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New Element Models in Discrete Structural Analysis

by Tadahiko Kawai*

Summary

A family of new element models in discrete structural analysis is proposed in this

paper.

These models consist of finite number of small rigid bodies connected with springs

distributed over the contact area of two neighbouring bodies.

In general size of stiffness

matrices of these elements are at most (6x6) which are equal to or even smaller than
1/2 of those of conventional finite elements so that considerable reduction of computing

time can be expected.

Effectiveness of these elements in nonlinear structural analysis will be demonstrated

by several numerical examples.

1. Theoretical Basis of New Element Models

Recently the present author proposed new physical
models for beam and plate bending problems in
order to reduce computing time especially in non-
linear analysis?**, and shortly after the same idea
has been extended to analysis of the plane strain
and plane stress problems.

In what follows derivation of new elements for
analysis of beam bending, plate bending and plane
strain problems will be briefly described.

First of all, theoretical basis of new element
models is explained briefly. Consider the bending
problem of a beam under lateral loads. Within
elastic range of deformation, deformation is dis-
tributed throughout the beam, but once plastic de-
formation starts either at the point of load appli-
cation or at the beam ends, elastic deformation will
be absorbed in the narrow portion of a beam where
plastic deformation takes place and at the ultimate
stage of loading a number of the so-called the
“plastic hinge” will be formed so that the beam
structure will collapse just like a link mechanism.

This mechanism consists of rigid bars and plastic
hinges.

In case of bending problems of concrete slabs,
similar experimental evidence will be observed.

That is, within the range of elastic bending, de-
formation is distributed over the whole plate area,
however, at the limiting stage of load application
the plate will collapse under a certain mechanism
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#* The number in bracket indicates the number
of literature at the end of this paper.

which consists of rigid plate segments, and plastic
hinge lines connecting those plate segments. The
so-called ““slip line theory” is also well known in
plane stress as well as plane strain problems in the
theory of plasticity.2>~%

According to this theory, it is assumed that two
dimensional solids will move under a certain mecha-
nism which consists of two dimensional rigid
segments and slip lines connecting rigid segments
and along which they allow the relative sliding of
two neighboring segments. From observation of
these ‘three experimental evidence, the present
author conceived concept of the following “‘ Rigid
Bodies-Spring Models ™.

(i) Beam bending element

Consider deformation of two rigid bars connected
by one rotational spring as shown in Fig. 1. It is
assumed that two bars are displaced as shown in
this figure under some lateral loading.

v Lia l:

X

Fig. 1 A new beam bending element

Denoting the displacements of the point A, B and
C by w#i—y, i, ui41, the following strain energy
expression can be derived easily
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where kp is a spring constant.

It is not difficult to derive the following stiffness
matrix of a given system by applying Castigliano’s
Theorem
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It can be seen from eq. (2) that the size of this
matrix is 2x2 for each bar element and it is 1/2 of
that of the conventional beam bending element.

(ii) Plate bending element

Consider assemblage of rigid plate elements shown
in Fig. 2. Triangular plates 4 012 and 4 023 are
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Fig. 2 A new plate bending element

connected by a spring whose constant is kp. Before
loading these plates were on the x, ¥ plane and
under a given loading they are displaced to the
position whose equation is given by the following
equation
lax+may+naz=p4 (4)

Denoting lateral displacement of the point @ (o, ¥o),
@ (21, Y1), @ (x2,¥2) by wo, w1, and w; respectively,

direction cosines ({4, 7.4, #.4) and p4 can be expressed
as follows:
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Tii=Ti—%x5, Yij=¥i—¥Yj, and wy=w;—w;

The similar expressions for 4023 can be drived.
In the deformed state 4012 and 4023 are inclined
each other through the rotation angle 04z and the
following relation can be easily obtained

2
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When 64z is small, the strain energy stored in the
connection spring will be given as follows:

cosfyp=1— =lalpt+mamp+nang (7)
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where w7 ={wy, w1, ws, ws}
Applying Castigliano’s theorem, the following
reaction force vecter R can be derived

ov
Jw

where K is the stiffness matrix to be obtained. The
final form of the stiffness matrix is shown in the
Table 1.

(iii) A physical model in plane strain problem

Consider two rigid triangular plates which are
connected by three different types of springs kg, ks
and %, at the middle point of boundary edges as
shown in Fig. 3. Centroidal displacements of each
plate is denoted by (w1, v2, 8:) and (i, vz, §;) respec-
tively.

R= =Kw (9)

y pcints@and @are centroids
A of AASC and AACD respectively
AQ) i G
D) 4. (s 20
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X

Fig. 3 A new plane strain element

The displacements of an arbitrary point in 4 ABC,
for example, can be given by the following equation

M——MH-(?:/—?,/1)491};‘~ (10)

v=01—(r—21)0: )
where the rotational displacement ¢, is assumed to
be very small.

After some loading, two plates are displaced to
positions as shown in Fig. 4. The relative displace-
ment of the edge AC in each plate is given by dyp,
d0x and ¢. From simple consideration of geometry,
the relative displacement vector of the middle point

M on the edge AC, M’M’ can be given by the
following equation
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Table 1 Stiffness matrix of a new plate bending element (x AkAAB \/
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where Ig; is length of the edge AC before deformation.
Similarly the displacement dy component of the

vector M'M"" perpendicular to the edge AC can be
given by the following equation

S tx MM |2=

4, [%53 {2021 — (32— L52)02

(81 51)01} — Y52 {2001
+(Yse+ys2)0e— (Va1 +ys1)01) 12
(14)
Relative angle change ¢ of the edges AC and A’C’
is also obtained from following equation

Fig. 4 Two plates’ positions after deformation cos p=(¢, )= 1_£2_' (15)
(M’M"}x=~1~{2%21+(y32+ysz)82——(y31+y51)51} where # is the unit vector along the edge A'’C’
2 after deformation.
—— 1
(M/M,/)y:E{ZUZI—(xSZ—*_y52)92+(x31+x51)0’} ‘%iz%f[(u53+%53)x53+(053+72§3)1/53
35
(11) + t53ths+VUssUhs] (16)
where Now strain energy V to be stored in the spring
Wij=ui—uj, Vij=Vi—Uj (12) ka, ks and k. after deformation will be given as
Denoting an unit vector along the edge AC by ¢  follows:
before deformation as shown in Fig. 3, the displace- 1 1 1
8 % JJe AP Vet ko by ket (17)
ment component 3z of the vector M’M'* along the 2 2 2
edge AC can be given as follows: In view of (13), (14), (16) and (17) it is clearly

seen that the strain energy V is a quadratic func-
tion of (u1,v1,6:) and (#s,vs, ) and therefore apply-
—(ys1+¥ys1)01} +ys3{2vn ing Castigliano’s theorem again, the stiffness matrix
—(@se+2s2)fe+H (@1 +251)01}] (13) for analysis of plane strain problems can be derived.

——— 1
Sg=(MM', ) 2735[3753 (2o +(Ys2+ Ys3)0
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Table 2 Stiffness matrix of a new plane strain element (x 1/2;)
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The final form of the stiffness matrix is given 3
in the Table 2. 6
(iv) Method of determination of the spring con-
stants
The spring constants in these stiffness matrices o
can be determined theoretically as follows: A

In case of a beam element (Fig. 1), for example,
the curvature # can be expressed by

(0:—0—) (18) 5

F1g 6 Determination of the spring constants
in the plane strain element

= zz+zl_

From the moment-curvature relation the following
equation is derived

M=ky(0;—0:—)=Elr (19) the following way. Considering two plates shown
Substituting eq. (18) into eq. (19) the following in Fig. 6 the normal strains ¢ and shearing strain
relation is easily obtained 7 in these springs may be given as follows:
‘ . 9EI e oy (1+v){1-—2v)on _ _ (A+v)3—-2v)kadr
T (20) ditds | E(l—v) E(—)las
It is not difficult to derive the following formula . o _ Tns _ (1+v)ksom
for the spring constant of .a gwen plate element as dit+d: 2G Elss
shown in Fig. 5. : (22)
- ' From wh1ch the following formulae can be obtained.
- E(1—v)ss
(1+v)1—2v)(di+d>)
(23)
o Elss
T (14 )(ditds)

And kr can be determined as follows:
The rotational moment M, of the spring k, is
given by the following equation

/2
M,= g * ——(Sgo)st-—ky-(p

Fig. 5 Determination of the spring constant J=tgs/z las

in the plate bending element o kf;% (24)
kp____2~Dl__ (21) (v) Convergency test of beam and plate bending
hiths solutions
On the other hand spring constants k4, ks and k&, Fig. 7 shows the result of limit analysis of a beam

in the plane strain problems can be determined in clamped at both ends under a single concentrated
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Fig. 7 Collapse load analysis of a clamped
beam under a concentrated load
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x—xC, concentrated load
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Fig. 8 Result of cbnvergency tests

load.

Fig. 8 shows the result of convergency test of a
rectangular plate bending solutions under a con-
centrated as well as uniformly distributed loads.

2. Some Numerical Examples on the Limit
Analyses of Plate Bending and
Plane Strain Problems

Currently a series of numerical studies on the
applicability and efficiency of these new elements
to analysis of structural problems have been made
including linear and nonlinear problems (static,
dynamic and instability). Due to space limitation,
however, some examples on the collapse load
analysis of square plates under lateral loads and
limit analysis of the punch problem and elasto-
plastic analysis of a slit notch tensile specimen
under tensile loading will be briefly discussed.

(a) Collapse load analysis of square plates under

lateral load

Consider a square plate whose two neighbouring
edges are simply supported while the other edges
are made free, but supported by a column at the

NHE ¥l 5E
rL:
Moy e
10k @] BN
] f 'T,).“
H ree S 1
H 8
N )
H 67
! 7
51 © I
i 129
; 3 10
i DY 2 10
W — . .
0.273) 377, Hinged line: Number in the figure
0T T A3 *~?  implies number of loading steps

where the corresponding hinge line
appeared.

Fig. 9 Collapse load analysis of a rectangular
plate under a uniformly distributed load

corner of two neighbouring free edges as shown in
Fig. 9.

Using mesh division shown in the figure and
adopting the standard load incremental procedure
in the finite element analysis of inelastic problems,
the load-deflection characteristics was searched
under the assumption of uniformly distributed as
well as a concentrated load. Results of analysis
are shown in Figs. 9 and 10. Agreement between
the present calculation and experiment made by
other investigators® was found to be extremely
good.

pp3 O
M| ey
F
¥
.4 = /j“@
2
2b
KW —hinged line ~— unloaded line
ML,
L 0.213 Number in th g ding
0 0.1 0.3 er !n € corresponding

Number in the figure implies number of loading

steps where the corresponding hinge line appeared

Fig. 10 Collapse load analysis of a rectangular
plate under centrally concentrated load

Calculations were made by using the domestic
computer “HITAC 8700-8800"’ which is approxi-
mately comparable to the IBM 360-195. CPU time
for both cases was 10 seconds.

(8) Analysis of the punch problem

The punch problem of an elasto-plastic slab as
shown in Fig. 11 is considered. This problem isa
standard plane strain problem in plasticity and it
was studied by many investigators for various cases
of &/b ratios using the so-called “slip line theory ™.

In the present analysis a given material is as-
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sumed to be ideal plastic and the maximum shear-
ing stress theory is used as the yield criterion.
Since the material is assumed incompressible after
vielding, the plastic strain increment is purely
shearing deformation. Analysis was made for three

p/2k
oo /slip lincs
pm/2k=1.00
(1.00, exact)
0.5
L4 o 1 8

2
0.1 0.2 0.3 x10 Mesh division used

Fig. 11 Punch problem (i) k/b=1

»/2k
1.5 |~ slip line
.
1.0+
pm/2k=1.23
exact sol. (1.22)
0.5~
8/b
L 1 1 i
0.1 0.2 0.3 0.4 -2 d.o.f. = 66
x10
c.p.u, = 6.0sec

Fig. 12 Punch problem (ii) 4/b=2

R
7o dof =92

30r C.p.U. = 23.7sec

N

different cases of %/b ratios as follows:
(1) hlb=1 (il) h/b=2 (iii) A/6=8.74.

The load-deformation curves obtained, assumed
mesh division and slip lines as well as computing
time are shown in Figs 11, 12 and 13.

it should be mentioned here that the rotational
component #; was neglected in this analysis so that
the size of stiffness matrices used was only 2x2
and yet the ultimate locads and slip lines obtained
were in good agreement with the results obtained
by previous authors.®

(7) Elasto-plastic analysis of a slit notch tensile

specimen

Elasto-plastic incremental analysis was made for
the specimens as shown in Fig. 14 under the
assumption of no rotational displacement and
the maximum shearing stress theory. The result
obtained was again in good agreement with the
result of previous investigators®.

3. Conclusion

A family of new elements especially suitable for
nonlinear analysis of structural problems is proposed
in this paper. Results of numerical analysis on
some simple problems duly justified use of these
elements for elasto-plastic structural analysis.
Possible extension of this idea to analysis of three
dimensional problems is obvious. Such extension
and generalization of these elements is now under
way. Extensive studies on the application of these
models to limit analysis of structures, contact
problems, plasticity, fracture mechanics, slope
stability, etc. are now being planned.

/
D) N
TRk =0844

iy Deveioprnent of vield iles

Fig. 13 Punch problem (iii) 4/6>8.74
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Mesh division of the
hacched area

\l

F/P,=0.867
(P, =4kh)

(ii1) Development of slip lines in the left half
of a square plate with slit notches at
various stagas of loadings

2.657 l
(2.571)

2435 l

d.0.£. = 108
c.pou. = 26.2 sec

Fig. 14 Analysis of a square plate with slit notches under tensile

liading (plane strain problem)
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