(昭和53年5月 日本造船学会春季講演会において講演)

MAU 型プロペラのキャビテーション特性に 関する研究

――第3報 キャビテーション特性の改良と新型種プロペラの開発――

正員 高 橋 通 雄* 正員 奥 正 光*

The Cavitation Characteristics of MAU Type Propeller

The Third Report : Development of a New Proto-Type Propeller with Special Reference to Cavitation Characteristics

by Michio Takahashi, Member Masamitsu Oku, Member

Summary

A new propeller series (KB-type) was developed on the basis of the results with MAU type propeller (REPORT I & II) by applying three-dimensional cavitation bucket chart. Noticeable improvement in cavitation characteristics was obtained with the KB-type propeller without sacrificing the overall efficiency of MAU type propeller.

1緒 言

ここ数年,各種の型種の舶用プロペラ翼面に比較的短 期間にキャビテーションによるエロージョンが発生する という事故が多発している。これは現用されているプロ ペラの型種が,ほとんど十数年以前に開発されたもので ここ数年間の船舶の大型化,高馬力化および船尾伴流の 複雑化に,特にキャビテーション特性の面で充分対応で きないことに基因している。

わが国で、従来広く使用されてきた MAU 型プロペラ についても、個々の設計に際してキャビテーション試験 を実施したり、また理論的考察を行なってキャビテーシ ョン対策を講じてきたが、このような対症療法的設計手 段は、あくまで暫定的なものであり、著者らはかねてか ら MAU 型を発展させた新型種のプロペラの開発を意図 していた。

新型種のプロペラは、効率面で MAU 型に匹敵すると ともに、キャビテーション特性の面では現在の船舶の要 求を満足するものでなくてはならない。

このために著者らは、プロペラのキャビテーション特 性をプロペラ揚力面理論と相当直進二次元翼の概念を採 用して、第1報¹⁾においてプロペラ翼面の三次元曲り流 れを考慮した三次元キャビテーションパケット図を提案 するとともに、均一流中のプロペラ翼面圧力の計測およ びキャビテーション試験により三次元曲り流れを考慮し

* (株)神戸製鋼所鋳鍛鋼事業部技術部

た理論的方法が定常キャビテーション特性の解明に有効 であることを示した。第2報²⁾において,不均一流中に おけるプロペラ翼面圧力の計測およびキャビテーション 試験を実施し,その計算方法がプロペラの非定常キャビ テーションに対しても拡張適用できることを確認し た。

第3報においては,第1報・第2報²⁾の成果に基づい てキャビテーション特性の改良をはかった新型種のプロ ペラを,MAU 型プロペラを原型として開発することを 試みた。

プロペラの形状および作動条件が与えられれば,各半 径位置の循環密度分布および誘導速度が決まり,それに 基づく曲り流れを考慮した相当直進二次元翼により三次 元キャビテーションバケット図が求められる。この三次 元キャビテーションパケット図を応用して,次の二つの 調査を行なうことができる。

(1) 与えられた幾何学形状を有する プロペラが, 各種の船尾伴流中および作動条件下で作動するときのキ ャビテーション特性を調査すること。

(2) 予想される船尾伴流および作動条件下で,キャ ビテーション特性がすぐれ,しかも効率低下を招かない ような三次元幾何形状をもつプロペラの最適化をはかる こと。

個々のプロペラの設計にあたって、当初設計のプロペ ラ形状について(1)の方法で、もしキャビテーション発 生の危険が認められれば、(2)の手段によって形状の変 日本造船学会論文集 第143号

更を行ない,キャビテーション特性のすぐれたプロペラ を求めることは可能である。しかし設計の都度,この手 順を辿ることは繁雑なため,あらかじめ Shock-free 領 域の広いプロペラ形状を母型として求めておき,それを 広い範囲のプロペラ設計に使用できれば,実用上の便益 はきわめて大きいであろう。

プロペラの形状特性は、大きく分けて半径方向特性と 翼弦方向特性とがあり、さらに直径、ピッチ、ピッチ分 布, 翼厚などのように個々の設計条件に応じて, その都 度決められるものと, 翼断面形状, 翼輪郭, 最大翼厚位 置の半径方向分布などのように広い範囲の設計条件に適 用しうるものとして、あらかじめ決めておくことのでき るものとがある。MAU 型プロペラは他の型種のプロペ ラと同様に翼輪郭,展開面積比,ピッチ分布,翼厚比, 翼厚最大位置の半径方向分布、翼断面形状の半径方向の 変化、ボス比、レーキ、スキューなどが決まった母型を ベースにして,詳細な設計図表3)~6)が完備されている。 しかし,コンピュータの実用化とプロペラ理論の発展に より,一つの型種のプロペラの母型として具備すべき条 件が大幅に緩和されてきた。すなわち、キャビテーショ ン特性および効率のすぐれた半径方向の形状(翼輪郭や 翼厚最大位置の半径方向分布など)と翼弦方向の形状が 標準として定められた母型プロペラとして与えられれば その他の形状要素は設計条件に応じて、理論的および経 験的に求めることができる。

この観点から,著者らは,MAU 型プロペラを出発点 として,キャビテーション特性が一段とすぐれた新型種 のプロペラ母型を前記(2)の方法で開発することにし た。すなわちプロペラの三次元幾何形状要素を分けると 翼弦方向形状要素と半径方向形状要素があり,これらは 直接間接にキャビテーション特性を支配する。そこで, 揚力線的な意味でマクロ的にきいてくる半径方向要素を はじめに押え,ついでミクロ的に直接きいてくる翼弦方 向要素を詳しく調べる手段により新型種を導き,この新 型種のプロペラに対し,第1報,第2報で行なったと同 様な均一流中,不均一流中の翼面圧力計測とキャビテー ション試験を実施し,原型である MAU 型プロペラとの 比較を行なった。その結果,新型種プロペラは,キャビ テーションの面でも効率の面でもすぐれた特性を示すこ とが確かめられた。

2 プロペラ形状要素とキャビテーション特性

三次元キャビテーションバケット図はプロペラの三次 元的形状要素が与えられて始めて確定する。すなわち, 翼断面の二次元的形状要素ばかりでなく,半径方向の三 次元的幾何形状が曲り流れを支配する。この意味で,半 径方向と翼弦方向の形状は相互に関連を有しつつ,キャ ビテーション特性に影響を与えるので、その影響を調査 するためには、逐次近似的手法を反復くり返す必要があ る。しかし、キャビテーション特性にどちらがより直接 的にきいてくるかといえば、それは後者(翼弦方向の形 状)である。そこで本節では、まず半径方向形状の連続 性の要素として、翼輪郭および翼厚最大位置の半径方向 分布を第一近似として論じ、ついで翼弦方向の形状要素 として翼厚分布、Wash-back 量、キャンバー量をとり あげた。なお、形状とキャビテーション特性の関係を解 析するにあたり、数値例として1翼の展開面積比 0.13、 ビッチ比 0.80、ボス比 0.18 の MAU 型プロペラを想 定した。

2.1 半径方向の特性

半径方向の形状がキャビテーション特性に及ぼす影響 を調査するための形状要素としては, 翼輪郭, 翼厚最大 位置の半径方向分布, スキュー, ピッチ分布などがある が, ここでは次のような考慮のもとに, 前二者だけをと りあげてキャビテーション特性との関連を調査した。す なわち,

(1) プロペラ形状に関する調査は、MAU 型プロペラ形状を原型とする。

(2) ピッチ分布は、個々の設計条件として与えられ る伴流の半径方向分布により決められるのが通例である ので、基準として一定ピッチ分布の場合を調査対象とす る。

(3) 一般商船用プロペラを対象とするので,スキュ ーは MAU 型プロペラ程度とする。また,スキューに関 する調査は,高スキューの問題を含めて別個にとりあげ る方が良いと考えた。

2.1.1 翼輪郭

翼先端近傍の翼弦長を大きくした,いわゆる末広型翼 輪郭により背面キャビテーション特性を改善しようとす る考え方は,従来多くの設計者により採用されてきた。 著者らは翼断面の強度を一定に保つ条件,すなわち最大 翼厚を t,翼弦長を l とするとき,t²l を各半径位置の 翼断面ごとに一定に保つ条件の下で,Fig. 1 に示すよ うに l の半径方向の分布を変化させたときのプロペラの キャビテーション特性の変化を検討した。その結果,一 つの翼断面については,このような形状の変化は後述の キャンバーの大きさの変化に相当するが,プロペラとし てみた場合にも,MAU 型原型よりも末広型の翼弦長分 布を採用したときの方が背面キャビテーションの安全領 域は若干狭くなるが,Shock-free 領域は左方により, 総合的にみたキャビテーション特性は向上することがわ かった。

2.1.2 翼厚最大位置の分布

菅井")は、翼断面の翼厚最大位置を翼弦長の 32% か

MAU型プロペラのキャビテーション特性に関する研究

Fig. 1 Blade contour, thickness and camber distribution

ら 40% に移動させると背面上の圧力分布が平坦化する ことを示している。

著者らは、プロペラ効率の低下を招来することなく、 プロペラキャビテーション特性を改良する目的で、Fig. 2に示すような5種類の翼厚最大位置の半径方向分布を 考え、効率およびキャビテーション特性を調査した。そ の結果、翼厚最大位置が翼根または翼中央付近から翼弦 中央に近い分布をもつプロペラほど、Shock-free 領域 が左方により、また背面キャビテーションの安全領域が 拡大するが、正面キャビテーション発生領域は原型と大 差ないこと、またプロペラ効率は低下の傾向にあること がわかった。

2.2 翼弦方向の形状

2.2.1 前縁側の翼厚分布

プロペラ翼弦方向の翼厚分布がキャビテーション特性 に及ぼす影響に関する研究は少なく、わずかに二次元翼 に関する D.T. Valentine⁸⁾の論文がみられる程度であ る。

著者らは、前縁から翼厚最大位置までの翼厚分布の影響を三次元キャビテーションパケット図により検討した 結果、この部分の翼厚を原型より増すと背面および正面 キャビテーションとも不利であるが、ある程度減少する と背面および正面キャビテーションともに有利になるこ とが判明した。Fig. 3 に、三次元キャビテーションパ ケット図上におけるパケットの変化の模様を示したが、 本図によっても、前縁側の翼厚分布を減ずることによる 効果が著しいことがわかる。なお、パケット図は、キャ ビテーション特性判定図であって、パケットの上辺は背 面キャビテーション発生の臨界線を、下辺は正面キャビ テーション発生の臨界線、また左辺が Shock-free の臨 界線である。したがってパケットの大きさが大きい程、 また Shock-free 臨界線が左方、すなわち圧力降下量 (*ΔP/q*)の小さい方向へ移動するほど、キャビテーショ

Fig. 2 Position of max. thickness point from leading edge

Fig. 3 Variation of three-dimensional cavitation bucket chart by thickness distribution

ン特性上有利ということになる。

2.2.2 前縁の Wash-back 量

従来から経験的に,前縁の Wash-back 量を増加させ ると正面キャビテーション対策上有利であるが背面キャ ビテーションの危険領域が広がり, Wash-back 量を減 少させると逆に背面キャビテーションの対策上有利であ るが正面キャビテーションが発生しやすくなる傾向があ るといわれている。三次元キャビテーションバケット図 による調査も,これと同様の結果を示している。

2.2.3 キャンバーの最大値

キャンバーの最大値を大きくすると、背面キャビテー ションの発生しない安全領域は広くなるが、Shock-free 領域は圧力降下量 ($\Delta P/q$)が増加する方向へ移動し、 また正面キャビテーションに対する安全領域は狭くなる 傾向を示した。 キャンパーを小さくすると、上記と逆の傾向を示す。 2.2.4 前縁の半径の大きさ

前縁の丸味の大きさを変更すれば,必然的に前縁から 翼厚最大位置にかけての翼厚分布が変化してくる。従っ て前縁の半径を大とすると,キャビテーション特性に対 しては前縁側の翼厚分布を大としたと同じ効果があり, また半径を小とすると翼厚分布を小としたと同じ効果が ある。

3 改良 MAU 型プロペラ

三次元キャビテーションパケット図を用いて、プロペ ラ形状要素がキャビテーション特性に及ぼす効果を調査 した結果, MAU 型プロペラのキャビテーション特性の 改良に大きな影響を与えるものは翼弦方向の前縁側翼厚 分布,前縁の Wash-back 量,キャンバーの大きさ,翼 厚最大位置,ならびにこれらの半径方向の分布であるこ とがわかった。従って前述のように、キャビテーション 特性および効率を考慮しながら、これらの要素を組合せ て、原型からあまり遊離しないプロペラ翼形状を合成す れば、著者らの意図した新型種のプロペラも、MAU 型 プロペラを発展させたものとして、求められるはずであ る。

いろいろな組合せについて、三次元キャビテーション パケットおよび効率に関する計算を行ない、比較検討の 上得られた新型種のプロペラを Fig. 1 および Table 1 に示し、これを KB 型プロペラと名付けた。KB 型プロ ペラの形状に関する特長は、Fig. 1 および Table 1 か らわかるように次の点にある。

(1) 翼輪郭を MAU 型プロペラよりも末広型とした こと

(2)半径方向の翼厚最大位置の分布を, Fig. 2 の中 の(5)を採用し, MAU 型プロペラより翼弦中央寄りに 移動させたこと

(3) 翼断面における前縁側の翼厚分布を MAU 型よ り減少させたこと

(4) 前縁の Wash-back 量を MAU 型の 80% に減 じたこと

(5) キャンバーの大きさは、MAU 型と KB 型で $t^{2l} = -$ 定の条件が成立するように定めたこと。従って半 径方向の翼厚分布は直線ではない。

4 MAU 型プロペラおよび KB 型プロペラ の性能比較

前述のように, MAU 型プロペラを改良した新型種の プロペラ(KB 型プロペラ)を提案したが, これらのプ ロペラの単独性能, 翼面圧力分布およびキャビテーショ ン特性について計算と実験により比較検討した。対象と

Table 1 Comparison of MAU type and KB type propeller shape

Items	MAU	KB
Boss ratio	0.18	0.18
Max. blade breadth ratio	0. 344	0. 348
Position of max. breadth	0. 66 R	0.70 <i>R</i>
Max. thickness ratio	0.05	0.05
Max. thickness point from leading edge at 0.7 <i>R</i> (%)	40. 2	46. 8
Max. thickness point from leading edge at 0.9 <i>R</i> (%)	48. 8	49.9
Camber at 0.7R	0. 023	0.022
Camber at 0.9R	0.012	0.011
Skew ratio to diameter	0.06	0.06

する プロペラは, 第1報に使用した MP 2172 (MAU 型) および MP 2172 V (KB 型) とし, 実験は日本造船 技術センターにおいて実施した。

4.1 計算による比較

4.1.1 単独性能

MP 2172 および MP 2172 V について、計算により 求めたスラスト係数 K_T 、トルク係数 K_Q および単独効 率 η_0 曲線を Fig. 4 に示す。

 K_T および K_Q とも、前進係数 J に対し MP 2172 V が高い値を示すが、同一の K_T/J^2 の値で単独効率の比 較を行なったところ、両者ともほぼ同一の値を示した。

4.1.2 翼面圧力分布

均一流中の 0.7*R* における計算比較の例を Fig. 5 に 示す。

翼前縁部において, 圧力降下が MP 2172 V の方が少なく, キャビテーション特性に良い影響を与えると考えられる。 翼弦中央から後縁までの間は, MP 2172 V の

Fig. 4 Calculated open water characteristics of MP 2172 and MP 2172 V

MAU型プロペラのキャビテーション特性に関する研究

Fig. 5 Comparison of pressure distribution calculation. in uniform flow between MP 2172 and MP 2172 V at 0.7 R

Fig. 6 Comparison of blade surface pressure calculation in Wake between MP 2172 and MP 2172 V at 0.7 R

方が、わずか圧力降下量が増加しているのが見られる。

不均一流中の 0.7 R における比較を,回転角方向,翼 弦方向について,それぞれ Fig. 6, Fig. 7 に示す。MP 2172 V の回転角方向の圧力変動をみると,圧力の値は 背面では減少し,圧力面ではわずかに増大している。こ れは形状変更による影響が,圧力面側よりも背面側の方 に大きくでたためである。

4.1.3 キャビテーション

Fig. 8 に 0.7R, 0.9R の翼断面の三次元キャビテー ションパケット図を示す。本図によれば、MP 2172 V では背面および正面キャビテーションとも安全領域が拡 大していること、特に 0.9R においては Shock-free 領 域が、安全な方向、すなわち左側に移動していることが わかる。

Fig. 9 は, 第2報に述べた不均一流中のキャビテー ション試験に用いたと同一の流場におけるキャビテーシ ョン発生の予想を, 第2報と同一の計算方法により求め たものである。本図によっても, MP 2172 V における 改良効果が認められる。

Fig. 8 Comparison of cavitation bucket chart between MP 2172 and MP 2172 V

4.2 模型実験による比較

4.2.1 単独性能

プロペラ単独試験結果を Fig. 10 に示す。 計算から も予想されたように,スラスト係数 K_T およびトルク係 数 K_Q とも MP 2172 V の方が高い値を示しているが, 4.1.1 で述べたように,単独効率は,同一の K_T/J^2 の 値で比較すると,ほぼ同等の値を示した。

4.2.2 翼面圧力分布

(1) 均一流中の計測 MP 2172 および MP 2172 V
 について,第1報と同じ条件でプロペラ翼面圧力を計測した。

一例として,前進係数 J が 0.2 の場合の翼弦方向の 圧力分布を Fig. 11 に示す。圧力計測の実験精度には, まだ不充分な点があるので,本図の結果のみから MP 2172 V の有利性は認められないが,本図中に示した圧 力分布の計算結果および後述の均一流中キャビテーショ ン試験結果を援用すれば,著者らの意図したプロペラ改 良の効果を認めてもよいであろう。特に計算による圧力 分布の比較において,MP 2172 V の前縁近傍の圧力係 数 *C*_P が低下しているのは,背面キャビテーションの初

Fig. 9 Comparison of cavitation simulation between MP 2172 and MP 2172 V

Fig. 10 Open water test results of MP 2172 and MP 2172 V

生に対しては有利な点である。

(2) 不均一流中の計測 第二報と同じ条件で,不均 一流中の翼面圧力計測を行なった。

1 例として、2 種類の回転数 (J=0.3 および 0.5 に 対応) について、前縁寄りの点の計測結果を Fig. 12 お よび Fig. 13 に示した。図によれば、両者の翼形状の 差により1 回転中の背面側圧力Pの変化には、明瞭な差 がみられる。すなわち、MP 2172 V の方が背面におけ

Fig. 12 Comparison of blade surface pressure in wake between MP 2172 and MP 2172 V at 0.7R

Fig. 13 Comparison of blade surface pressure in wake between MP 2172 and MP 2172 V at 0.7 R

る1回転中の圧力降下量も小さく、また圧力変動も少な い。圧力変動が平坦化している点は、キャビテーション パケット図上の Shock-free 領域に相当する部分が広い ことを示唆している。正面側の1回転中の圧力変化の差 は、背面側と比べて小さい。Fig. 14 および Fig. 15 は

Fig. 14 Comparison of chordwise pressure distribution in wake between MP 2172 and MP 2172 V at 0.7 R

翼角 0°における翼弦方向の圧力分布の比較を行なった ものである。翼面圧力計測の精度上の問題もあるので, これらの図のみから MP 2172 V の優位性を速断できな いが,図中に示した計算による圧力分布および後述の不 均一流中のキャビテーション試験結果を援用すれば,プ ロペラ改良の効果を認めてもよいと考えられる。前縁近 傍において,MP 2172 V の圧力Pが低下している点は, 背面のキャビテーション発生に対して有利であるといえ る。

4.2.3 キャビテーション

キャビテーション試験における Reynolds 数および空 気含有量が試験結果に大きな影響を与えることが、今回 の試験過程で判明したので、本比較試験に おいては Reynolds 数 (nD^2/V) はすべて 1.0×10^6 以上とし、 また、空気含有量は $35 \sim 45\%$ に保つことにした。

(1) 均一流中の試験 試験条件を Table 2 に示す。 スラスト係数およびキャビテーション係数が同一のとき の MP 2172 および MP 2172 V のキャビテーション発 生範囲を, Fig. 16 に示した。図から明らかなように, 背面シートキャビテーションの発生範囲は, MP 2172 V の方が狭くなっている。正面キャビテーションに関して は, 差は認められなかった。

(2) 不均一流中の試験 第2報と同じ条件で,不均 一流中の試験を行なった。試験条件を Table 2 に示す。 スラスト係数およびキャビテーション係数が同一のとき の背面キャビテーション発生状況を比較すると,すべて

Fig. 15 Comparison of chordwise pressure distribution in wake between MP 2172 and MP 2172 V at 0.7 R

のプロペラ回転角位置において, MP 2172 V の方がキ ャビテーション発生範囲は狭かった。1例として, プロ ペラ翼が 315°~20°の回転角位置を通過する際のキャビ テーション発生状況を, Fig. 17 に示す。

この比較実験では,両者ともパブルキャビテーション やクラウドキャビテーションはみられず,また正面キャ ビテーションも発生しなかった。

プロペラ単独試験, 翼表面圧力計測およびキャビテー ション試験を通じて, 新型種のKB型プロペラは, 著者 らが意図し, かつ計算により予測したとおりの性能をキ ャビテーション特性の面でも, また効率の面でも示すこ とが確かめられた。その結果, このKB型プロペラは一 般商船用プロペラとしてさらに発展させる価値があり, かつ十分実用に供しうるものであると考えられる。

5 結 論

著者らは、第1報、第2報の成果をもとに MAU 型プ ロペラの改良を、主としてキャビテーション特性の面か ら検討し、一つの成案をえた。すなわち、三次元キャビ テーションパケット図を応用して著者らは、MAU 型プ ロペラの形状要素とキャビテーション特性の関係を調査 した結果、MAU 型プロペラの発展成果として、新型種 KB 型プロペラを開発した。その概要は次のとおりであ る。

1) 新型種の KB 型プロペラは, MAU 型プロペラに 比べると, 翼断面形状, 翼輪郭, 翼厚最大位置の半径方

Table 2	Cavitation	test	conditions

Items	Unifor	m flom	Non-Uniform flow	
Model propeller No.	2172	2172 V	2172	2172 V
Revolution (rps)	30	25	26	25
Temp. of water (degree)	17.7	6.4	5.8	7.5
Reynolds No. $(Rn) = nD^2/\nu$	$1.76 imes 10^{6}$	1.08×10^{6}	1 . 10×10 ⁶	1.13×10^{6}

日本造船学会論文集 第143 号

Fig. 16 Cavitation test results in uniform flow

Fig. 17 Cavitation test results in non-uniform flow

向分布などが異なっているが,これらの変更は著者らが 採用した理論的解析に基づいて行なわれたものである。

2) MAU 型および KB 型プロペラについて, 模型に よるプロペラ単独試験, 翼面圧力計測およびキャビテー ション試験を行ない, 効率およびキャビテーション特性 に関する理論的予測が実験の上でも確認された。

3) KB 型プロペラは,従来から効率面で良好な性能 を示した MAU 型プロペラに対し,効率を犠牲にするこ となく,キャビテーション特性が一段と改善された。

4) KB 型プロペラの開発の基本方針は本研究により 求められたが、これをさらに広範囲に実用化してゆくた めには、日常のプロペラ設計に必要な各種資料を整備し なければならない。著者らは、今後とも引続き、この面 での試験研究を行ないたいと考えている。

辞

謝

本報告を終わるにあたり,当初から本研究の全般について終始御懇切な御指導を賜わった,東京大学 乾崇夫 教授,同 加藤洋治助教授,日本造船技術センター矢崎 敦生常務理事に対し深甚なる感謝の意を表します。

また,理論計算に関し御指導をいただきました船舶技 術研究所の菅井和夫・小山鴻一の両氏,模型実験に際し て御援助をいただいた日本造船技術センターの伊藤譲 氏,荒木繁氏,塩田昭男氏に厚く御礼申し上げます。

さらに,(株)神戸製鋼所 西原守常務取締役,久保慶 正取締役事業部長,宮下幸好事業部長代理,南方潤三技 術部課長,および中野市次呉事業所長はじめ呉事業所関 係の方々には,研究の当初から物心両面にわたり全面的 な御援助をいただきました。厚く御礼申し上げます。

参考文献

- 高橋通雄,奥 正光:MAU 型プロペラのキャビ テーション特性に関する研究,第1報,日本造船 学会論文集, No.141 (1977).
- 高橋通雄,奥 正光:MAU 型プロペラのキャビ テーション特性に関する研究,第2報,日本造船 学会論文集, No.143 (1978).
- 土田 陽, 矢崎敦生, 高橋通雄: Open Water Test Series with Modern Five-Bladed Propeller Models, 造船協会論文集, No. 102 (1958).
- 矢崎敦生,高橋通雄,倉持英之助: Open Water Test Series with Six Bladed Propeller Models, 造船協会論文集, No. 106 (1960).
- 5) 矢崎敦生,高橋通雄,上森初之:AU型4翼プロペラ及びAUw型6翼プロペラシリーズの設計図表の高ピッチ比への拡張,日本造船学会論文集,No. 131 (1972).
- 5) 矢崎敦生, 菅野博志, 高橋通雄, 山本 忠: Open Water Test Series of Modified AUw Type Six Bladed Propeller Models of Large Area Ratio 0.85, 日本造船学会論文集, No. 125 (1969).
- 7) 菅井和夫:プロペラ揚力面理論とその応用、日本 造船学会第2回プロペラシンポジュウム資料 (1971).
- D. T. Valentine: The effect of nose radius on the cavitation inception characteristics of two-dimensional Hydrofoils AD-785834, Naval Ship Research and Development Center (1974).