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Summary

It is well known that the racking phenomenon is the most important structural
design problem for a ship having few transverse bulkhead. This paper reviews the
results of study on the method of calculation of the racking deformation in the cross
section of such a ship. ‘

First, the authors explain the method of estimation of deviation loads responsi-
ble for the racking. The authors define the deviation loads as differences between
the actual loads and beam loads. The beam loads are assumed to be acting, pro-
portionately to the resultant shear forces, on the cross section of each longitudinal
strength member as an elastic thin walled beam.

Secondly, the authors examine the distribution of racking as the shearing deform-
ations in cross sections of a Pure Car Carrier, which is capable of carrying 3000 motor

cars, by somewhat simplified structural idealization.

1. Introduction

The authors consider a ship going through the
waves. In this instance, loads including wave
loads and inertia forces are acting on an arbitrary
cross section of the ship as shown in Fig. 1(a).
The loads can be broken down into two compo-
nents; the one is symmetric in relation to the
vertical centre line of a cross section and the
other is inversely symmetric, as shown in Fig. 1
(b) and (c), respectively. The former causes the
ship hull to bend vertically while the latter causes
the hull to bend horizontally and also to twist
with respect to the shear centre. Generally, the
vertical bending strength of a ship hull is cal-
culated as a beam passing through the centre
of gravity of the hull cross section. And also,
the horizontal bending and torsional strength of
a ship hull are calculated as a beam passing
through the shear centre of the hull cross sec-
tion. In either instance, it is assumed that the
cross section of the ship hull does not deform.
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This assumption can be true only where the
external force acting on each longitudinal strength
member, such as upper deck, side shell, bottom
shell, etc. is proportional to the resultant shear-
ing force in the cross section of the longitudinal
strength member evaluated by an ordinary
theory of elastic thin walled beam. Actually,
however, it generally is the case that the external
force does not act on each longitudinal strength
member in that manner. Therefore, though a
ship hull is generally considered to deform as a
beam, each longitudinal strength member under-
goes its own deformation which is different
from that of a beam. According to this theory,
M. Yamakoshi, et. al. proposed a method of
calculations of shearing deformation of wing
tank.!»®

The authors apply this theory to the study of
horizontal bending to calculate what is called
racking deformation as shearing deformation of
a hull cross section. In this case, the torsion
will also be studied at the same time.

J. Yagi, et. al. made valuable researches on
the phenomenon of racking of ship hull.®#%
They investigated the phenomenon of racking
by calculating the structural response of the hull
under the loads acting as shown in Fig. 2(c).
For that purpose, they converted the loads
shown in Fig. 1(c) into the equivalent concentrat-
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(b) Symmetric Load

(C) Inversed Symmetric Load

Fig. 1 Actual Load on the Cross Section of a Ship’s Hull

+

(@) Concentrated Load

(b) Average of Sum

(C) Average of Ditference

Iig. 2 Resolution of Inversed Symmetric Load

ed loads as shown in Fig. 2(a). And then, they
divided the equivalent concentrated loads into
two components, i.e, the average of sum as
indicated in Fig. 2(b) and the average of difference
as shown in Fig. 2(c), respectively, and treated
the loads shown in Fig. 2(c) as the loads respon-
sible for the racking.

The loads shown in Fig. 2(a), however, cause
not only the horizontal bending but twisting of
the ship hull. It is, therefore, necessary to
exclude not only the loads shown in Fig. 2(b)
which cause the horizontal bending, but also
all the loads which cause the twisting with
respect to the shear centre, for the exact evalua-
tion of the racking deformation.

2. Loads Responsible for Racking

The symmetric and inversed symmetric loads
per unit length of the hull girder shown in Fig. 1
consist of components which are shown in
Table 1. Itis obvious that the inversed symmetric
components cause the racking. The inversed
symmetric components can be divided into four
groups as follows.

(1) load components acting on each deck in

the transverse direction, namely;
Py v Qs Y45 T4

(2) moments of the above loads with respect

to the shear centre, namely;

Moy, Mayi, Mays, Waryj, Mry;
(3) load components acting on each deck in
direction of depth, namely;
»f, 1’5’;’, 775’;‘
(4) moments of the above loads with respect
to the shear centre, namely;
Mpz, Mezj, 7’7lrzj
For convenience, water pressures acting on
the ship sides are converted into concentrated
forces on the bottom shell and each deck and
are denoted with the notations of pi;, etc. Also,
the moment mypy is divided into the components
mpy; corresponding to each pi;. Then, the
resultant forces and moments can be calculated
by Egs. (1).

Fy=§_}_ Fyj
=2 2Pyt iy Tyt tyg)
FF%) Fj
=ph+2 (#L+7L)
]Lfy:]Z]ﬂ/[Jyj (1)
=2 (2mpysttaus+fgys+mrys+ifiry))
M.=3 M.;
= Z:Z (M2~ rajttirsj)

The resultant force Fy causes the horizontal
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Table 1 Details of Symmetric Load and
Inversed Symmetric Load
SY'L“&‘%‘”C Inversed Symmetric Load
Load Direction  {Notation | Notation | Notation |(oad Distribution %‘“gig‘
Z-Direction S 1 . 1
Water @otomy | Pz 2 b y. _gy Mpz
Pressure
Y-Direction S ~pt
s | B | 9R o~ | My
. . S ez
Z-Direction qzj qZj J— I
Deck Load n _‘ qyj
Y-Direction q)’J — qyj P—" My
Y A AS (e
! Z-Direction | Q; e — — | —
Weight - = =1 - e qyj -
Y-Direction | Oy — Cyj [ NE————— May;
. 1 —
Inertia Force | ZDirection | 5 | — f2) S L
of - rx )/'; Yi
Deck Load Directi — . ) oS
Y-Direction | Ty N ] = Myy;
InertiafFon:e Z-Direction | Ty J— rz{j =" i:;j ﬁ]TZJ
o &l
Hull Weight | v-Direction | T = rz'g ~
utl Weight | v-Direction r)'j —_— ryj 4] mryj

bending of the ship hull and also the resultant
moment My, which is produced by Fy, causes
the twisting of the ship hull. The resultant
force F; is zero because each component of F,
has no resultant force. It however has the result-
ant moment because each component of F, has
the resultant moment with respect to the vertical
centre line of hull cross section. This moment,
denoted with M., causes the twisting of the ship

hull.

2.1 Deviation Loads with respect to Horizon-~
tal Force Fy

Let us consider the deviation loads with respect

to Fy. It is well known that the ship hull is

bent horizontally and at the same time is twisted

when the force Fy acts horizontally on the hull.

Let the increments of shearing force acting on

the j-th deck per unit length of the hull girder
be equal to (xjFy) when the ship hull is bent
horizontally according to the theory of an
elastic thin walled beam. If each component of
Fy acting on the j-th deck is distributed in
proportion to (x;Fy), there should be no shearing
deformation of the hull cross section but only
the horizontal bending deflection.

Next, let the moment of Fy with respect to
the shear centre of the cross section be My.
It can be understood easily that the moment
My constitutes the elementary torsional moment
for this cross section. Let the increments of
shearing force acting on the cross section in way
of the j-th deck per unit length of the hull girder
be equal to (#;My/D) when the ship hull is twisted
by the torsional moment My according to the
theory of torsion of an elastic thin walled beam.

If each component of Fy acting on the j-th
deck, which produces the elementary torsional
moment My, were distributed in proportion to
(f3My/D), then resultant moment of Fy would
only cause the twisting of the hull cross section
but no shearing deformation. Actually, however,
the external force Fy; acts on the j-th deck.
Let differences between the actual load acting
on the j-th deck Fy;j and the resultants of («jFy)
and (f;My/D) be the deviation loads on the j-th
deck. Then the deviation load HY and H!
acting on each longitudinal strength member
are given by Eqgs. (2) (refer to the Fig. 3(a), (b),
(c) and (d) ).

for the j-th deck;
HY=Fyj—(ajFy+ fiMy/D) l
for the side shell; (2)
HY=—fsMy|B (starboard side) f
=+ fsMy/B (port side)

Fra oF, Ry = (0uF, + 84My/D)
—= Oy e R A
Ra—r oAsf —
Gx —_ + fsMy/B 1 8sMy/B
M) A
F)?L‘S ’ Aoy . |
e e _—
My=2hyFyj (b) Beam Load for Fn = (e Fy +6,My/0)
hy:Distance between Horizontal Bending Fra~ Gofy + &aMy/D)
Shear Centre and e (oaFy + 03 ,/D)
J-th .Deck 8aMy/D 3T TV,
() Actual Loed #3My/D (@) Deviation Load
£sMy/B \ 82‘%0 lﬁsMy,/B

i ﬁ)"iyéo
L (C) Beam Load for

Torsion

Fig. 3 Resolution of Horizontal Actual Load
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The coefficient «; is the ratio of the shearing
force on the j-th deck to the total shearing force
in the hull cross section when the ship hull is
bent horizontally according to the theory of an
elastic thin walled beam. The method of calcula-
tion of a; is shown in Appendix 1. And also the
coefficient f; and fs are the ratios of the shearing
force on the j-th deck and side shell to the
arbitrary torsional moment M divided by D or B,
respectively when the ship hull is twisted with
respect to its shear centre according to the theory
of an elastic thin walled beam. The methods of
calculation of f; and fsare shown in Appendix 2,

2.2 Deviation Loads with respect to Vertical

Force F,

Let us consider the deviation loads with respect
to F.. It is obvious that the load components
pf, 7§ and 7% have no resultant forces but
resultant moments with respect to the shear
centre of the hull cross section (i.e. with respect
to the vertical centre line of the hull cross sec-
tion). The inversed symmetric loads »Z, #Z and
7L, are converted into the concentrated forces
Fopssj, Fresi and Fors; acting on each side shell,
respectively. Let the total resultant moments be
M. This M. constitutes the elementary tor-
sional moment for the ship hull. As discussed in
2.1, let the increments of shearing force acting
on the j-th deck per unit length of the huil
girder be equal to (f;M./D) when the ship hull
is twisted according to the theory of an elastic
thin walled beam. If each component of Fgs
acting on the j-th deck, which produces the mo-
ment M, were distributed in proportion to (8;M./
D), then resultant moment of F,s would only
cause the twisting of the hull cross section and
no shearing deformation. In this case, the devia-
tion load H and Hs* acting on each longitudinal
strength member are given by Egs. (3) (refer to
the Fig. 4(a), (b) and (c) ).

for the j-th deck;

for the side shell; (3)

H{=Fus— fsM.|B (starboard side) [
=—Fus+ fsM:/B (port side)

where
My=B-Fs
Fas=3, Fusj (5)
J

F. 28j=— F pz8j -+ F. 728j -+ F 28]
Fpasi= Mpzj| B l
Frasj=mirs5/B (7)
F r28j= ”-17‘2,_7' / B r

The deviation loads with respect to the horizon-
tal bending load Fy and the torsional moment
My and M. can be obtained as outlined above.
The differences between the actual loads shown
in Fig. 3(a) and Fig. 4(a) and the loads on an
elastic thin walled beam under horizontal bending
and torsion shown in Fig. 3(b), 3(c) and Fig. 4(b)
constitute the deviation loads as shown in Fig. 3-
(d) and Fig. 4(c). Itis obvious that the deviation
loads cause the racking of the hull cross section.
For a ship having 4 decks the deviation load Hj
and Hs acting on each longitudinal strength
member are given by Egs. (8). In this case, the
double bottom is considered as the 1-st deck.

for the 4-th deck;
Hy=Fye—{osFy+ f4(My+ M)/ D}
for the 3-rd deck;
Hs="Fys— {0 Fy+ fs(My+ M)/ D}
for the 2-nd deck;
H2=Fy2— {OCZFy+ﬂ2(My+Mz)/D}
for the 1-st deck;
Hi=Fy— {a1Fy+ p1(My+ M)/ D}
for the side shell in starboard side;
Hs1=Fzs—ﬂs(My+Mz)/B
for the side shell in port side;
Hsy=—Fus+ fs(My+Mz)|B y

(8)

It can be proved easily that the deviation
loads given by Eqgs. (8) have no resultant forces
and resultant moments. Thus, the authors can
calculate the distribution of shearing deformation,
or the racking, of hull cross sections, using the
three dimensional structural model under the
deviation loads.

$4M,/D 4M/D
LY N4 My
M FsBs—r
Fos 8M/0  (Fg gy |EE
l S:%} M, == Ml 624ML/D T + 62M2/D l
P4
Fs 55 sMD bt 61Mz/D
Mz=B‘Fzs ]
B:Breadth of ship
() Actua! Load (D) Beam Load for Torsion (C)  Deviation Load

Fig. 4 Resolution of Vertical Actual Load
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3. Example of Numerical Calculation

3.1 Ship Subjected to Study

In order to examine the characteristics of the
racking deformation, the authors carried out the
numerical calculations using a structural model
of Pure Car Carrier, assuming that the model is
subjected to deviation loads which cause the
racking deformation as described in 2. The
rough midship section of the ship is shown in
Fig. 5. The principal dimensions are as follows;

LxBxD—d: 160mx256mx22.72m~7.22m

115
!
g
S —
o % PILLAR
S @ = :
ooy .
I =y
2 5
o Ll_ffl‘] I TTI7J
0
™ LY
o 15 /
[0}
& —|3460 [+ 5506 — 3744 |-
12800 ,

Fig. 5 Rough Midship Section of Pure Car
Carrier

3.2 Idealization of Structure

The authors idealized a port half of the ship
as a three dimensional finite element model as
shown in Fig. 6. Deck plates, side shells and
transverse bulkheads were idealized as plate
elements. Further, deck beams, deck girders,
side frames and pillars were idealized as frame
elements. The finite element idealization of the
midship section is shown in Fig. 7. For simplicity,
eleven decks in the actual ship were considered
to be four for the finite element idealization.
The authors determined the equivalent rigidities
of side frames, after comparing the rigidities of
the eleven-deck-structure with those of the four-
deck-structure by the in-plane frame calculations.
In the numerical calculations, as it was our pur-
pose to roughly investigate the behaviour of
racking, the authors made the simplified struc-
tural idealizations.

As to the boundary conditions, the inversed
symmetric conditions were given along the

Fig. 6 Three Dimensional Finite Element
Idealization
No.4 DK
No3 DK * Joint
? — Plate Element
:} Frame Element
No.2 DK
LNOJ DK

Fig. 7 Idealization of Midship Section

centre line section. Next, the transverse bulk-
heads at fore and aft ends were assumed to be
supported simply in both transverse and vertical
directions as shown in Fig. 6.

3.3 Load Conditions

The authors divided the full load displacement
in proportion to the ratios of numbers of the
simplified decks and distributed the divided full
load displacement as cargo and hull weights on
each deck uniformly along the whole hull length.
As a result, the deck load was 0.6 ton/m? on the
fourth deck, 0.9 ton/m? on the third and second
decks, and 1.5 ton/m? on the first deck, respec-
tively. The authors assumed that the ship was
rolling in still water fully loaded, with rolling
angle 0 of 20 degrees and rolling period T of
20 seconds.

Under the above-mentioned load conditions,
the authors calculated the actual loads acting
on twenty five cross sections in the finite element
idealization. These actual loads consisted of
inclined and inertia components of the deck
loads and also of still water pressures. Next, the
authors determined the shear force coefficients
for horizontal force and torsional moment for all
the cross sections. Using the Eqs. (8), the authors
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Table 2 Resolution of Inversed Symmetric V=Yvrt+vg l
Load on the Cross Section (Section-A, vy=0u/D (9)
B of Fig. 6). vembyB |
: R . Shear Fo Shear Fo where
| Section | Direction | pecy Atgggl Deyia-~ u)gﬁrt& e Co&% e S bmitd
! Fios | Force | N Load | Horiz.Shear | Torsion 7=0g1+0m (10)
e om | “diony | Force (ot o0 RS
DK4| 210 | 49.4] ]| 0.2649] B2 ]0Q0I011 Oy =2:0v2 (11)

Horlzontal [ DK3 | 30.8 | 46.1 | of3 | 0.1958[83 | 0.00281 H ati
. - : . ere, and vy denote the relative deflec-
Fore  [DK2| =43.1 | -31.8 | ota| 0204265 000157 44 Ve ’

DK1| -72.0 | =63.7 | o | 0.3351] &1 [-001154 tior%s divided by the span 'for the yertical and
DK4 1.0 | _-2.4 | olea| -0.0060] B4 |-000247' horizontal members, respectively. Displacements
vertical {DKS| 151 -53 [0 -00047|65100057| 8, Smz and Sz are shown in Fig. 9.

DKz| 200 | 146 1062 00240 Bsol 0007 Distribution of y and yx along the ship hull

DKl | 1388 | 136.7 |0ki| 0.0226] B -000448 . . .
DK4| 11.0| 143 los | 03070 Bi] 001265 length are shown in Fig. 10. In Fig. 10, the

Sect-A

Horizntal | DK3| 154 | 17.6 |o(3| 0221883 | 000280 value of y are very small at the fore and aft
. Force gﬁ? ';522 ‘;?g o2 0.3052 B2 1000749 ends, because of the presence of full transverse
Sect:B Loeed | meld jo | 0165016 [O00MS) 4 iheads at the both ends.

Dk4] 05| 03 |oks|-0.0054] Bss -O0030
vertical | DK3 1 07 0.5 |clsz| 0000433 ]-000693
Force 1DK2| 305 | 31.1 |cksa| 004883 | Bs2 000864 Sua

DCI [ 333 | 34.0 [0k | 00431 | By |-000475 Sz

calculated the deviation loads acting on the
cross sections. In this case, the distributed loads |  ff————=l= B=6,+4
were converted into the concentrated loads Voo
acting on the intersections of the deck plates and
the side shell. This is the reason why the authors
avoided the intricacy of allowing for equilibrium
of moments along the inclined side shell.

The actual loads and deviation loads acting
on the section-A and -B shown in Fig. 6 are ¢ e
listed in Table 2. The shear force coefficients for t{ 5 N
horizontal force and torsional moments of sec-
tion-A and -B are also listed in Table 2. - Fig. 9 Definition of Racking as Shearing

3.4 Result of Calculations Deformation of a Cross Section

The results of calculations of racking deforma-
tions for section-A and -B are shown in Fig. 8.
For more general expression of the racking as xio
the shearing deformation of a hull cross section CIELS 3
(due to the deviation loads) shown in Fig. 9, T
the authors defined the value of the racking y

by Eqgs. (9).

\\i
|
|

haeia
AR = m ~ ER

Fig. 10 Distribution of Racking Deformation
along the Ship Length

— preesgu——

4. Conclusive Remarks

In this paper, the authors made it clear that
the racking was induced by the deviation loads
with respect to the horizontal bending load and
scale o to the loads which cause the twisting Qf ship hull,

0 2040 and proposed a method of calculation of the

¢ o ¢ ion-B deviation loads. The authors are of the opinion
Section-A Section that the racking should be defined as the shearing

Fig. 8 Racking Deformation of Cross Sections deformations. Applying their theory to some-
(Section-A, -B of Fig. 6) what simplified structural model of Pure Car
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Carrier, which is capable of carrying 3000 motor
cars, the authors carried out the three dimen-
sional strength calculation by the finite element
method and showed the distribution of shearing
deformations in hull cross sections.

From the results of the investigation, some
of the characteristics of the racking were clarified.
In the numerical calculations, the authors used
the Bredt-Batho’s Formula to evaluate the
deviation loads with respect to the loads which
cause the twisting, but did not take into con-
siderations the warping torsion.  Regarding
these problems, the authors would like to further
countinue the investigations including the full
scale measurements.
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Appendix 1
Method of Calculation of Shear Force Coefficient
aj, as;j for a Horizontal Force

Shear force coefficients «j and «s; can be esti-
mated by the theory of elastic thin walled beam.2?
For convenience of explanation, let us consider
the elastic thin walled beam whose cross section
is as shown in Fig. Al

This is the statically indeterminable structure
of the third order because of having two bulk-
heads. Then, it is necessary to determine the
shear flow ¢,, ¢, and ¢, each being statically
indeterminable. Cut off the structure at points
A, Cand F, then the shear flow g at an arbitrary

e X

Fig. Al Symbols of Cross Section for Horizon-
tal Shear Force

point can be given by Egs. (A-1).

Fq
A'~B: g=q,— gdi

I’.U Al—
Fx S

Iy

B~C: xdA

Al—B—

9=9,—

F
9=q~q,— Ix Sdi

¥ A’+B—-C—

xdA

A’>B—C—~D—

9=
Y

FZS

—lgwd/l

C'=F—H-D

————Sxd/l

FroI-J—H

Fxg

zdA

A'—B—C—D—E

xdA

C/-¥F-H—D

FZS
Y

Lk 2dA

Y YF/=I-J-H

Fzg

(A-1)

C'~F: xdA

Gl

gz‘h—I—

v
Fe
q=%~%—7f8mm

v Jomro
e Rdi

Y JC/—»F>Ho

H~D:

g=4qs;—

Fy
— Sdi
Iy Jprgngom
Fe S

g=q,— i3 zdA

Fim

F'~1:

zdA

F/—aIs

I~]: Fzg

9293—}7

xdA

fm Y 5

Fz {
~H: g=q,— S
J 9=4~7,

where, dA denotes the effective elemental area

denotes, for
Al

for bending, and the integral S
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example, the integration from point A’ to an
arbitrary point between A’ and B. F. denotes
the horizontal force and Iy denotes the moment
of inertia of the cross section with respect to the
y-axis. There must be no discrepancy between
points A and A’, points C and C’ and points F
and F, respectively, so Egs. (A-2) can be obtained
from which the shear flow ¢,, ¢, and ¢, can be
determined.

ids:()
4

J A'-B-C-E—A

~

idszO
4

J C'->F->H-D-C

(A-2)

ids=0
4

J Fi=IJ-H-oF

By substituting ¢ of Eqgs. (A-1) into Eqgs.
(A-2), the simultaneous equations for ¢,, ¢, and
g, can be obtained. g¢,, ¢, and ¢, are determined
by solving Egs. (A-2), and then the shear flow
distribution with respect to F» can be obtained
by substituting these values into Egs. (A-1).

Thus, coefficient @; is obtained by integrating
the shear flow ¢; in the j-th deck across the
whole width of this deck, and then dividing by
F; for normalization as given by Eq. (A-3).

a=| gdsiFe (j=~1~4) (A-3)
J

Similarly, coefficients aac etc. can be obtained
by integrating the shear flow ¢, along the side
shell, and then dividing by Fz for normalization
as given Eqgs. (A-4).

- quds/Fx

B—C

occrp=gqsd5/Fa:

Cr-F

ocngqsds/Fx

Frol
And also, asj is given by Egs. (A-5).
Ocs1=OCBo'COS(912/2
ots2= (0t COS B12-+ iy COS Gas) /2 1 (A-5)
0ts3== (OLorx COS Gaz+0tpry COS Os4) /2
st =0Lpr; COS Bs /2 f
where angles 012 etc. are shown in Fig. Al.
Next, coefficient aj can be given by Egs. (A-6).
(j=1~4) (A-6)
where &; is given by Eq. (A-3) and «f; is given
by Egs. (A-7).
G =0gc sin 0122
iy = (po SID Gra+olorp sin Gas) /2 l
0tgs= (0torr SiN Gas 0t poy 510 Bas) /2 j
“ga:apr[ sin (934/2

a;=aj+o;

(A7)

Appendix 2

Method of Calculation of Shear Force Co-
efficients Bj, Bs; for a Torsional Moment

Shear force coefficients f; and fsj can be
estimated by the theory of torsion of an elastic
thin walled beam.** For convenience of explana-
tion, let us consider the elastic thin walled beam
whose cross section is as shown in Fig. A2. Let
the shear flow in the I-st deck, 2-nd deck, 3-rd
deck and the 4-th deck be fi, fe, fs and fi Te-
spectively, and the shear flow in the side shell
between point C and D be fz3, and also let the
torsional angle per unit length be 6 when the
torsional moment is 7. Then, from the condition
of continuity of shear flow at points C and D,
Egs. (A-8) are obtained.

2
ts 4 ba

E =2 E
A 51 "“/fﬂy
4 4

) ) —— ]

t 6: Ni2
f|\“'2 ty f\!*—b] /{I, K J‘

Fig. A2 Symbols of Cross Section for Torsion

S1t fo—foa=0 }
fas— fa—f4=0

According to the theory of torsion of elastic

thin walled section, Eqs. (A-9) are obtained.

(A-8)

251 2h1s
fl( m) f222=2604;
fe g2 9/iss +f32b3_260A2 (a9)
bes f4<2h34 2tb4> oGO,

And from the condition of equilibrium of
shear flow and the external torsional moment,
Eq. (A-10) is obtained.

T=2(A:1f1+Asfes+Asfs)

where, A1, A: and A; denote the enclosed areas
1, and [3] in Fig. A2, respectively.

Solving the simultaneous equations (A-8),
(A-9) and (A-10), all the unknowns of f1, f2, fs,
f4, fe3 and 6 can be determined easily. Thus, the
shear force coefficient jB; can be obtained by
integrating shear flow in the j-th deck across the
whole width of this deck, and then dividing by
T'/D for the normalization as given by Eq. (A-11).

(A-10)
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5=\ fas/TID) (j=1~4) (A-11)

Similarly, the shear force coefficient fs can be
obtained by integrating shear flow f; in the j-th
member along the side shell and then dividing
by T/B for the normalization as given by Egs.
(A-12).

pro=\ fuas|(/B)

ﬁcn=g ijSdS/ (T/B) (A-12)

Pox= fuas/(TB)
D-E
And also, fs;j is given by Egs. (A-13).

Bs1= Prc cos 013/2 l
PFs2=(fsc cos O+ fob cos Oss) /2
ﬁSSZ(ﬂCD COS 023+ﬂDE cos 934)/2 { (A—13)
ﬁ“:ﬂDECOSBM/z

where angles 0; etc. are shown in Fig. A2.
Next, coefficient £; can be given by Eqgs. (A-14).

Bi=Bi+ By (j=1~4) (A-14)
where §; is given by Eq. (A-11) and fi; is given
by Eqgs. (A-15).

ﬁslxzﬂBcSinﬁxz/2

ﬁézz(ﬁscSingm“’ﬁcnSiﬂ@za)/Q

ﬂ;3=(ﬂcpsin023+ﬂpg sin Gs4) /2 I

ﬂ§4=ﬂDESin634/2

(A-15) -
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