(昭和52年11月 日本造船学会秋季講演会において講演)

50キロ高張力鋼の溶接熱ひずみ脆化と 材質評価法の検討

正員	佐	藤	邦	彦*	正員	豊	田	政	男*
正員	Л	口	喜	昭**	正員	有	持	和	茂**

Hot Straining Embrittlement and Material Assessment of 50kg/mm² High Strength Steel

by Kunihiko Satoh, Member Masao Toyoda, Member Yoshiaki Kawaguchi, Member Kazushige Arimochi, Member

Summary

It is known that the remarkable effect of the pre-existing defect on the brittle fracture initiation characteristics of welded joint is mainly caused by the interaction between the residual stress and the deterioration of the fracture toughness due to the weld thermal strain cycles at the tip of the defect, so called the hot straining embrittlement. This embrittlement is not always accompanied with the change of metallurgical structures and moreover the region of the embrittlement is limited only in the very vicinity of the tip of the defect. Nevertheless it is clear that this embrittlement is one of the most important factors which cause the low stress brittle fracture initiation even in the service temperature in the case of the mild steel and 50 kg/mm² class high strength steel.

In the present paper, various factors which have considerable effects on the hot straining embrittlement are extracted and effect of the temperature and the amount of the strain at the tip of the defect on the deterioration of fracture toughness are quantitatively evaluated. A simple testing method which uses a small size COD specimen prestrained at 250° C is developed to evaluate the susceptibility to the hot straining embrittlement. A mechanism of the hot straining embrittlement is studied by the results of this testing method, so called PBCT (Pre-compression Bending COD Test).

1緒 言

先在欠陥の存在が溶接継手の脆性破壊挙動に著しい影響を与えることは、いわゆる Wells-木原試験における Before Weld Notch (BWN)継手の破壊発生温度の著 しい上昇として良く知られている^{1),2)}。

著者らも先在欠陥が継手の脆性破壊挙動に与える影響 を定量的に明らかにすることを目的として、同様の試験 片を用いた詳細な検討を行なった結果,BWN にみられ る破壊発生温度の著しい上昇は,継手の残留応力に加え, 溶接過程中に切欠先端部が受ける著しい熱ひずみサイク ルによる破壊靱性値の低下,いわゆる溶接熱ひずみ脆化 との重畳効果によることが示された^{3),4)}。また,ここで 示された脆化現象は必ずしも組織変化を伴うことなく, かつ先在欠陥先端の非常に限られた領域でのみ認められ るものであるにもかかわらず,その継手強度に与える影 響は軟鋼や 50 キロ鋼の場合,ボンド脆化や SR 脆化に 勝るとも劣らないものであることが明らかとなり,これ らのクラスの鋼材の低応力脆性破壊発生の最も主要な要 因の1つであろうと考えられるに至った。

本研究においては,溶接熱ひずみ脆化に対する材料, 施工面からの対策の確立に資することを目的に,各種影 響因子の抽出と,その定量的な把握を行なった。また, その過程で,その脆化の程度を定量的に把握するための 簡便な小型試験法の開発を行ない,これらにより得られ た結果をもとに溶接熱ひずみ脆化の機構に関する若干の 実験的考察を行なった。

2 溶接熱ひずみ脆化に及ぼす溶接熱ひずみ 履歴の影響

溶接熱ひずみ脆化は、その発生過程から考えて、溶接 により受ける熱ひずみ履歴に代表される力学的要因と、 鋼材の組成等に代表される冶金的要因の重畳作用に支配 されるものと推測される。

^{*} 大阪大学工学部

^{**} 住友金属工業(株)中央技術研究所

1174

Fig. 1 Design for BWN COD specimen (2c=38, 50, 100 mm)

溶接熱ひずみ履歴の相違が破壊靱性値に与える影響を 調査するため、Fig.1 に示す様に、先在切欠長さを 38、 50、100mm の3種に変えることにより、切欠先端部の 受ける熱ひずみ履歴を変化させた再現曲げ COD 試験片 を用いて、脆化の程度に与える熱ひずみ履歴の影響を調 査した。供試材の化学組成、機械的性質を Table 1 に 示す。

COD 試験結果を Fig.2 に示す。なお,限界 COD 値 は,切欠端で測定されたクリップゲージ変位を,Wells の式⁵⁾を用いて切欠先端の値へ換算している。いずれの 切欠長さにおいても BWN の切欠先端部の限界 COD は, 祠一温度での素材の値に比べて著しい低下を示してい る。しかし,その劣化の程度は,切欠長さにより異なり, 切欠長さ 50mm, 100mm の BWN type はほぼ同程度

Fig. 2 Effect of crack length on critical COD of BWN COD specimen

の劣化を示すが、切欠長さ 38mm のものは、前者より も劣化の度合いが小さい。

次に、おのおのの試験体の切欠先端部が溶接により受ける熱ひずみ履歴を定量的に把握するため、熱弾塑性 FEM を用いて溶接に伴う切欠先端部が受ける熱ひずみ 履歴の解析を行なった。解析条件は実験に用いた溶接 条件と一致させ材料定数の温度依存性を考慮した⁹。な お、解析における熱源としては瞬間平面熱源を用いた。

Fig. 3 に解析結果を示す。切欠先端の $2 \text{mm} \times 2 \text{mm}$ の領域が受ける熱ひずみ履歴は、切欠長さが変化することにより異なる。最高到達温度は、切欠長さの短かい順におよそ 600° C、 500° C、 250° C であり、切欠先端部の残留相当塑性ひずみは、それぞれ 8.2%、7.3%、4% である。Fig. 3 にみられる熱ひずみ履歴の大小関係と、Fig. 2 の限界 COD の劣化の程度とは必ずしもよい相関がみられず、熱およびひずみの相互的な効果により脆化が支配されることがわかる。

Fig. 3 Effect of crack length on thermal strain cycle in the vicinity of crack tip during welding

c	Si	Mn	Ρ	s	AT	Ƴ.S. (kg/mm²)	T. S. (kg/mfi)	Elog (%)	vTs (℃)	Plate thickness
0.15	0.24	1.39	e100	0.007	0.031	3 5.6	52.5	26.8	-49	30 (mm)

50キロ高張力鋼の溶接熱ひずみ脆化と材質評価法の検討

с	SI	Mn	٩	s	AI	YP (kg/mm²)	T`S (kg.∕mm ²)	El (%)	vEo (kg-m)	Plate thickness (mm)
0.16	0.33	1.38	0.020	0.008	0.0 33	35	53	26	22.7	25

Table 2 Chemical composition and Mechanical properties

3 熱ひずみ脆化に及ぼす熱・ひずみの影響 と、溶接熱ひずみ脆化把握のための試験 法について

3.1 熱ひずみ脆化に及ぼす熱・ひずみの影響

前章のような再現曲げ COD 試験法によると,先在切 欠先端に溶接により熱・ひずみ履歴を与えるため,この 部分が受ける温度とひずみ量を独立に変化させることが できない。そこで高温予ひずみによる再現試験を行な い,熱ひずみ脆化に対する温度とひずみ量の影響を調べ た。

Table 2 に供試鋼板の化学組成と機械的性質を示す。 この材料の母材 COD 試験結果,および 2c=50 mm の 先在切欠に溶接を行なって切り出した再現曲げ COD 試 験結果は Fig. 1 に示す方法によりあらかじめ求めてお いた。

熱ひずみ脆化に対する温度の影響を調べるために, Fig.4 に示す原厚曲げ COD 試験片を 150℃ から 500℃ までの数温度に加熱,保持した後,非常に短時間で適当 な変形を曲げによって与えた。ひずみ量については、 Wells-木原タイプの大型試験片における, Before weld Notch 試験片の切欠先端部が受ける残留相当塑性ひずみ と同量のひずみを与えた。実際には高温で曲げ COD 試 験片の切欠先端部に与えるひずみ量を直接コントロール するのは困難であるので、次の様な方法を用いた。すな わち, Fig.5 に示すように,曲げ COD 試験片の切欠先 端部 2mm 四方の正方形領域が受ける相当塑性ひずみ量 と,試験片のたわみ量との関係を FEM により求めてお き、このたわみ量をコントロールすることにより間接的 にひずみ量を制御した。付与するたわみ量としては、大 型BWN試験片の切欠先端部が受ける最大相当塑性ひず み量 7.3% に相当する,曲げ span 200mm に対し 2

Fig. 4 Full thickness type COD bending specimen

mm (曲げ角度で $tan \theta = 1/50$) を採用した。

一方,熱ひずみ脆化に対するひずみ量の影響を調べる ために,加熱温度を250℃とし,たわみ量を0.2mmか ら 3mm の間に変化させた。

加熱温度の影響を Fig. 6 に示す, 母材に比べて 150 ℃ でかなりの脆化がみられるが, 250℃ で最も大きく 脆化し, 母材から 50~60℃ 高温側へ COD 曲線が移動 して, 再現曲げ COD 試験における BWN の結果とほ

Fig. 5 Relation between deflection at load point and equivalent plastic strain in the vicinity of crack tip.

Fig. 6 Effect of heating temperature on critical COD of pre-strained COD specimen

ぼ同等,ないしはこれを若干上回る脆化を示す。加熱温 度が 300℃ になるとむしろ若干回復し,500℃ になると 母材に近いところまで回復する。250℃ で最大の脆化が 起ることは,COD 試験による Burdekin ら⁷⁾およびシ ャルピー試験による寺沢ら⁸⁾による試験結果と一致して いる。

ひずみ量の影響を Fig. 7 に示す。たわみ量が 0.2 mm 0.4 mm, 0.7 mm と増加するにつれて限界 COD 曲線は 高温側へ移動するが, 1.3 mm で BWN 再現曲げ COD 試験結果とほぼ同等ないしは,これを若干上回る脆化を 示す。2.0 mm, 3.0 mm とそれ以上ひずみ量が増加して も脆化度は飽和し,それ以上の脆化を示さない。すなわ ち,熱ひずみ脆化はひずみ量に対しては,BWN 再現曲 げ COD 試験の場合と同等のひずみ量で十分飽和してい るとみなされる。

Fig. 7 Effect of deflection on critical COD of pre-strained COD specimen

3.2 溶接熱ひずみ脆化把握のための試験法について 溶接熱ひずみ履歴が鋼材の破壊靱性値に与える影響 は、Wells-木原タイプの Before Weld Notch 大型試験 片の切欠先端部が溶接中に受ける熱ひずみ履歴を忠実に 曲げ COD 試験片の切欠先端部に与えた、いわゆる再現 曲げ COD 試験片により定量的に把握できる。しかし、 本実験法は、その試験片製作方法に起因して次の様な欠 点を持つ。すなわち

- (1) 熱とひずみを独立にコントロールできない
- (2) すべての試験片に厳密な意味で同一の熱ひずみ 履歴を与えることが困難
- (3) 大量の素材と、多数の工程が必要

熱ひずみ脆化に対する材質評価試験法として,再現曲 げ COD 試験法の持つ上記欠点をおぎない,かつ熱ひず み脆化機構の解明,あるいは耐熱ひずみ脆化特性の優れ た材料を開発する上で,それらに適した小型試験法を開 発する必要がある。

このような要請に対し、前節で得られた結果から、た だちに次の条件で高温予ひずみが付与された曲げ COD 試験が最も適当であることが予想される。

予ひずみ温度:250℃

予ひずみ量:BWN 大型試験片が受ける最大ひず み量(HT 50の場合,曲げ角度にし

 $\tau \tan \theta = 1/50$

さらに、曲げ COD に対する高温予ひずみ試験法の材 料開発への適用を目指し、本試験法の小型化、ならびに 簡略化を図った。試験片は Fig. 8 に示すような小型の 曲げ COD 試験片を採用した。また、高温で与えるひず みは、引張ひずみによる切欠鋭さの鈍化や割れの発生に よる先端形状の変化の影響をさけるため圧縮ひずみを採 用した。熱ひずみを付与する温度は、前節の実験結果か ら明らかなように、最脆化温度の 250℃を、また与える ひずみ量は脆化が十分飽和する曲げ角度 $\tan \theta = 1/50$ を 採用した。

この試験片で BWN 再現曲げ COD 試験片での脆化が 再現できることを Fig. 9 に示す。素材は Table 2 に示 したものと同一であり,母材と BWN 再現曲げ COD 試 験結果は Fig. 6 および Fig. 7 に示されたものである。 10mm 厚の小型 COD 試験結果は,板厚 25mm 厚の大 型試験結果よりも低温側に限界 COD 曲線が移行するが これは寸法効果を示すものである。熱ひずみによる母材

Fig. 8 Design for pre-compression bending COD test specimen (PBCT)

50キロ高張力鋼の溶接熱ひずみ脆化と材質評価法の検討

からの脆化の程度は、小型 COD 試験においても、BWN 再現曲げ COD 試験とほぼ等しい値が得られ、しかも圧 縮型の方がパラッキの少ない結果となっている。

4 PBCT とその応用

4.1 50 キロ鋼材の熱ひずみ脆化に及ぼす冶金的諸因 子の影響

前章において、鋼材の熱ひずみ脆化の程度を定量的に 把握するために、PBCT 試験法を提案し、本試験法の有 効性を明らかにした。本節においては、PBCT を用いて, 各種冶金的因子が鋼材の熱ひずみ脆化に及ぼす影響を調 査した。対象は 50 キロ級鋼板で,通常鋼板の製造に用 いられる熱処理と、N、C および AI 量等の化学成分の 影響を調査した。鋼板は実験室的に溶製し、板厚 20 mm に圧延した。供試鋼板の化学成分範囲を Table 3 に示す。鋼材の熱ひずみ脆化度の判定は、PBCT 試験法 により得られた温度-限界 COD 曲線において, 限界 C OD が 0.2mm になる温度 $(T_y 評価⁹)$ によれば 2c =50mm を持つ大型試験片の破壊発生応力が,降伏点に 等しくなる温度にほぼ一致する)の母材からの高温への 移行量で判定した。試験結果の一例を Fig.10 に示す。 この鋼種 (C=0.13, N=0.007, A1=0, As roll) では限 Table 3 Chemical compositions

					• •		· · · · · · · · · · · · · · · · · · ·
C (%)	Si	Mn	P	S	Αl	N	Heat Treatment
0.05 ∽0.22	0.25	1.40	0.005	0,006	0 - 0.083	0.003 ~0.014	SR(600°C×1hr) N (910°C×1hr) QT(910°C×1hrW0+600°C×1hr)

Fig. 10 An example of critical COD vs. temperature curve of PBCT specimen

界 COD 値が 0.2mm となる温度 $T_{\delta_e=0.2}$ は母材試験の 結果である -57° C から, PBCT の結果である -14° へと 43° C 上昇している。

> 熱ひずみ脆化に対する熱処理の影響を Fig.11 に示す。A1 が 0.04% 添加され ている場合は,鋼材にあらかじめ与えら れている熱処理の影響が著しく,As roll で 45℃ の脆化があっても,600℃×1hr

178

Fig. 12 Effect of N contents on susceptibility to hot straining embrittlement

Fig. 13 Effect of C contents on susceptibility to hot straining embrittlement

Fig. 14 Effect of Al contents on susceptibility to hot straining embrittlement

AC の SR 処理を施したものでは 30℃ 以下の脆化にと どまっている。さらに高温での熱処理を施した焼ならし 材および焼入れ,焼もどし材では,熱ひずみ脆化度は 10℃ 程度にとどまっている。しかし,AI 無添加の場合 は As roll 材と焼ならし材ではほとんど差がなく,熱処理の影響はほとんど受けないと判断される。

熱ひずみ脆化に対するNの影響を Fig.12 に示す。こ こでも A1 の有無により結果は異なり, A1 が 0.040% 程度添加されている場合はNを 0.003% まで低下させる と As roll 材の熱ひずみ脆化を軽減させることができる が, A1 無添加の場合はこの程度までの N の低下では効 果がみられない。

熱ひずみ脆化に対するCの影響を Fig.13 に示す。本 実験範囲内でのC量の増減は熱ひずみ脆化の程度に対し ほとんど影響を与えないことがわかる。

熱ひずみ脆化に対する A1 の影響を Fig. 14 に示す。 この場合は鋼材にあらかじめ与えられている熱処理によ り影響が異なる。As roll 材では A1 添加量の増大により 熱ひずみ脆化度は減少するが、その効果は僅かである。 一方、焼ならし材に対しては、A1 添加量の増大は著し い効果を持ち A1=0.040% で熱ひずみ脆化度は 13℃, A1=0.080% ではほぼ 0℃ になってしまう。

4.2 熱ひずみ脆化の機構に関する一考察

前節までの実験および解析の結果より,溶接熱ひずみ 脆化は,溶接熱サイクル中,主として250°C 近傍で受け る塑性ひずみに起因しているものであることが明らかに なった。一方,このような比較的高温で受けるひずみが, 材料の各種性質に大きな影響を与える現象は,動的ひず み時効 (dynamic strain aging)あるいは青熱脆性と して知られており,従来から主として高温での引張試験 をもとに多くの研究がなされ,とくに材料の機械的性質 に与える影響に関して詳細な実験データの蓄積がなされ ている。

本節では、溶接熱ひずみ脆化現象と、動的ひずみ時効 現象との関連を、PBCT あるいは高温での引張試験によ って得られる機械的性質の変化との関係において明らか にし、さらに電子顕微鏡による転位の直接観察を通し て、溶接熱ひずみ脆化の機構を考察する。

前章で用いた鋼材から採取された丸棒引張試験片を 100~500℃ での種々の温度で,引張速度 0.15mm/min での引張試験を行ない,降伏点,引張強さその他の機械 的性質の変化を調査した。引張試験には容量 10 トンの 高温引張試験機を用いた。Fig. 15 に降伏点,引張強さ の温度依存性を示す。降伏点は高温になるに従い,順次 低下するが,引張強さはむしろ上昇し,250℃ で最大値 に達し,その後 500℃ に至るまで単調に低下する。この ような 250℃ での強度の上昇は,いわゆる青熱脆性とし て知られており,これは変形の際の転位の運動速度がそ の温度での固溶C,N原子の移動速度とほぼ等しいため, 変形と同時に転位がこれらの原子により固着され,変形 応力の上昇が生じることによるもので,動的ひずみ時効 50キロ高張力鋼の溶接熱ひずみ脆化と材質評価法の検討

Fig. 16 Relation between susceptibility to dynamic strain aging and that to hot straining embrittlement

と呼ばれている。

前節までに得られた結果より,溶接熱ひずみ脆化に対 し、動的ひずみ時効の役割の大きさが当然予想される。 そこで,前節で溶製された種々の熱ひずみ脆化度を持つ 鋼材から丸棒引張試験片を採取し,室温および250℃で の引張試験を実施した。250℃での引張強さの室温から の上昇量を鋼材の動的ひずみ時効感受性を評価する指標 として採用し,この値と,前節で定義された熱ひずみ脆 化度 *AT* との関係を調査した。結果を Fig.16 に示す。 :熱ひずみ脆化度と,動的ひずみ時効感受性との間によい 相関が見られる。

250℃ で予ひずみを受けた曲げ COD 試験片において も、250℃ 高温引張試験片と同様、素材強度の上昇が切 欠先端部で生じていると考えられる。250℃ 予ひずみを 受けた曲げ COD 試験片の切欠先端近傍での硬度分布を 100gr マイクロヴィッカースを用いて調査した結果、 Fig. 17 に示すように切欠先端部の非常に狭い領域で著 しい硬度の上昇がみられ、この部分での強度の上昇がう かがえる。Fig. 18 に各種鋼材で得られた切欠先端部で の硬度の母材からの上昇量と、熱ひずみ脆化度との関係 を示す。この場合も、250℃ 強度の上昇との関係にみら れたと同様、両者の間によい相関がみられる。

Fig. 17 Vickers hardness distribution near the tip of crack of PBCT specimen

Fig. 18 Relation between the rise of vickers hardness in the vicinity of crack tip and susceptibility to hot straining embrittlement

180

青熱脆性あるいは動的ひずみ時効に関する一般的な議 論においては、この現象は鋼中の固溶CあるいはN原子 による転位の固着に起因することが明らかにされてい る。一方、これまでの実験結果から、溶接熱ひずみ脆化 に対して動的ひずみ時効の果す役割が非常に大きなもの であることが明らかであるが、溶接熱ひずみ脆化が非常 に速い現象であること、および前節での冶金的因子の影 響調査等をあわせ考え、溶接熱ひずみ脆化に対しては鋼 中の固溶N原子が支配的な影響力を持つものと考えられ る。前節で溶製した種々の熱ひずみ脆化度を持つ鋼材の 「固溶N量を化学分析法により定量し、これと熱ひずみ脆 化度との関係を調査した。Fig. 19 に示すように、鋼材 中の固溶N量の増加とともに熱ひずみ脆化度は増大する ことがわかる。しかし、ある値以上の固溶N量の増加に 対しては、もはや熱ひずみ脆化度は増大せず、飽和現象 が存在する。

Fig. 19 Relation between [N]_{Free} contents and susceptibility to hot straining embrittlement

この飽和現象の生じはじめる固溶N量は0.003%と低 く、少量の固溶Nの存在で熱ひずみ脆化の生じることが 理解できる。また、Fig. 19 より、鋼材の化学組成や熱 処理の相違によらず、固溶N量により、熱ひずみ脆化の 程度が定量的に把握できることが明らかとなった。

以上の考察により熱ひずみ脆化材の切欠先端部は固溶 Nにより転位が固着され、強度の上昇が生じていること が明らかとなった。そこで、熱ひずみ脆化材の転位の集 積状況の、電子顕微鏡による直接観察を試みた。なお、 曲げ COD 試験片における熱ひずみ脆化領域は硬度分布 の測定結果からも明らかなように、切欠先端部での非常 に狭い領域に限定されており、この領域を電子顕微鏡に より直接観察するのは困難である。そこで、曲げ COD 試験片の切欠先端部の熱ひずみ脆化域とほぼ同程度の変 形(約10%)が与えられていると考えられる、250°C 高 温引張材に着目し、破断後の一様伸び領域から薄膜を作 製し、これを透過電子顕微鏡により観察し、転位の集積

(1) $\Delta T_{0c=0.2} = 10^{\circ} C (\times 80000)$

(2) $\Delta T_{\delta_{c=0.2}} = 35 \,^{\circ}\text{C} (\times 80000)$

Photo 1 Electron micrographs of dislocation distributions

の状況を調べた。なお,試料は熱ひずみ脆化度の大きく 異なる2種類を用意した。Photo 1 に結果を示す。これ らの写真から明らかなように,熱ひずみ脆化度の大きな 材料は,熱ひずみ脆化域で転位密度が非常に高く,一方, 熱ひずみ脆化度の小さな材料は,転位密度も比較的小さ いことがわかる。

以上の実験、考察を通じ、熱ひずみ脆化の機構を次の 様に考えることができる。すなわち、溶接熱サイクル中 に受けるひずみにより、切欠先端部は加工硬化を生じる が、特に250℃近傍でのひずみにより、鋼中の固溶N原 子による転位の固着作用の結果、切欠先端部での転位密 度が飛躍的に上昇し、この領域の塑性流動応力が増大す る。その結果,変形能の低下をきたし,脆性破壊発生応 力の低下,すなわち破壊観性の著しい低下を生じる。

5 結 言

本研究によって得られた主要な結論は次の様である。

(1) 熱ひずみ脆化に対する温度の影響は,250℃ で 最も脆化し,それ以上でも以下でも脆化は少ない。した がって,溶接部の熱ひずみ脆化は,溶接熱履歴のうち 250℃ 近傍での脆化が主要なものであろうと推定され る。

(2) 熱ひずみ脆化に対するひずみ量の影響は,ひず み量の増大とともに脆化は促進されるが,ある程度以上 のひずみ量で脆化は飽和する。

(3) 鋼材の溶接熱ひずみ脆化度は、小型の曲げ COD 試験片に対する 250℃ 高温圧縮予ひずみ試験 (PBCT) により、比較的簡単に判定できる。

(4) PBCT を用い,各種冶金的因子(化学組成,熱処理等)が鋼材の溶接熱ひずみ脆化度に与える影響を明らかにした。

(5) 溶接熱ひずみ脆化は,溶接熱サイクル中,主と して250℃近傍で受けるひずみによる動的ひずみ時効に 起因するものであり,鋼中の固溶N原子の影響が支配的 であることを定量的に明らかにした。

溶接部の熱ひずみ脆化は,軟鋼や HT 50 の溶接構造 物における低応力脆性破壊のもっとも主要な要因であろ うと推定されるが,この脆化は切欠先端の極めて局所的 な領域にのみ生ずることと,溶接残留応力をはじめとす る溶接継手の力学的条件と重畳することのために,実構 造物の破壊事故例で検出されるのを期待することは難し い。したがって,熱ひずみ脆化が溶接構造物の安全性に とってどの程度の比重を占めるかについては,一層の追 求が必要とされるとともに,新鋼種開発等の材質的対策 や溶接施工法による対策等を定量的に明らかにしていく ことが必要と思われる。

辞

謝

本研究に対し,有益なご討論とご助言をいただいた, 日本造船学会溶接研究委員会第1分科会主査金沢教授を はじめ委員各位に感謝します。

参考文献

- W. J. Hall, W. J. Nordell, W. H. Wunser: Studies of Welding procedure, W. Jl. 41, No. 11, (1962).
- 日本造船研究協会第101研究部会:巨大船の脆性 破壊防止策に関する研究報告書,(1970).
- 佐藤,豊田,川口,有持,鈴木,多々良:50キロ 高張力鋼溶接継手の脆性破壊発生挙動におよぼす 溶接熱・歪履歴の影響,日本造船学会論文集,第 138号(1975), p.467.
- K. Satoh, M. Toyoda, Y. Kawaguchi, K. Arimochi : Influence of Hot Straining Embrittlement on Brittle Fracture in Welded Steel Plates, Trans. J. W. S., Vol.8, No. 1, (1977), p. 59.
- British Standards Institution: Methods for Crack Openning Displacement (COD) Testing, DD 19, (1972).
- 6) 佐藤,豊田,寺崎,佐藤,田中:溶接によりき裂 部近傍がうける熱ひずみ履歴と残留応力・残留ひ ずみ,日本造船学会論文集,第 139 号 (1976), p.284.
- F. M. Burdekin, M. G. Dawes, G. L. Archer, F. Bonomo, G. R. Egan: Selection of weldments to avoid fracture initiation, British Welding Jl. No. 12, (1968), p. 590.
- 等沢,大谷,吉田,寺井:高温予歪が鋼の切欠靱 性におよぼす影響,造船協会論文集,第 109 号 (1961), p.317.
- 9) 長谷部,川口,有持:脆性破壊発生特性からみた 溶接継手ボンド部の材質評価にたいする提案,溶 接学会誌,第44巻,第1号,(1975), p.77.