(昭和53年5月 日本造船学会春季講演会において講演)

三次元浮遊骨組構造の周期応答

正員 吉田宏一郎* 正員 石川 邦 照**

Periodic Response of Three Dimensional Floating Framed Structures

by Koichiro Yoshida, Member Kuniteru Ishikawa, Member

Summary

From the following points of view, periodic response of three dimensional floating framed structures is studied in this paper. What is worked on is three dimensional floating framed structures which consist of plural columns with immersed body and connecting members.

- (1) The relationship between member force response and motion response should be clarified for the overall structural design.
- (2) The amplitude and phase lag of member forces at member junctions are needed for the local structural design of junctions.
- (3) The effects of flexibility of connecting members on the motion will be important for large scale floating framed structures in future.

A new analytical method based on the fundamental concepts studied by authors so far is developed to discuss the problems mentioned above. On the other hand, model tests of several types of three dimensional floating structures were conducted to evaluate the applicability and the accuracy of the new method. The calculations are compared with the experiments and several comments on estimation of member forces of connecting members are given from the calculated results.

1 は じ め に

浮遊式海洋構造物の一つの基本形式として,下部に全 没浮体を有する,口径の大きな円筒浮体(コラム)を, 海面に対し垂直に複数本配し,これらを多数の比較的小 断面の部材(結合部材)で剛に結合した複合構造があ り¹⁾,海上あるいは海中における各種の作業のための基 礎構造として採用されている。作業状態では,通常,コ ラム長さの半ば以深が没水状態にあり,構造は多点で, 鎖あるいは索と錨との組合せにより海上の定位置に繋留 される。

この種の構造は,排水量型船舶に比較して,海面を貫 通するコラムの水線面積および海面に直交する投影面積 が小さいため,風,潮流,波から受ける力が小さく,特 に,波については変動浮力と波粒子加速度に基づく力と が相殺して,上下方向強制力が非常に小さくなる波周期 が存在する²⁾ とともに,上下揺,回軸揺(縦揺および横 揺)の固有周期が長いことにより,作業海域における波 の卓越周期を考慮して運動応答を小さくできるという性 能面における特徴を有している³⁾。これらの性能面での

* 東京大学工学部

** 東京大学工学系大学院

特徴は、主にコラム寸法、本数、配置、没水浮体の形状、寸法、重量配分および繋留法に支配されるので、これらの決定が、性能設計における重要点である⁴⁾。

一方,構造強度設計の面からは,全体構造設計とし て,甲板構造や結合部材の寸法や繋留構造の特性が,ま た局部構造設計として,部材接合部強度が重要である。 全体構造設計の基礎となる解析において,通常は,構造 全体が1個の剛体として運動するものとみなして(擬剛 体仮定),まず,運動応答を解き,次に,全体構造を弾 性的な立体骨組構造とし,その荷重を,運動応答の結果 として得られる変位,速度,加速度によって算定された 流体力と波強制力との和として求め,準静的な取扱いに よって,部材内力を断面力として得る^{5)~9)}。さらに,必 要によっては,引続いて板殻構造,実体構造として局部 構造の強度が検討される^{10,11)}。

さて,著者らは次に述べる視点から,浮遊骨組構造の 規則波中における応答を基本的に弾性体として取扱う解 析法を研究してきた^{12)~14})。

(1) 波浪中における部材内力応答と運動応答との関係を明確にする。

(2) 接合部強度解析のために,精度のよい部材内力 の算定が必要である。 (3) 将来,大規模構造が出現する場合,運動に及ぼ す弾性変形の影響,および,弾性変形を含む同調現象が 重要になると考えられる。

従来,浮遊構造の運動応答に関しては,多数の文献が あるが⁴, 部材内力の応答については,断片的な記述が 散見されるだけである^{1),7),15)}。これは,構造形状が多種 多様で対象をしぼりにくいということもあるが,現在, 一般に行なわれている部材内力解析法もまた一つの理由 と考えられる。新形式の浮遊骨組構造の試設計などに は,ぜひとも部材内力応答の特性ならびに運動応答との 関係について,浮遊骨組構造に共通する現象が明らかに される必要があると思われ,(1)はこのことを指したも のである。

前述したように、通常の部材内力応答は、二段階解法 の後段として解析される。この筋道は、単純であるが、 実際には、2種類の性質の異なる計算機プログラムの結 合であり、手続きが繁雑である。また、内力解析の段階 では、準静的な取扱いで、静解析されるので、浮遊構造 の場合には、剛体変位を取除くための仮想的な支持点を 設けなければならない。前段の運動応答計算の精度が良 好ならば、剛体変位だけを取り除くよう設置された任意 の仮想支持点に反力は生じず、得られる内力の精度も保 証されるが、もしそうでない場合には、反復修正計算過 程を通し、部材の動的平衡が保持されるようにしなけれ ばならず、(2) はこの点に関連している。

(3) は将来の海洋開発で必要とされる構造において, その規模が現在程度のもの(1辺の長さ100m, 排水量 25,000 ton)よりかなり大きくなる場合, 擬剛体仮定が 成立せず,最初から部材の弾性剛性を考慮する必要性に 注目したものである。

本論文は,著者らの二次元構造を対象としたこれまで の取扱いを^{12)~13},三次元構造へ拡張するとともに,小 型三次元模型による実験を行ない,解析法の検証を行な うとともに,数値計算結果に基づいて,前述の視点から 考察を加えたものである。繫留に関しては,弛緩式繋留 を想定して,繋留力の影響を無視しているが,導入する 場合には線形化し,ばね模型としてモデル化することに なる。

以下,解析法の考え方の説明,解析のための基礎式構 造要素に働く流体力に関する強制動揺実験,小型三次元 模型による波浪強制実験と,数値計算結果との比較,考 察の順で述べる。

2 浮遊骨組構造解析法

2.1 基本仮定

解析にあたり、次のような基本仮定を設ける。

(1) 対象構造の構成部材は細長く,全体構造解析と

Fig. 1 Hull element and beam element

しては骨組として取扱うことができる。

(2) 構成部材の断面寸法は波長に比較して十分小さ い。

(3) 流体は,非圧縮,非粘性,流れは非回転とする。

(4) 波は微小振幅深海進行波(Airy 波),流体力は, 変位,速度,加速度で線形表示ができ,構造変形は微小 弾性とし,すべての現象が線形微小で,運動は平衡点回 りの微小調和振動である。

(5) 構造を構成する部材間の流体力学的な相互干渉 はないとする。

全体構造を構成する部材は, Fig. 1 に示すようにす べて要素に分割する。要素については, 次の仮定を設け る。

(1) 要素の機能を,形状,大きさ,質量を有する剛体としての外殻(外殻要素;hull element)と弾性体としての弾性剛性を外殻要素の重心を結ぶ線として集中的に有する弾性線(梁要素; beam element)とに分離する。

(2) 外殻要素と梁要素とは外殻要素重心で結合され、その点での変位の適合条件を考える。すなわち、外 殻要素の変位と弾性骨組の節点変位とを等置する。

(3) 力の動的平衡を外殻要素重心で考える。外殻要素は、各種の外力を受け、これらを骨組解析のための節 点外力とする。

2.2 外殻要素に作用する外力

外殻要素に作用する力は、(i)慣性力、(ii)波の存 在による非定常成分を含んだベルヌーイの定理に基づく 力(圧力)、(iii)変動浮力、(iv)流体粒子速度と外殻 重心速度の差(相対速度)による力、(v)相対加速度 による力の、合計5種類の力として近似する。

一般の海洋構造物に働く力としては、上記の(i)~ (v)の力以外に、構造重量や浮力などの非周期力、機 械などの振動による動的な力等が考えられるが、ここで はこれらの外力は線形重ね合わせが可能であるとして除 外し、周期変動力だけを考え、繁留力に関しては線形ば ねとしてモデル化して取り扱う。

流体力を算出するにあたり、静水面に X-Y 平面を置 く全体座標系 (O-XYZ 系) をとり、ここで外殻要素重 心変位 $\partial_i(U_i V_i W_i \phi_i \Theta_i \Psi_i)$ を定義する (Fig. 2 参照)。

Fig. 2 Coordinate system

入射波の方向とX軸のなす角を χ とし、Airy 波仮定を 導入して波の表面上昇 η と、波のポテンシャル ϕ を書く と次のようになる。

$$\eta = a \cos \left\{ \kappa \left(X \cos \chi + Y \sin \chi \right) - \omega t \right\}$$
(1)

 $\phi = cae^{-\kappa z} \sin \left\{ \kappa \left(X \cos \chi + Y \sin \chi \right) - \omega t \right\}$ (2)

ここに *α*, *κ*, *c*, *ω* はそれぞれ波の振幅, 円波数, 位相 速度, 円周波数である。

一方,外殻要素の部材軸を *z* とし,外殻要素重心を原 点とする局部座標系 (*o-xyz* 系)を導入して,(1),(2) 式を局部座標系で表現し,それらを使用して前述の(i) ~(v)の力を算定し整理すると,

となる。ここで \bar{F}_{i} , $\bar{\delta}_{i}$, \bar{f}_{i} は、それぞれ局部座標系で表 わされた外殻要素 i に関する外力ベクトル、変位ベクト ル、波強制力ベクトルを表わし、 \bar{K}_{vi} , \bar{K}_{di} , \bar{K}_{ri} は、や はり局部座標系で表わされた外殻要素 i に関する見掛け 慣性行列、減衰係数行列、復元係数行列である。

ここで、全体座標系での重心変位と局部座標系での重 心変位を結合する座標変換行列 C_i を定義し、(3)式で 表現された局部座標系での外力を、 C_i を使って外殻要 素重心変位を定義した全体座標系 (O-XYZ 系)で表現 すると、

$$F_{i} = -K_{vi}\tilde{\delta}_{i} - K_{di}\delta_{i} - K_{ri}\delta_{i} + f_{i} \qquad (4)$$

$$\subset \subset \mathcal{K}, \quad F_{i} = (F_{Xi}F_{Yi}F_{Zi}F_{\phi i}F_{\theta i}F_{\overline{\psi}i})^{t}$$

$$\delta_{i} = (U_{i}V_{i}W_{i}\phi_{i}\phi_{i}\varphi_{i}\Psi_{i})^{t}$$

$$K_{vi} = C_{i}^{t}\overline{K}_{vi}C_{i}$$

$$K_{di} = C_{i}^{t}\overline{K}_{di}C_{i}$$

$$K_{ri} = C_{i}^{t}\overline{K}_{ri}C_{i}$$

$$f_{i} = C_{i}^{t}\overline{f}_{i}$$

となり,任意の方向を向いた外殻要素(斜交要素)に働 く外力が全体座標系で算定されたことになる。

構造を構成するすべての外殻要素に働く外力を,これ まで述べてきた手法で算定を行なうことは、一般的では あるが、現実に解析を行なう際には計算が非常に繁雑と なる。そのため、本論文では、実構造に多く現われる垂 直要素(部材軸がZ軸に平行な要素)および、水平要素 (部材軸がX-Y平面に平行な要素)に関しては、斜交 要素から誘導された結果を、計算に際し便利な形式にま とめ、とくに、水平要素に関しては部材軸を局部座標系 のx軸と一致させ、より単純な表現にしている。

これら3種類の要素(斜交要素,垂直要素,水平要素) の定式化に際して,さらに便宜のため,静水面と外殻要 素の相対位置を考慮して,それぞれを3種類の要素に分 ける。すなわち,没水部をもたない空中要素(nonimmersed element),要素内に静水面をもつ水線要素 (partially-immersed element),完全に没水する水中要 素(fully-immersed element)の3種(Fig.3参照)。 ただし,ここでは,水平水線要素は考えられないことと する。

斜交, 垂直, 水平の3種の要素についての, 要素重心 の変位, 速度, 加速度に依存する力, すなわち, 復元力 および, radiation force の具体的な局部座標系での算 定式を Table 1 に, 一方, いわゆる, Froude-Kriloff force および diffraction force, すなわち, 波強制力の 局部座標系での算定式を Table 2 に示す。 これら外力の算定において,付加質量,減衰係数は既 知のものと見なし,また,流体粒子に関する量は,外殻 要素断面の中心における値を代表値として採用するとと もに,速度に関する項は,線形項だけを採用し,非線形 項は考慮していない。これらの仮定は流体力学的な見地 からすると,種々の問題を含むが,構造の挙動の全体的 な把握を容易にするために行なうものであり,この種の 現実的な近似法を採用することが許容されると考えられ る。

2.3 運動方程式の組み立てと解法

2個の外殻要素重心i, jを結合する弾性梁要素lに 対し, Fig. 2に示すように, 流体力の算定に際しとっ たと同じ局部座標系をとると, その局部座標系での節点 力と節点変位を結合する要素剛性行列 \vec{K}_l は, 従来の3 次元骨組構造解析での手法と全く同様に定式化され, \vec{K}_l を使って要素の剛性方程式が導かれる。座標変換行列に より, 外殻要素重心変位を定義した全体座標系へ変換し た後, 足し込みを行なえば, 構造全体としての剛性方程 式,

$$K\partial = F$$
 (5)

ここに、 $K=\sum_{l}K_{l}$

を得る。ここに **∂**, **F** はそれぞれ, 構造全体の変位ベクトルおよび, 外力ベクトルである。

一方,(4)式で算定された外力を,すべての外殻要素 に関して足し込みを行なうと,構造全体に働く外力 F は,

$$F = -K_v \dot{\delta} - K_d \dot{\delta} - K_r \delta + f \qquad (6)$$

$$\subset \subset \mathcal{K}, \quad K_v = \sum_i K_{vi}, \quad K_d = \sum_i K_{di}, \quad K_r = \sum_i K_{ri}$$

$$f = \sum_i f_i, \quad \delta = \sum_i \delta_i$$

と表現され、(5) 式の右辺と(6) 式の左辺を等置し整理 すると全体構造に関する運動方程式

 $K_v \dot{\partial} + K_d \dot{\partial} + (K_r + K) \partial = f \qquad (7)$

が得られる。

フーティング型の浮遊構造のコラムのような垂直部材 は、揺れに対する安定性のために大きな水線面積が必要 となり、従って、他の部材と比べてその弾性剛性は、通 常大きくなる。この種の部材では運動特性の記述のため にも、一度分割された外殻要素を一まとめとして剛体と して取り扱う必要がある。これには、剛体を構成する外 殻要素の重心変位 ∂_i を、その剛体内で最終的に自由度 として残す代表節点変位 ∂_r と剛体運動仮定で結合する 行列(剛体変位変換行列) T_i を考える。

$$\boldsymbol{\delta}_i = \boldsymbol{T}_i \boldsymbol{\delta}_r \tag{8}$$

剛体変位変換行列を使って、代表節点で評価した剛体に 働く外力 **F**_r は、(4) 式を考慮して、

$$F_r = - (\sum_i T_i^* K_{vi} T_i) \ddot{\partial}_r - (\sum_i T_i^* K_{di} T_i) \dot{\partial}_r$$

 $-(\sum_{i} T_{i}^{t}K_{ri}T_{i})\delta_{r}+\sum_{i} T_{i}^{t}f_{i}$ (9) として表現される。剛体仮定を行なう外殻要素重心に弾 性梁要素が結合される場合は、剛体に結合する弾性梁要 素との結合点を i, 他端を j として、弾性梁要素の剛性 行列 K^{i} は、点 r, および、j に対応する剛性として、 T_{i} を使って

$$\begin{bmatrix} \boldsymbol{\delta}_{r} & \boldsymbol{\delta}_{j} \\ T_{i}^{t} K_{ii}^{l} T_{i} & T_{i}^{t} K_{ij}^{l} \\ K_{ji} T_{i} & K_{jj} \end{bmatrix}$$
(10)

と評価できる。これらの方法で、構造の一部を剛体とし た場合には、剛体内の代表節点以外の節点が縮約された 運動方程式が得られることになる。

以上のように組み立てられた運動方程式により,求め るべきものは,運動を調和振動と考えているので,自由 節点の変位の振幅と位相差である。ここでは通常の方法 と同じく,節点変位,波強制力を複素数で定義し,運動 方程式に代入して得られる係数,未知変位,外力につい て実部と虚部の分離を行ない,元数2倍の実数係数方程 式を解く。この結果より変位,要素内断面力,または, 梁応力の振幅と位相差が計算される。

以上述べてきた解析法に従い,数値計算プログラム DAFOS 3 を作成した。そのフローチャートを Fig. 4 に示す。プログラムは,入射波の方向と周波数,および 構造データを入力とし,各節点の変位,断面力,または 梁応力および歪の振幅と位相差を出力とする。

3 実 験

本論文において実験は次の2つに大別される。

(1) 計算の際の入力となる流体力係数を定めるため の強制動揺実験

(2) 解析法の妥当性を検証するための,浮遊構造模型を用いた波浪強制実験

3.1 強制動摇実験

フーティング付コラムについて、上下方向、および、 左右方向の流体力係数の周波数依存性を求めるための, 強制動揺実験が行なわれた。なお後者については、川 290

原16), 柏原17), 両氏との共同研究である。

実験は強制動揺装置を用いて,円筒を上下方向,また は左右方向に動揺させ,動揺させるのに必要な力の振幅 と,その変位との位相差を計測した。

本実験は線形運動方程式((7)式)に使用する付加質 量,および,減衰係数を定めることを目的としているこ とより,減衰項の非線形項も線形化して取り出すことが より現実的であるため,フーティング付コラム単体に関 する線形の運動方程式を仮定し,実験より得られた力の in-phase 成分から付加質量を,out of phase 成分から 減衰係数を算定する方法を採用した。

得られた付加質量,および減衰係数について,力学的 および,幾何学的相似条件を考慮して無次元化して整理 した。Fig. 5 に,後述の波浪強制実験で用いた,フー ティング付コラムと幾何学的にほぼ相似な形状のモデル についての,上下方向および左右方向の付加質量係数と 減衰係数の実験値の中央値を,それぞれ,実線と破線で 示す。図中,横軸は,モデルの代表寸法と波長の比で無 次元化を行なっている。

実験より得られた値の傾向および絶対値はともに, 佐 尾ら^{13),19)}, または, 増田ら²⁰⁾のポテンシャル論による 解析結果とよい相関を示し, 上下方向および左右方向の 流体力係数の実験値は妥当であると考えられ, 解析の際 の入力データとして, これらの数値を用いた。

3.2 波浪強制実験

1 章で述べた理論の妥当性を検証するために,フーテ ィング付コラム3個を結合した模型,および,3個のコ ラムとロワーハルからなる構造2体を結合した模型を作 製し,周期波により自由状態で運動させる水槽実験を行 なった。作製した3体の模型を Fig.6 に示す。

Fig. 6 の(A)図は,正三角形の頂点に3個のフーティング付コラムを配したやわらかいモデル FM を示し, 3個のフーティング付コラムと,剛性の低い上部構造 (甲板構造)とで構成されている。甲板構造は,幅22

Fig. 5 Added mass & damping coefficient of column with footing

Fig. 6 Types and dimensions of specimens

mm×板厚 10 mm の矩形断面形状を有するアクリル材 (ヤング率; E=336.7 kgf/mm²)で構成され, 弾性変 形の影響を強調するため, 梁の曲げ剛性がコラムに比較 して非常に弱くしてあり, 運動変位とともに曲げ歪, お よび, ねじり歪についての実験値を得ることを目的と している。

Fig. 6 の(B)図は,正三角形の頂点に3個のフーティング付コラムを配した剛なモデルFKを示す。このモデルは、3個のフーティング付コラムと、モデルFMと同様の甲板構造、下部水平材、および、斜材で構成されている。下部水平材と斜材は、アクリル材を使用し、直径7mmの中実丸棒で構成されている。このモデルFKは、全体構造としては十分剛なため、その挙動は、ほぼ剛体運動と推定されるので運動変位と、部材の軸歪を得ることを目的とした。なお、波の入射角は0°と30°の2通りの実験を行なった。

Fig. 6 の (C) 図に, 3個のコラムとロワーハルから なる構造2体を平行に配した剛なモデル LK を示す。こ のモデルは,3個のコラムとロワーハルからなる構造2 体と甲板構造,下部水平部材,斜材よりなる結合部材と で構成されており,結合部材の断面形状と材料は,前述 のモデル FK と同一とした。本モデルは十分剛でかつ構 造寸法が大きいため,運動応答の卓越する周波数領域 が,実験可能な周波数領域中に入らないために,計測は 軸歪だけにとどめ,波の入射角が 90° と 45° について実 験を行なった。

歪の測定は、部材の上下に貼付した2枚の歪ゲージに より、動歪アンプを介し、フォトコーダで記録する方法 をとった。運動変位の測定は、完全浮遊状態に拘束を付 与することがないように、変位の測定を行なうモデルの コラム頂部に、剛でかつ軽量の棒を立て、これに発光ダ イオードを取り付け標点とし、その軌跡を開放にしたカ メラで、2方向から撮影し、後に、その軌跡を解析し運 動変位振幅を求める光学的方法で行なった。変位の較正 は、モデルの後方に較正用の板を置き、板上の基準長さ だけ離れた点に設けた発光ダイオードを同時に撮影する 方法で行なった。

モデルにかけられた周期波は、 $2.1 \le \omega \le 12.7$ に相当 する周波数領域内の波で、その周波数により、0.7 cm から 3 cm 程度の波高で実験を行なった。

4 比較および考察

以下において、3章で述べた波浪強制実験を行なった 3個の三次元模型による測定結果と、2章で述べた基礎 式に基づいて作成された計算機プログラムによる出力結 果との比較および考察を行なう。

4.1 正三角形の頂点に3個のフーティング付コラム を配したやわらかい模型(モデル FM)

3個のフーティング付コラムと低剛性の甲板構造とで 構成されたモデル FM (Fig. 6 の (A) 図参照)を, Fig. 7 で示すごとく,一つの頂角の二等分線が空間固 定座標 O-XYZ のX軸に平行になるように設定する。 波は,その方向をX軸にとり,図の左から右へ進行する ものとする。また,同図に解析における要素分割を示 す。フーティング付コラムは,1本につき7個の外殻要 素に分割し,各要素の重心(節点)で外力の評価を行な った後,剛体仮定により,コラム頂部の代表節点に縮約 した。甲板構造は,節点数39,弾性梁要素数42に分割 し,自由度総数は468 である。流体力係数は,3 章で述 べた強制動揺実験より得られた値を使用し,すべての方

Fig. 7 Mesh subdivision of model FM

Fig. 8 Z-Directional displacement of FM

向に対し、周波数依存があるものとした(Fig. 5 参照)。 Fig. 8 に、添図に示す A, B, C 3 点の Z 方向変位 (W)の振幅の計算値と、A 点における実験値を示し、 Fig. 9 に Y 軸まわりの回転角(Θ)の振幅と計算値と実 験値を示す。ここで、横軸は円周波数のであり、変位振 幅は、入射波の振幅(a)、回転角振幅は、入射波の最大 波値斜(ak)により、それぞれ無次元化されており、以 後の図においてもすべて同様の表示としてある。また、 解析において、運動流体力、波強制力の評価は、フーテ ィング付コラムだけについて行ない、その他の部材は、 質量を有する弾性部材として扱かう。この仮定は、後の 4.2 節においても共通である。

これらの計算曲線によれば、 $\omega = 2.4, 2.9, 3.3, 11.4$ (rad/sec,以下略)に顕著な極大値がみられる。このう ち、 $\omega = 2.4$ においては、 Θ の振幅が最も大きく、他の 出力結果も参照して、甲板構造の二節振動モードによる 弾性振動同調であると判断でき、実験時の視察において も、各コラムの下端が、同時に、正三角形の中心に近づ いたり離れたりする運動を行なっていることが明瞭に認 められた。 $\omega = 2.9$ では、Wの振幅だけが極大となり、 自由動揺実験の結果と合わせて判断すると、ほぼ剛体

(擬剛体)としての上下揺同調となっている。縦揺同調 (擬剛体としてのY軸まわりの回転揺による同調)は、 $\omega=3.3$ であり、 Θ の振幅にピークとして現われている。 $\omega=11.4$ では、ここには示されていないX方向変位(U) の振幅の計算出力に顕著なピークが現われ、また、 Z,Θ 方向変位振幅にも小さなピークがみられ、その変形モー ドから、甲板構造の三節振動モードによる弾性振動同調 であると判断される。この円周波数付近における実験で は、入射波の波長が短かく、波高が小となり、運動変位 振幅としては、目立った値は計測されなかったが、変形 モードとしては、三節振動的であることが観察された。

次に、甲板構造を形成する梁部材の歪について、Fig. 10 に、添図に示す、A、B、C 3点の上下方向曲げによ る歪の計算値と実験値を、Fig. 11 に、添図に示す点の 捩りによる歪の計算値と実験値を示す。Fig. 10 の計算

Fig. 9 Rotation angle (Θ) of FM

Torsionci

0

6

8

10

12

ω (rad/sec)

™にすいいとしていない。0=2.9

一方、 ω =8.8における極大値は、これまで述べたような、剛体、あるいは弾性体としての共振現象に基づくものではなく、波強制力を受ける主要構造要素(このモデルの場合はフーティング付コラム)の間隔と、入射波の波長との適合によるものと考えられる。これは、排水量型船舶の波浪縦曲げモーメントの大きさに関して、ship/wave matching²¹)と称せられている現象と類似しており、以後、船長/波長適合と呼ぶことにする。Fig. 11 に示す振りによる歪の計算曲線についても、弾性的な二節、三節振動モードによる同調、および、船長/波長適合による、船長/波長適合による極大値が現われている。

計算値と実験値との相関は、いずれの場合も、弾性同

調付近を除いて,傾向,絶対値とも良好である。弾性同 調付近においても,実験値も極大値を示すという傾向を 有してはいるが,その大きさは,計算値の方が大きく, 三節振動モードによる同調時にこれが顕著である。この 三節振動モードによる同調円周波数付近においても実験 を行なったが,他の円周波数に対する歪計測値がすべて 明瞭な sine 波形を描くのに対し,この領域のみが複雑 な波形を呈してその振幅が決め難いため,図から除いて ある。

以上を総括して, やわらかい構造に対して, 次のこと がいえうる。

運動および内力の応答における顕著な極大値は、擬剛 体としての運動同調、やわらかい結合構造の弾性振動モ ードによる同調および船長/波長適合に対応する円周波 数において生ずる。2 章に述べた解析法は、これらのす べての現象を含んでおり,個々の現象に対応する円周波 数は良好な精度で求められる。一方,その円周波数時の 振幅の大きさについては、 共振現象ではない船長/波長 適合については良い精度で算定されるが、共振現象につ いては、振幅の精度が悪く、とくに高周波領域における 弾性振動モードによる同調において甚しい。この原因と しては,実験法そのものにも,模型に使用した材料の材 料特性、部材の結合法、変位計測法などに問題があると ともに,解析法としては,構造部材,部材結合部の内部。 減衰,変位,変形が大きくなることによる流体力算定に おける非線形効果など22),23)を考慮する必要があると思 われる。これらの事情は、船体運動24)および船体振動25) と同じである。

4.2 正三角形の頂点に3個のフーティング付コラム を配した剛な模型(モデル FK)

4.1 節で扱ったモデルに Fig. 12 に示すように,下部 水平部材と斜材とを付加したモデル FK (Fig. 6 参照)を 取扱う。入射波の方向は,実験,解析とも,空間固定座 標の X 軸に対して 0°(χ =0°) および 30°(χ =30°)の2 種類とする。解析において,フーティング付コラムは,

Fig. 12 Mesh subdivision of model FK

1本につき6個の外殻要素に分割した後,剛体仮定によ り代表節点に縮約し,甲板構造,結合構造は,節点数 36,自由度総数432に分割した。また解析における流体 力係数としては,モデルFMの場合と同じく,3章で述 べた強制動揺実験より得られた値を使用した。

入射角 $\chi=0^{\circ}$ の場合の入射波側のフーティング付コ ラムの頂部のZ方向変位 (W)の振幅の実験値と計算値 とを, Fig. 13 に,同点のX方向変位 (U)の振幅の実 験値と計算値,Y軸まわりの回転角 (Θ)の振幅の計算 値を Fig. 14 に示す。これらの計算曲線には、 $\omega=2.9$ および 3.3 において,顕著な極大値が現われている。前 者は,擬剛体としての上下揺同調,後者は縦揺同調によ るものであり,モデルFMの場合と,円周波,振幅とも ほぼ等しい。ただし,下部水平部材,斜材の付加によ り,結合構造が剛になったため,考える円周波数領域 に,弾性振動モードによる同調現象は現われていない。

Fig. 15 Z-directional displacement of FK 30°

次に,入射角 $\chi=30^{\circ}$ の場合の入射波側の2個のフー ティング付コラムの頂部 A,B 点における Z 方向変位 (W)の振幅の実験値と計算値とを Fig. 15 に,A点に おける Y 方向変位 (V)の振幅,Y 軸まわりの回転角(Θ) の振幅,X 軸まわりの回転角(Φ)の振幅の計算値を Fig. 16 に示す。同調の円周波数は,構造に固有のもの であるから,入射波の方向に対して不変であり, $\chi=30^{\circ}$ の場合も $\chi=0^{\circ}$ の場合と同一の円周波数で極大値を生 じる。W の振幅以外の変位振幅,回転角振幅の無次元 量は $\omega=0$ で1に収束していたが,これは,これらの変 位,回転角が成分であり,ベクトル和が1になるためで ある。

Fig. 17 に,入射角 $\chi=0$ の場合の,添図に示す A, B 2 点の軸歪振幅の実験値と計算値を示す。また,Fig. 18 に入射角 $\chi=30^\circ$ の場合の,添図に示すA,B,C 3 点の軸歪の振幅の計算値と,A,B 2 点の実験値を示す。

Fig. 16 Rotation angle (Φ, Θ) & Y-directional displacement of FK 30°

いずれの図においても、実験値と計算値との相関は良 好であるが、高円周波数領域で一部相関が悪くなるの は、コラムの直径と比較して入射波の波長が相対的に短 かくなるため、2 章に述べた解析に関する基本仮定が侵 されるからである。

Fig. 17, Fig. 18 でも、縦揺同調時に、斜材にかな りの大きさの極大値が現われているが、この現象は、著 者らが前報13)で取扱った二次元模型では見られなかった 点である。これは今回のモデル FK においては, フーテ ィング付コラムの質量が、斜材の軸剛性と比較して相対 的に大きいために、コラムの運動による慣性力の影響が 現われているのが原因と考えられる。下部水平部材に注 目すると、実験値、計算値とも、入射角 X=30° に比較 して、X=30°の方が軸歪振幅が大きい。構造の対称性 を考慮すれば、X=30°の場合、すなわち、入射波の方 向が任意の1本の下部水平部材の方向に平行になる場合 が,あらゆる波方向の内で,その下部水平部材に最大の 軸歪を発生させることが推定される。そこで、X=30°に ついて, Fig. 19 に示すように入射波の半波が2本のフ ーティング付コラムの中心間長さ(このモデルの場合 1=105 cm)の間に奇数個入るような入射波のωの値は, ω=5.42,9.38…, 偶数個入るようなωの値は, ω=7.66, 10.83… となる。Fig. 18 によれば, 前者に対しては, 下部水平部材は極大、斜材は極小、後者に対してはちょ うど逆の関係となっている。このように、剛な構造の結 合部材の軸歪は, 顕著な船長/波長適合を示し, しかも 一般に擬剛体としての運動同調時に生ずる歪よりも船 長/波長適合による歪の方が大きい。

以上のような事実に着目すれば,この種の構造の結合 部材に発生する内力が最大になる場合の入射波の方向と 波長およびそのときの内力の大きさを近似的に推定する ことができよう。

4.3 3 個のコラムとロワーハルからなる構造2体を 平行に配した剛な模型(モデル LK)

3個のコラムと1個のロワーハルからなる構造を,甲 板構造,下部水平部材,斜材で剛に結合したモデル LK (Fig. 6 参照)に対する入射波の方向,円周波数による 運動,内力を,実験,計算から検討する。計算において, 流体力係数は自由動揺実験から求めた値を用い,周波数 依存性を無視している。要素分割はFig. 20に示すとお りであり,6個のコラム部分は,先のモデルと同じく, 分割した後,剛体仮定により各コラムの頂点の代表接点 6,19,32,13,26,36 に縮約された。ロワーハル,甲板構 造,下部水平部材,斜材は弾性体とし,節点数46,要 素数46,自由度総数552に分割した。また解析におい て,運動流体力,波強制力の評価はコラム,ロワーハル のみについて行ない,その他の部材は質量を有する弾性

体として扱う。

空間固定座標のX軸がロワーハル中心軸に平行になる よう設定し、この軸と波の進行方向とのなす角を波の入 射角Xとする。甲板構造の中央点(節点18)のX,Y,Z 軸方向変位をU,V,W 各軸回りの回転角 ϕ, Θ, Ψ とし、 それらの無次元量の、入射角 $\chi=30^\circ, 45^\circ, 60^\circ, 90^\circ$ に対 する計算値を Fig. 21 に示す。これらの図および、こ こには示していない位相差の出力結果から判断すると、 $\omega=1.75$ が縦揺、 $\omega=2.0$ が横揺、 $\omega=2.2$ が上下揺の 擬剛体としての同調円周波数と考えられる。先にも述べ たように、これらの同調円周波数が、入射角Xによらず ほぼ一定となるのは、同調現象は構造のみによるからで あり、また、一般の入射角に対し、U,V, ϕ, Θ の振幅の 無次元量が $\omega=0$ で1に収束しないのは、これらが成分 であって、ベクトル和が1に収束するからである。

Fig. 22 に入射角 $\chi=90^\circ$ の場合の下部水平部材の軸 歪に関する実験値と計算値を示す。図中 side, center と は、それぞれ構造の長手軸方向に 3 個存在する結合構造 のうちの端部のもの、中央部のものを指す。なお破線は 三菱重工業(株)で開発された解析プログラム⁸⁾ による計 算曲線である。これまでの比較と異なり、この図では実 験値と計算値との相関が悪い。このモデルは、実験準備 中に、端部に存在する 2 本の斜材 (Fig. 20 における 3-5-4 節点を結ぶものと 42-38-39 節点を結ぶもの)を 誤って折ってしまったために、簡単な補修を施して実験

を実行した。この結果、端部と中央部とで斜材の剛性が 変化してしまい、下部水平部材の軸力の受持ちに大きな 影響を及ぼしたことが、相関の悪い原因と考えられる。 この推測は、この構造が完全な場合、横波状態で端部と 中央部とで Fig. 22 の実験値に見られるごとく、大き な差が生ずるとは考えられないこと、著者らの解析法に よる,他のモデルの軸歪に関する実験値と計算値との相

関が一般に良好であること、 さらに、 このモデルに関す る他の解析プログラムによる計算値と、本解析法による 計算値が一部を除いてほとんど一致していることにより 間接的に裏付けられていると考えられる。なお、2種類 の計算結果に高円周波数領域で差があるのは、採用した 流体力係数に関する仮定に基づくものと考えられる。下 部水平部材の軸歪は、2個のロワーハルの間隔に半波が

Fig. 24 Axial strain at horizontal brace of LK

奇数個入る ω の値, すなわち ω =5.60,9.61,…において 極大値をとり, 偶数個入る ω の値, すなわち ω =7.85, 11.10,… において極小値をとる船長/波長適合の性質を 示している。Fig. 23 に入射角 χ =45°の場合の下部水 平部材の軸歪の比較を示すが, 先に述べた理由で相関は 不良である。

計算出力によれば、この種の構造では、コラムおよび ロワーハルに作用する波に起因する流体力によって、結 合部材である下部水平部材や斜材に生ずる内力のうち曲 げモーメントや捩りモーメントは小さく, 軸力が主であ る。下部水平部材、斜材に生ずる軸力の大きさに及ぼす 入射波の方向と波長(円周波数)の影響をみるために Fig. 24, Fig. 25 に波の入射角をパラメータとして,計 算による下部水平部材と斜材の軸力(このモデルでは下 部水平部材と斜材に使用している部材の軸剛性は同一な ので、 軸歪と軸力の対応は同一となる)の応答関数を示 す。Fig. 24 によれば下部水平部材の軸力は入射角 χ= 90°において、円周波数 ω≒5.6, すなわち2個のロワ ーハル間に半波が1個入るような波長の場合に最大にな っている (Fig. 26 左図参照)。一方, Fig. 25 を参考と して考察すると,斜材の軸力は構造全体の捩りを主要原 因として大きくなり, Fig. 26 右図に示すように, 2個 のロワーハルの前後端のコラムを結ぶ対角線に直交する 方向の入射角を有し、半波が図の破線間に2個入る場 合, すなわち, この間隔が波長に等しくなる入射波の場 合に最大になるとすると、このモデルの場合、χ=50.2°, ω=6.2 となり、よい推定となることがわかる。

5 おわりに

三次元浮遊骨組構造を対象として,構造を基本的に弾 性体とみなして,運動と構造内力の周期応答を同時に解 析する方法を開発し,3種類の小型模型による波浪強制 実験結果と比較検討して以下の点が明らかとなった。

(1) 運動応答,内力応答とも,実験値と計算値との 相関は,一部を除いて良好であり,本解析法の有効性を 確認した。

Fig. 25 Axial strain at diagonal brace of LK

Fig. 26 Wave condition for maximum axial force of LK

(2) 実験値と計算値との相関が悪いのは,同調時の振幅,特に高周波領域における弾性振動同調時の振幅であり,この原因は,構造減衰を含めた減衰係数の評価, 流体力の非線形性によるものと考えられ,今後の問題点である。

(3) 複数個の主要浮体を低剛性の結合部材で結合したやわらかい構造では,擬剛体としての同調現象のほかに,弾性振動モードによる同調現象が存在することを確認した。

(4) 複数個の主要浮体を骨組で剛に結合した構造で は,結合部材の主要内力は軸力であり,その大きさは船 長/波長適合によって規定される。

(5) 船長/波長適合によって結合部材の軸力が大き くなる事実は、各種の浮遊骨組構造について、結合部材 寸法を検討するための入射波の方向と波長を与える糸口 となる。

(6) 本解析法は,構造内力の解析に適しており,出 力の精度も良好で,部材結合部などの局部解析のための 入力として十分使用できると考える。

終りに,本研究を進めるにあたり,終始暖かい励ましと 適切な助言をいただきました東京大学 飯田國廣教授に 厚く御礼申し上げるとともに,本研究の実験は,日本船 用機器開発協会 FPC 委員会の活動の一環として行なわ れたものであり,実験結果などを御検討いただいた同委 員会委員諸氏に感謝いたします。なお三井造船(株)千葉

		Virt	ual In	ertia	Matris		Dam	, ping	Coeffi	cient	Matri:	×	ά μ	torin	d Coef	Ficient	Matri.	
										211212			р. Т		7 COGF		ידיזים רדי	,
	×	:2	:10	••	ю	:>	۰×	٠٨	• N	•••	۰œ	ڊ ،	×	Y	И	ф	θ	¢
- ACM	W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	Μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIMMETSEO	0	0	W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THAMATS	0	0	0	ф Н	0	0	ò	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	Πθ	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	Tψ	0	0	0	ò	0	0	0	0	0	0	0	0
l encore in	M+Max	0	0	і О	L ₁ Max	0	NX	0	0	0	-L ₁ Nx	0	0	0	0	0	0	0
Turnowed	0	м+мау	Г 0	ιMay	0	0	0	NΥ	0	LINY	0	0	0	0	0	0	0	0
DASTAIMIT	0	0	M+Maz	0	0	0	0	0	NZ	0	0	0	0	0	npgA	0	0	0
Element	0	L ₁ МаУ	φı o	+L2May	у о	0	0	L_1NY	0	L_2NY	0	0	0	0	0	gVwL₁	0	0
	-L ₁ Ma:	0	0	ο I	9+L2Max	0	-L ₁ Nx	0	0	0	L_2Nx	0	0	0	0	0 99	UwL ₁	0
	0	0	0	0	0	Γψ	0	0	0	0	0	0	0	0	0	0	0	0
	M+Max	0	0	0	0	0	NX	0	0	0	0	0	0	0	0	0	0	0
Horizontal	0	4+МаУ	0	0	0 T	3MaY	0	NΥ	0	0	0	L3NY	0	0	0	0	0	0
Immersed	0	0	M+Maz	- 0	i3Maz	0	0	0	NZ	0	-L3NZ	0	0	0	0	0	0	0
Element	0	0	0	, Ф Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	-L3Maz	0 I 0	+L ₄ Maz	0	0	• 0	L3NZ	0	$L_{4}Nz$	0	0	0	0	0	0	0
	0	L ₃ May	0	0	.+ψı 0	L4, May	0	L ₃ NY	0	0	0	$L_{t_{\rm t}}NY$	0	0	0	0	0	0
Notations		Γ]= (Γ	20-221)/2		ц,	$= (1_0^2)$	-32,021	+32 ²),	/3								
) - 	(-22	/2		Ţ	= (22.	+ -2 -2	7.2) /3									
		ო	.5 [.] 1.	1		ļ	- -	27 1	2									

Table 1 Table of hydrodynamic forces due to motion

三次元浮遊骨組構造の周期応答

n=1 for Partially-immersed Element

n=0 for Fully-immersed Element

298

日本造船学会論文集 第143号

研究所には実験実施にあたり御便宜を計っていただいた ことを付記します。

京大学船舶工学科職員諸氏および飯田研究室の方々に感 謝いたします。なお,数値計算には,東京大学大型計算 また,本論文をまとめるにあたり御尽力いただいた東 機センター HITAC 8700/8800 を使用した。

Table 2 (A) Table of wave exciting forces

x Y z	α $D[\omega^{2}(\rho Vw+Max)Q_{2}^{1}c+\omega NxQ_{1}^{1}c]$ $D[\omega^{2}(\rho Vw+Max)Q_{2}^{2}c+\omega NxQ_{1}^{1}c]$	β $D[\omega^{2}(\rho Vw+Max)O^{\frac{1}{2}}s+\omega NxO^{\frac{1}{2}}s]$
x Y z	$D\left[\omega^{2}\left(\rho V_{W}+Max\right)Q_{2}^{1}c+\omega NxQ_{1}^{1}c\right]$	$D[\omega^2(\rho Vw+Max)O_2^{\dagger}s+\omega NxO_3^{\dagger}s]$
y z	D_{1}^{1}	1
z	$D[\omega^{-}(\rho vw + May)Q_{2}c + \omega NyQ_{1}c]$	$D[\omega^2(\rho Vw+May)Q_{2s}^2+\omega NyQ_{1s}^2]$
1	$D[\omega^2(\rho Vw+Maz)Q_{2}^3c+\omega NzQ_{1}^3c]$	$D\left[\omega^{2}\left(\rho Vw+Maz\right)Q_{2}^{3}s+\omega NzQ_{1}^{3}s\right]$
φ	$D[\omega^2(\rho Vw+May)P_2^2c+\omega NyP_1^2c]$	$D\left[\omega^{2}\left(\rho Vw+May\right)P_{2}^{2}s+\omega NyP_{1}^{2}s\right]$
θ	$-D[\omega^{2}(\rho Vw+Max)P_{2C}^{1}+\omega NxP_{1C}^{1}]$	$-D\left[\omega^{2}\left(\rho Vw+Max\right)P_{2S}^{1}+\omega NxP_{1S}^{1}\right]$
ψ	0	0
x	ωΝχσοςχει	ω2 (ρVw+Max)cosχε1
У	ω Nysin $\chi \epsilon_1$	ω2 (ρVw+May) sin χε1
z	ω ² (ρVw+Maz)ε ₁ -nρgA	$-\omega Nz \epsilon_1$
φ	ωNysinχε ₂	$\omega^2 (\rho Vw + May) sin \chi \epsilon_2$
θ	-ωΝχ <i>cos</i> χε ₂	$-\omega^2 (\rho Vw + Max) cosys_2$
ψ	. 0	0
x	$\rho V w \omega^2 \epsilon_{\mu} + N x \omega \epsilon_{2}$	$(\nabla W(t))^2 \in 2 - \nabla X(t) \in t_0$
v	$\left[\left(\frac{1}{2} \right)^2 \left(\frac{1}{2} \right)^2 \right] = \frac{1}{2} \frac{1}$	$\left[\omega^{2}\left(\alpha Vw+Max\right);-\omega Nw;\right] + anv$
-	$\left[\left(0\right)^{2}\left(\left(0\right)^{2}+\left(0\right)^{2}\right)^{2}\right]^{2}=\left[\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right]^{2}=\left[\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right]^{2}=\left[\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right)^{2}=\left[\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right)^{2}=\left[\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\left(\left(0\right)^{2}\right)^{2}\left(\left(0\right)^{2}$	$\left[-\omega^{2}\left(0W_{W}+M_{PZ}\right)_{C}-\omega M_{Z}C_{2}\right] = 2\pi \sigma V$
"	0	
Ψ	$\left[-\omega^{2}\left(\alpha\right)^{2}+\left(\alpha\right)^$	
U 	$[-\omega (pvw+maz)e_5+nzwe_6]sec \chi$	$[\omega^{-}(\rho vw+Maz)k_{6}+\omega Nz \varepsilon_{5}]sec^{-}\chi$
Ψ	$[w^{-}(pvw+May)e_{6}+Nywe_{5}]tan\chi sec \chi$	$\left[\begin{bmatrix} \omega^{-} (\rho \vee w + May) \varepsilon_{5} + \omega Ny \varepsilon_{6} \end{bmatrix} tan \chi sec \chi$
X	0	0
У	0	0
z	0	0
¢	0	0
θ	0	0
ψ	0	0
	a;wave amplitude	к;circular wave number
	χ ; incident wave angle	ω ; circular frequency
	γ ; arctan(- β/α)	
	α; coefficient to the term cos	[K(xcosx+ysinx)-wt]
	β ; coefficient to the term sin	[K (xcosx+ysinx)-wt]
	Mai; added mass for i-direction	La moment of inertia
	Ni : damping coefficient for i-	directional motion
	A: sectional area	Vw: displacement Volume
	p:density of water	a : acceleration due to gravity
	$\psi \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\phi} \mathbf{\theta} \psi \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\phi} \mathbf{\theta} \mathbf{\psi} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\phi} \mathbf{\theta} \mathbf{\theta} \mathbf{\psi} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\psi} \mathbf{\theta} \mathbf{\theta} \mathbf{\psi} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\theta} \mathbf{\theta} \mathbf{\psi} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\psi} \mathbf{z} \mathbf{\psi} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{\psi} \mathbf{z} \mathbf{z} \mathbf{\psi} \mathbf{z} \mathbf{z} \mathbf{\psi} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{\psi} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

三次元浮遊骨組構造の周期応答

Table 2 (B) Table of wabe exciting forces

Notations	$\chi' = \chi - v$ v; rotation angle about z-axis
(continued)	n;n=0 for fully immersed element
	n=1 for partially immersed element
	$\varepsilon_{1} = \frac{exp\left[-\kappa\left(l_{1}+l_{2}-l_{0}\right)\right]-exp\left[-\kappa\left(l_{1}+l_{2}\right)\right]}{l_{0}\kappa}$
	$\varepsilon_{2} = \frac{(\kappa \mathcal{I}_{0} - \kappa \mathcal{I}_{1} - 1) exp[-\kappa (\mathcal{I}_{1} + \mathcal{I}_{2} - \mathcal{I}_{0})] + (1 + \kappa \mathcal{I}_{1}) exp[-\kappa (\mathcal{I}_{1} + \mathcal{I}_{2})]}{\mathcal{I}_{0} \kappa^{2}}$
	$\varepsilon_{3} = \frac{sinL_{1} + sinL_{2}}{l_{0}\kappa} exp(-\kappa Zi) \qquad \varepsilon_{4} = \frac{cosL_{1} - cosL_{2}}{l_{0}\kappa} exp(-\kappa Zi)$
	$\varepsilon_{5} = \frac{\cos L_{2} - \cos L_{1} + L_{2} \sin L_{2} - L_{1} \sin L_{1}}{l_{0} \kappa^{2}} exp(-\kappa Zi)$
	$\varepsilon_{6} = \frac{sinL_{1} + sinL_{2} - L_{1}cosL_{1} - L_{2}cosL_{2}}{\mathcal{I}_{0}\kappa^{2}} exp(-\kappa Zi)$
	$L_1 = l_1 \kappa \cos \chi$ $L_2 = l_2 \kappa \cos \chi$
	$ \begin{array}{lll} D = exp(-\kappa Z i) / l_0 \kappa (c_3^2 + E_3^2) & E_1 = a_1 \cos \chi + b_1 \sin \chi \\ Q_{13}^i = A_{13}^i g k_1 - A_{1c}^i g k_2 & Q_{1c}^i = A_{13}^i g k_2 + A_{1c}^i g k_1 \\ Q_{2g}^i = A_{2g}^i g k_1 - A_{2c}^i g k_2 & Q_{2c}^i = A_{2g}^i g k_2 + A_{2c}^i g k_1 \\ A_{15}^i = c_{1c} g + E_{1E} g & A_{1c}^i = c_{1E} g - E_{1c} g & A_{2g}^i = A_{1c}^i g k_2 \\ A_{15}^i = c_{1c} g + E_{1E} g & A_{1c}^i = c_{1E} g - E_{1c} g & A_{2g}^i = A_{1c}^i g k_2 \\ A_{1s}^i = c_{1c} g + E_{1E} g & A_{1c}^i = c_{1E} g - E_{1c} g g + A_{2c} g k_1 \\ A_{1s}^i = c_{1c} g + E_{1E} g & A_{1c}^i = c_{1E} g - E_{1c} g & A_{2g}^i = A_{1c}^i g g \\ A_{1c}^i = g + E_{1c} g \\ A_{1s}^i = (A_{1s}^i g + E_{1s}^i g + E_{1s}^i$
	$\begin{aligned} g_{1}^{i} &= -c_{1}c_{3}-E_{1}E_{3} \qquad g_{2}^{i} = -c_{1}E_{3}+E_{1}c_{3} \qquad g_{3}^{i} = g_{2}^{i} \qquad g_{4}^{i} = -g_{1}^{i} \\ f_{1}^{i} &= -c_{1}(c_{3}^{2}D_{3}-D_{3}E_{3}^{2})-2c_{3}D_{3}E_{1}E_{3} \qquad f_{2}^{i} = -2c_{1}c_{3}D_{3}E_{3}+E_{1}(c_{3}^{2}D_{3}-D_{3}E_{3}^{2}) \\ f_{3}^{i} &= f_{2}^{i} \qquad f_{4}^{i} = -f_{1}^{i} \\ D_{3} &= 1/\kappa (c_{3}^{2}+E_{3}^{2}) \\ & \left(\begin{array}{c} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{array} \right) \end{aligned}$

参考文献

- 為広正起:半潜水式プラットフォームの変遷について,造船学会,第1回海洋工学シンポジウム, (1975).
- 元良誠三,小山健夫:波による Heaving 及び Piching の強制力を受けない船型について,造船 学会論文集 117 号, (1965).
- 田才福造:波浪に対する浮遊構造物の応答,造船 学会,第1回海洋工学シンポジウム,(1974).
- 4) Hooft, J.P. : A Mathematical Method of De-

termining Hydrodynamically Induced Forces: on a Semi-submersibles, SNAME, (1971).

- Pedersen, B., Egeland, O. & Langfeldt, J. N.
 : Calculation of Long Term Values for Motions and Structural Response of Mobile Drilling Rigs, OTC 1881, (1973).
- Opstal, G. H. C. et al. : MOSAS : A Motion and Strength Analysis System for Semisubmersible Units and Floating Structures, OTC 2105, (1974).
- 7) Pincemin, M. et al.: An Integrated Program.

for the Dynamic Structural Calculation of Mobile Offshore Units, OTC 2052, (1974).

- 8) 佐竹 優, et al.: 半潜水式海洋構造物の設計及 び建造, 三菱重工技報, Vol. 13, No. 4, (1976).
- 9) 吉田宏一郎:半潜水式構造の解析システム,造船 学会,第3回海洋工学シンポジウム,(1977).
- 10) 吉田宏一郎, 乾 泰司, 飯田國廣:パイプ継手の 詳細解析, 造船学会論文集, Vol. 140, (1976).
- Yoshida, K., Inui, T. & Iida, K. : Behavior Analysis and Crack Initiation of Tubular T-Connections, OTC 2854, (1977).
- 吉田宏一郎,石川邦照,飯田國廣:浮遊骨組構造の周期応答解析,造船学会論文集, Vol. 136, (1974).
- 吉田宏一郎,石川邦照:浮遊骨組構造の周期応答 解析(続報),造船学会論文集,Vol. 138, (1975).
- 14) Yoshida, K. & Ishikawa, K. : Elastic Structural Response of Semi-submersibles in Regular Waves, 11 th Symp. on Naval Hydrodynamics, London (1976).
- Bell, A. O. & Walker, R. C. : Stress Experienced by an Offshore Mobile Drilling Unit, OTC 1440, (1971).
- 16) 川原 敦:半潜式コラム材に作用する流体力に関 する研究,東京大学修士論文,(1976).
- 17) 柏原正紀:半没水柱状体の左右揺流体力係数に関

する実験的研究,東京大学修士論文,(1977).

- 18) 佐尾邦久,前田久明,黄 宗屹:軸対称物体の上 下揺れについて,造船学会論文集, Vol. 130, (1971).
- 佐尾邦久:軸対称物体の左右揺および横揺,造船 学会論文集,Vol.140,(1976).
- 20) 増田光一,前田久明:有限要素法による軸対称柱 体に働く流体力の計算例について,第 23 回海洋 工学懇談会資料,(1977).
- Bishop, R. E. D., Taylor, R. E. & Jackson, K. L. : On the Structural Dynamics of Ship Hulls in Waves, RINA, (1973).
- 22) Satake, M. & Katayama, M. : On the Structural Response Analysis of Semi-submersible Offshore Structures in Waves, Inter. Res. Seminar on Safety of Structures under Dynamic Loading, Trondheim, (1977).
- 23) Natvig, B.J. & Pendered, J. W. : Nonlinear Motion Response of Floating Structures to Wave Excitation, OTC 2796, (1977).
- 24) 田才福造,高木又男:規則波中の応答理論および 計算法,造船学会,耐航性に関するシンポジウム, (1969).
- 25) 大高勝夫: 船体振動の研究の現況, 三菱重工技報, Vol. 8, No. 3, (1971).