 O.! O.] xla  NeEli "'.'ision uscd

        Fig. II Punch  problem  (i) hXb=1

 ,.-/21[

   LS
                          iv,e

                          

     1. 
eia"t'

 
$:L

 (L?!)

  e.s
 

                  6/b
             1...L

       O･1  O-2  O.3 o.4 .1,62 
d･o.f, ±GS

                              c.p.u,  r- 6'.esec

        Fig. 12 Punch  problem  (ii) hlb=2

Ri,';i.OllL

'

[

L1iIJi/1//i..

                                             t79

    different cases  of  hJb raties  as  follews:                      '

        (i) hi'b=1 (ii) h/b=:2 (tii) hib).8.74.
      The  loacl-deformation curves  obtained.  assumed

    inesh  divisien and  slip  lines as  wel,1  as  cemputing

    time  Rre  shown  in Fi'gs 11, 12 and  13.

      It should  be mentionecl  here that  the  rotational

    component  ei was  neglected  in this analysis  so  thRt

    the size  of  stiffness  niatriees  used  was  only  2x2

    and  yet  the  ultimate  loads and  slip  gines obtained

    were  in good  agreement  with  the  results  ebtained

    by  previous authors.4)

      (r) Elasto-plastic analysis  of  a  s!it  nctch  tensile

           sveclmen

      Elasto-plastic incremental analysis  was  made  for

    the  specimens  as shown  in Fig. 14 under  the

    asstimption  ef  no  rotational  displacement  and

    the maximum  shearing  stress  theory.  The  result

    obtained  was  again  in good  agreement  with  the

    result  of previous  investigators3)

                    3. Conclusion

      A  family of  new  elements  especially  suitable  for

    nonlinear  analysis  oi  structural  problems  is proposeel

    in this  paper. Results of numerical  analysis  on

    some  simple  problems  duly justified use  of these

    elements  ior elasto-plastic  structural  analysis.

    Pessible extension  of  this idea to  analysis  of  three

    dimensional  problems  is ebvious.  Such extension

    and  generalization of  these  elements  is now  undEr

    way.  Extensive studies  on  the application'  of these

    models  to limit analysis  ef  structures,  contact

    problems,  plasticity, fracture mechanics,  slope

    stability,  etc.  are  now  being  planned.
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Fig. 14 Analysis of  a  square  plate with  slit notches  under  tensile

      liading (plane strain  preblem)
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