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On the Hydrodynamic Forces for Shallow Draft

—On the Pitch Hydrodynamic Forces of a Circular Disk—

Hisaaki Maeda*, Member

The hydrodynamic forces of pitch mode on a circular disk as a shallow draft
ship in shallow water are investigated. The boundary value problem is formulated
by the use of the concept of the surface distributed sources so that integral equation
for the source densities are obtained. In the case of long waves, the problem is solved
analytically. The numerical solution of the integral equation is found. The added
moment of inertia, wave damping factor, wave exciting moment, radiation pressures,
wave exciting pressures and motions are calculated. The corresponding experiments
are carried out and the results of the numerical calculation are in good agreement

with those of the experiments.

1. Introduction

In the first and second reports, the hydro-
dynamic forces of heave mode were investigated
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V*¢=0 in fluid (1.a)
$:—Kp=0  at z=0 (1.b)
@o= f(P) on C (L.c)
¢z:O at 2=~ (Id)

experimentally and numerically.®»®» The con-
clusions were that the effectiveness of the nu-
merical method was proved and the shallow
water effect and the typical phenomenon on
a ringed circular plate were shown. In this
paper, the forced oscillation tests and wave
excitation tests of the pitch mode and motion
tests in waves of a circular disk are carried out.
The experimental results of the radiation forces,
radiation pressures, wave excitation of the
pitch mode, wave exciting pressures, pitching and
heaving motions, dynamic pressures of a circular
disk oscillating in waves are compared with the
corresponding numerical results.

2. Numerical Calculation

2.1 Boundary Value Problem?

A cartesian coordinate system is defined with
its origin on a mean free surface of a fluid as
shown in Fig. 1. Let ¢exp{—iwt} be the radia-
tion potential due to unit velocity amplitude or
the diffraction potential which corresponds to
an unit amplitude of the incident wave. The
corresponding boundary value problem may be
written as follows,
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¢~radiation condition at vai+yi-soo (l.e)

where C represents the surface of a circular disk,
deep water wave number K=w?/g9, ¢ is the
gravity acceleration, % is the depth of water,
and f(P) is the boundary value on the point P
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Fig. 1 Coordinate system and pressure
gauges
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of C. Let G (z, ¥, z; a, b, ¢) be the velocity
potential at a point P (x, ¥, ) of the point source
or the so called Green function with its singularity
located at a point Q (a, b, ¢).

G=Get+1Gs (Qa)

mi—K?

T =Kt K

- cosh mo(z+ 1) Yo(moR)
mi+ K2

n=t hmi+hK*—K

+ co8 mn(z+h) Ko(maR)
my— K>

= KT R

- cosh mo(z+4) Jo(moR)

Ge=—2 cosh mo(c+4h)

cos mn(c+h)
(2.b)
cosh mo(c+7)

(2.c)
where

R=v{z—a)*+(y=b)* (3)
the suffix ¢ and s denote the real and imaginary

part of a complex number respectively. The
dispersive relations are written as follows.

matanmah=—K (4)

where mo=2m/A is the shallow water wave
number and A is the wave length. Jo(moR),
Yo(moR), Ko(moR) are the Bessel function
of the first and second kind of 0-th order, and
the modified Bessel function of the second kind
of 0-th order respectively. From the boundary
condition on C and the free surface condition,
the following integral equation is obtained,

mo tanh moh=K |,

1B=eP - | o6, s,

PeC (5)
where P and Q refer to points (¥, ¥, 2) and (a,
b, ¢) on C respectively, and o is the density of
the distribution. Using the solution & of (5),
the velocity potential ¢ on C can be written as

f(P)—o(P
PP ):_(_—K*_(_)’
The boundary condition of pitch mode on C is
written as follows,
f(P)=—x=—vcosf, onC (7)
and the density of the distribution is
o(P)=00(r) cos @,

PeC (6)

on C (8)

The non dimensional added moment of inertia
and wave damping coefficient are now given as

J= _ S :
i K& ), (r+ooc(r)) - 72dr (9.a)
l\rp o e
,0&)55 =7{“‘25~ So 0‘03(7’) -vidy (9.b)
where p is the density of the fluid, and
0'0(1’) :O'oc(if) +i0'os(7’) (10)

The pitch component Esexp (—iwt) of the wave
excitation force can be written as

_ Es 2 (h(mi—-KY)+K)
€5=— pggoﬁa—Kﬁii mi )
- (= Ps+iPy) (11)

The radiation pressure p(P) is written as
?0(_7)~ _ {L+ 0'057) }
poa-¢ a

a
According to the Haskind relation, the follow-
ing relation is derived,

cos 6 (12)

No 1, hmi—KY)+K
pwd K (BetFi) m3
_a_ m ] |Es] T (13)
4 hmi—K)+K | polo-a®

where {o is the amplitude of a plane incident
wave, & is the radius of the circular disk, & is
the amplitude of forced pitching, ¢ and » are
variables of polar coordinates on a circular disk,
and (Pc¢+iPs) are the function which are
derived later and which correspond to Kochin
function.

2.2 Numerical Procedure?

Q (', 0') represents an arbitrary point on a
circular disk. The boundary condition is given
on a point P (7, 6). The integral equation (5) is
reduced to the following two sets of integral
equation for unknowns oo(r), cua(r), taking ac-
count of the pitch mode;

a

-—1':0‘01(1f)+27r8 oo (r')-Golr, v')v'dr’ (14a)
0

— Ji(mov)=00a(r)+ 277‘ ’ ooa(r’) - Ge(r, %f’)r’dr'

v0

(14b)
where
Gelr, v')= "‘%Sl(mlﬂ’) T1(mor’)
+§ % Bue Vilmar) - Wilmar') (15)
n=

the sets of (Si, T1), (V1, Wi1) correspond to the
sets of (J1, Y1), ({1, K1) respectively or vice versa,
according to >7 or »<#’, and

mi—Ks

=21———————————cosh )
A nlzm%——th—l-K cosh mo(c+ 1)
- cosh mo(z+£) (16a)
z=c=0
m,+ K?
n—m COS Mn(0+]2)
- cos ma(z+h) (16Db)
z=c=0

Let the interval [0, @] consist of N small seg-
ments, that is
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{0, 4]
where

O=ar<au<a:< - <a,< (17.b)
We assume that the source density is con-

stant at the each segment [a.—1, a.]. Then the
following approximation is hold.

’ o) -Golr,
S

0

N
=y [@s-1, a.] (17.2)

. <aN:ﬁ

v \v'dy’

~3 g<i:‘i-“—> S G, v)v'dr  (18)
2 0
If we introduce
7, Zfﬁ:};ﬁ (19)
and
D,,,:S " Golra, ¥y vdy (20)
aTy—1

then the equation (15) and (20) yields the fol-
lowing expression;

a) when a.<7,

A4 @y
D, =— Yi(mor,) S Ji(mor')v'ar’
Qy—1

4

K oo ay
_77_ 21 n Ki(mar,) S Ii(mar')v'dr’

n= ay—1
(21.a)
b) when 7, <a.4
KA o
D,y=———:Ji(mor,) S Yi(mor")r'dy’
4 Gyt

K co ay
+~;— EI Bu-In(mnr,) S Ki(mar)v'dr’

y—=1
(21.b)
c) when a1 <r,<ava

D, =~

Yi(mor,) S © Jilmoryar

Qy—1

K = T
+—T’— T;an-Kl(mm',,) S ! Ii(mar’)v'dy’

Qy—-1

A ey
. fl(mm/,,)g Yx(mo?")if’dﬂf'

“
K = a,
+7 E} Ban-I(mur,) S Ki(mar'\v'dr’

’ 21.c)

The integral equation (14) can now be approx-
imated by the following simultaneous linear equa-
tions for unknowns oo (r,), oea(r,) (p=1,2, -, N):

e _ N 0-01(7/‘)
_]’-(717'07’,1) } *»Z=:1 {O—Od(f’ﬁ)} (277D,m+3#,) s
(22.a)
‘u=1, 2,0, N (22.b)
where
{1 (&=
8#"‘{ 0 () 23)

The procedure to get oo and oos from oo and
0a is as follows,

I
P, KA (*(cu(v o, (24.a
{PJ: 2 g {am((y'))}“[ smor’Jr'dr (24.‘0;
(11)
{ P,=Pi/(1+P%) (25.2)
P,=P,-P, (25.b)
(I11)
i Toc(r)=00(r) ~ Py 09a(7) (26.a)
00(?) = Por0oalr) (26.1)

2.3 Long Wave Approximations®

The procedure in pitch mode is as same as
that in heave mode. The only difference is the
boundary condition on a circular disk. The ve-
locity potential ¢ may be expressed as

(e, w>a (27.2)
96"{ Gi,  @>r>0 (27.b)
¢e and ¢; must then satisfy the following equa-
tions:

2 2
(Gt o 31 g =0,
rza (28.a)
(82+li_1—62>¢i= %97
o v Or v? 06% ) ’
a>rz0 (28.b)

The axi-assymetric solution of (28) with an out-
going progressive wave is given as
d H(2) (moa)
pom| L D HO)
45 mo HP (moa)
1

87‘(&2——1/2)71 cosf, 0=r<a (29.a)
143 i
53 (2)
@ 1 0med) 056, r2a (29.)

4 4% 0G ' H$? (m0d)

The added moment of inertia Jr and the wave
damping Np may then be derived as

J= 1
a 1 (R[(* (%
:; :E;{ } H S dir? cos Gdﬁdr}
Np 0
pwa® J
k716 L moa

. J1(m0d) J2(mo) + Y'i(mod) Ya(1m0)
{]2('}%0&) }2’-}- { Yz(%’toa—)}z

= +%} (80.a)
<-Z~>_213_ (m[)lci)2

{J2(moa@) )2+

30.b
{Y2(moa)}? ( )
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where R. and Im mean to take the real and im- .

aginary parts of the corresponding quantity.
The equation (30) indicates that Jo/pa-(hf@) AT iy ExPl o | & i
a Jx/ pa CAL | —{—

and Np/pwas-(k/a) are functions of moa alone. 03k _
The limiting values for long wave approxima- ’A\*

tions are derived from the equation (30) as 02 7

follows, Np/pa°w
At 1ed—0 ot O/Oe"_:: oI 5 | =
1
Ja= [RBN\ 5w 0 1 2 3 45 4
P& '<E>~ 192 (31.2) 1
o Fig. 2 Added moment of inertia and wave
_&.@)NM& (31.b) damping coefficient of a circular disk
pwa® \a 128 (@/h=1.0) '
at moa—o0
J= (Za) . 1.0 . 1
pa \a] 96 (322) a/h=10
Np [} T o | 178 1093/0.4]02 |
POE .<3>~ 16moa (33.b) 18 EXPlo (&0
&to caL|— ==
3. Experiments® o L -

r/a=0893

o
o
T

In order to check the numerical results which
depend on linear theory, three kinds of ex-
periments are carried out. These are the forced
pitching tests, wave excitation tests and the
motion tests in waves. In the forced pitching
tests, the kinds of measurement are the added
moment of inertia, the wave damping factor
and the radiation pressure which include the 0
pressure due to varying static pressure. In the
wave excitation tests, the wave excitation of Fig. 3 Radiation pressure of pitch mode of
heave and pitch mode, and the wave excitation a circular disk (a/k=1.0)
pressure. In the motion tests in waves, the
amplitude of heaving and pitching and the
pressure when the circular disk oscilates in 1.0 ——— T ]
waves. = I 5

The experiments are carried out in the seakeep- I a/__h 10110102 1
ing basin of the University of Tokyo. The detail Ka 135120135 0 -
of the false bottom is mentioned in the 2nd - IEXPlolaio -
report. | 1

The dimension of the model is that 900 mm CAL ° i
of the diameter, 100 mm of the depth. The
draft of 20, 31 and 50 mm correspond to the = 4
weight of 12.7, 19.7 and 31.8 kg, and the moment
of inertia of 0.0585, 0.0821 and 0.0778 kg—m? ‘ /-/‘AD ]
respectively. The locations of the pressure gauges i /Er 0O .
y are as follows, 7/a=+40.93, +0.83, +0.73, - A 4 .
+0.6, +0.4, +£0.2 and 0.

ap

Pp/ Pg

o
o
T
!

1 | ! ! ] 1
0 05 gz 10
Fig. 4 Radiation pressure of pitch mode of
a circular disk '

4. Numerical and Experimental Results

4.1 Forced Pitching Test of a Circular Disk

The added moment of inertia J» and the wave
damping coefficient Np of the pitching are shown :
in Fig. 2 as those of non-dimensional form  pgrcosf-§ besides the radiation pressures pp®.
which depend on the equations (9.a) and (9.b).  Therefore according to the equation (12), the
The pressures measured in the forced oscillation  non-dimensional pressure is represented as fol-
tests include varied ones of static pressure pps= lows,
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Pp _ Do Pops
pga-¢  pga-¢  pga-g
= (Z_—-l-“—LOEy)) cos 4= cos (33)
a a a

The non-dimensional pressures as functions of
non-dimensional frequency K& are shown in
Fig. 3 and those as functions of the pressure
location 7/ are in Fig. 4.
4.2 Wave Excitation Test of a Circular Disk
The wave excitation moment of the pitch
mode is shown in Fig. 5. The wave exciting pres-
sure Pw is non-dimensionalized by the amplitude
of the incident wave {o as pw/pglo. The wave
exciting pressures as functions of K2 are shown
in Fig. 6 and those as functions of #/a in Fig. 7.
4.3 Motion Test in Waves of a Circular Disk
The amplitudes of heaving |2|/{s and pitching
lol/K& of a circular disk are shown in Fig. 8.
In the theory, the cross term between heave and

O.lf i T T T

a/h=10
031 EXP o -
W CAL —

H 1 i 1

.3K§ 4

Wave exciting moment of pitch mode
of a circular disk

T 1 ] I

.0 o °_ o 0o O
_W\_

»woob EXP oanDve -

92

L

T L

05+
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Fig. 6 Wave exciting pressure of a circular
disk (2/h=1.0)

pitch of the equation of motion is neglected. The
surge is also ignored. The hydrodynamic forces of
heave mode depend on those of the first report.#
The pressure of a circular disk which oscillates
in head waves is non-dimensionalized as p/pg{ .
The pressure is deduced by the summation of
the pressures of heave radiation pressure, pitch
radiation pressure, wave exciting pressure, and

L |a/h| Lo

N EXP
- ICAL| —

(2 Ox"’A;- 1 1 1 1 1 H
-.0 -08 -06 04 -02 0 02 04 O.Sr/éO.B 1.0

Fig. 7 Wave exciting pressure of a circular
disk (K2=2.0)

15 .

o \ Pitch
917K,

05

0 | 2 3 ks 4
Fig. 8 Heaving and pitching amplitude of
a circular disk (2/4=1.0)

EXP| © ] faz,
CAL | —

1 1 1
-0 -08 -06 -04 02 0 02 04 06 08 IO
na

Fig. 9 Pressure distributions on a circular
disk which oscillates in head waves
(@/h=1.0 and Ka=2.0) '
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Fig. 10 Added moment of inertia of pitch
mode of a circular disk as functions
of frequency Ké

Fig. 11 Wave damping factor of pitch mode
of a circular disk as functions of
frequency Ké

varied pressure of static pressure by heave and
pitch. The pressure distribution is shown in
Fig. 9.

4.4 Shallow Water Effect on a Circular Disk

The added moment of inertia and wave damp-
ing coefficient as functions of Ka for several
values of the shallow water parameter a/h are
shown in Fig. 10 and 11 respectively. The shal-
low water parameter d@/h=0.2 corresponds to
infinite water depth 4/A=0.0. In Fig. 12 and
13, the added moment of inertia and wave
damping coefficient are plotted as functions of

031

(J/p3%)/(3a/n)
o
N

ot

Fig. 12 Added moment of inertia of pitch
mode of a circular disk as functions

of shallow water wave number mod

02 T i T H T T
e L ]
S alh= T
= L i
1]
L R 2 35 ;
= L 4 T
< | 10,20,/ e =
1 1 1 1 1 1
0 I 2 3 4 5 6 1
52K
ma=43a

Fig. 13 Wave damping factor of pitch mode
of a circular disk as functions of
shallow water wave number 70G

non—dimensional ‘shallow water wave number
mo@ together with comparison curve for long
wave approximations (#/h— ), given by the
equations (30.a) and (30.b).

5. Conclusions

i) The present numerical method which
depends on characteristics of a circular disk is
proved to be a good prediction method for hydro-
dynamic forces of pitch mode, at least in the
range of the shallow water parameter less than
G/h=1.0 due to Fig. 2 and 5. The computer
time by this method is about 1/10 of that by
usual 3-D source distribution method.

NI | -El ectronic Library Service



The Society of Naval Architects of Japan

On the Hydrodynamic Forcer for Shallow Draft Ships in Shallow Water (3rd Report) 01

ii) The present method is also effecive for
the prediction of pressures. Because the results
of calculation for radiation and diffraction pres-
sures are in good agreement with those of the
corresponding experiments according to Fig. 3,
4, 6 and 7 except those at the end 7/a=--0.93.
Only the numerical results for the diffraction
pressure depend on the usual 3-D source distri-
bution method.

ilij The shallow water effect for hydrody-
namic forces of pitch mode is almost as same as
that of heave mode. The shallow water para-
meter d/h less than 1.0 seems to correspond to
the deep water. And the shallow water para-

meter &/k larger than 5.0 may be approximated
by long wave.
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