(昭和55年11月 日本造船学会秋季講演会において講演)

限界 COD 値に及ぼす切欠尖鋭度の影響

正員	金	沢		武*	正員	町]	Ħ		進*
正員	豊	貞	雅	宏**	正員	粟	飯	原	周	***

Effect of Notch Acuity on Critical COD

by Takeshi Kanazawa^{*}, Member Susumu Machida^{*}, Member Masahiro Toyosada^{**}, Member Shuzi Aihara^{***}, Member

Summary

In the previous paper, one of the authors proposed the idea that critical CODs (δ_c) obtained by fracture toughness tests using fatigue pre-cracked specimens can be quantitatively predicted by the test using machined notch specimens. The idea was deduced from the fact that the displacement at a notch tip of an idealized machined notch whose shape is a part of rectangle is very loosely related to a plastic zone size and is therefore considered not to be intimately related with fracture initiation.

As for 3-point bending COD test specimens, the equation which gives δ_c estimated for fracture toughness of a fatigue pre-crack from mouth COD obtained by using a machined notch specimen has been already given and was approximately verified by comparison between δ_c obtained by fatigue pre-cracked COD tests and δ_c estimated for fracture toughness of fatigue pre-crack from machined notch COD tests.

After the publication of the previous paper, a great number of 3-point bending COD tests for several materials whose specimen has a fatigue pre-crack or a machined notch and is made of same steel plate were carried out for the joint study of Japan Welding Engineering Society. In this paper, these test data in addition to previous data were analyzed using the equation. Analytical results show that probability of occurrence of δ_c estimated for fracture toughness of fatigue pre-crack by machined notch specimens is same as that of δ_c obtained by fatigue pre-cracked specimens.

Moreover, the method quantifying the effect of notch acuity on critical CODs for wide plate tension test specimens is conducted to follow the idea. Test results show that this method is available for critical CODs of wide plate tension tests and that δ_c from 3-point bending COD tests accord with δ_c from wide plate tension tests.

1 緒 言

破壞力学研究の発達により,破壊靱性値はある程度小型の試験片で求めることができるようになり,切欠付三 点曲げ試験法や CT 試験法などが一部の規格^{1),2}に規定 された。このうち前者は北海などで使用される海洋構造 物建造時の溶接施工法承認試験に要求されるようにな り,工業的試験法としてその地位を固めつつある。しか しながら現状では研究室的試験法という認識が根強い。 このような認識を抱かせる最大の理由は切欠先端に疲労 予亀裂を賦与することにあると思われる。 切欠が鋭くなると破壊靱性値が低下することから疲労 予亀裂を賦与することが要求されているが, 阪野はこの 疲労予亀裂の代わりに,低温で圧縮予荷重を与え,除荷 時に脆性予亀裂を機械切欠先端に発生させる方法を提案 した³⁾。しかし脆性予亀裂は低靱性個所を伝ばし,本来 材料がもっている低靱性部分の評価ができないのではな いかという批判もある(付録A参照)。

したがって低靱性個所にも切欠先端が位置すると考え られる機械切欠のみを加工した試験片で,疲労予亀裂材 と同等の破壊靱性値を得ることができれば,高価な疲労 試験機を配置する必要もなく,大幅に試験時間が短縮さ れるので,切欠付三点曲げ試験法は工業的試験法として 一歩前進するものと思われる。

ところで著者らの一人は、機械切欠の先端形状を長方

^{*} 東京大学工学部

^{**} 日立造船(株)技術研究所

^{***} 東京大学工学系大学院

形に理想化してその変形挙動を調査し、この時生じる切 欠底の変位 δ_e に着目した。そして切欠先端に生じる塑 性域寸法は、通常の方法で得られる切欠先端の COD 値 (δ 値)から、上記 δ_e を減じた値によって規定されてい ることを見出した。疲労亀裂のように非常に鋭い切欠で は上記 δ_e は生じないが、機械切欠先端では δ_e が生じ る。この δ_e は塑性域寸法と直接関連しない変位であり、 脆性破壊発生と直接関係する量だと考え、 available COD (available COD 仮説)となずけた。そして切欠付 三点曲げ試験片について上記 δ_e を求め、available COD 値を求める式を提案した。さらに切欠付三点曲げ試験結 果を解析し、上記 available COD 値が疲労亀裂材と機 械切欠材とでほぼ一致することを確認した⁴。

その後日本溶接協会鉄鋼部会 FTC 委員会⁵⁾でこの問 題がとり上げられ,切欠付三点曲げ試験片と Deep Notch (中央貫通切欠)試験片についての切欠尖鋭度に関する共 同研究が実施された。そこで本報告ではこれらの切欠付 三点曲げ試験結果を上記提案式⁴⁾で解析すると同時に, 過去の実験結果も含めて,上記提案式の妥当性を調査す ることにした。一方 Deep Notch 試験片については,上 記仮説をもとに,available COD 値を求める手法を導び き,Deep Notch 試験においても,available COD 値が 破壊の仮説として有効な値であるのか否かを,実験結果 との対応によって調査することにした。

2 切欠付三点曲げ試験片における切欠尖 鋭度が限界 COD 値に及ぼす影響

切欠付三点曲げ試験片の available COD (δ^{α}) は以下 のように与えられる⁴。

- 2: クリップゲージ挿入位置(a+z: クリッ プゲージ挿入位置と切欠先端との距離)
- d:初期切欠先端幅(ただし, d≤0.4mm)
- V': 弹性限度 COD
- V:クリップゲージ変位

(1)式において d=0mm の場合, すなわち疲労亀裂 材の場合, δ^{α} は Wells の式 6 に一致する。

FTC 委員会においては軟鋼(記号 MA, MB, MC の 3鋼種), 50 キロ級高張力鋼(記号 H5A の1鋼種), 60 キロ級高張力鋼(記号 H6A の1鋼種), 80 キロ級 高張力鋼(記号 H8A, H8B の2鋼種)の計7鋼種につ き, 切欠先端幅が 0.2mm の機械切欠を有する試験片 と,疲労亀裂を有する試験片の2系列につき,切欠付三 点曲げ試験が実施された。ただし,疲労亀裂賦与に際し ては,最終状態のすくなくとも1mmの範囲は,疲労亀 裂賦与時の荷重が限界 COD 値に影響を与えないように するため,以下の式のいずれをも満たすように負荷荷重 の制御が行なわれた。

$$K_{f\max} \leq 150 \, \text{kgf} \cdot \text{mm}^{-3/2} \\ K_{f\max} \leq 1.2 \left(\frac{\sigma_{Y0}}{\sigma_Y}\right) \sqrt{E\sigma_Y \delta_c} \\ K_{f\max} \leq \sigma_{Y0} \sqrt{\frac{B}{2.5}}$$

$$(2)$$

ただし、 K_{fmax} :疲労亀裂賦与時のK値の最大値 (kgf·mm^{-2/3})

σ_{Y0}:室温での降伏点 (kgf/mm²)

σ_Y: 靱性試験温度における降伏点 (kgf/ mm²)

B:試験片厚さ (mm)

Fig. 1 An example of notch acuity on δ_c value for 3-point bend COD test specimens (HT-80 steel)

Fig. 2 Relation between δ_c estimated for fracture toughness of a fatigue pre-crack (available COD δ_c^a) from machined notch 3-point bend COD tests and δ_c obtained by fatigue pre-cracked 3-point bend tests

これらの実験結果の代表例として H8A 材の切欠付三 点曲げ試験結果を Fig.1 に示す。 □印, ●印はそれぞ れ機械切欠材, 疲労亀裂材の限界 COD 値 (δ_c 値)を Wellsの式⁶⁾から求めた結果であり, 疲労亀裂材の δ_c 値 が機械切欠材の δ_c 値より低くなっている。一方, 圖印 は機械切欠材の実験結果より (1) 式を使用 して 得た available COD 値 δ_c^a 値を示す。前報⁴)同様 ●印と圖印 はほぼ一致して お り, (1) 式の妥当性がほぼ確認でき る。

ところで Fig.1 をみてもわかるように本来破壊靱性値 は金属組織に敏感なため、ばらつきが大きく著者らが先 に論じた^{η}ように統計的取扱いを厳密には必要とする。 したがって疲労予亀裂付試験に機械切欠付試験がとって 代わるためには、疲労予亀裂材で得られる δ_c 値と、機 械切欠材より得られる δ_c^a 値の出現確率が同じでなけれ ばならない。そこでこれまでに実施された切欠付三点曲 げ試験で、同一鋼材(溶接部も含む)につき疲労亀裂材と 機械切欠材の両者が同時に行なわれた^{5),8),9)}結果を整理 することにした。

そこで両者の試験温度が同一のものについて δ_{c} 値と δ_{c}^{a} 値の関係を調べることにした。ただし実験温度にも

誤差があることを考慮し、機械切欠材と疲労亀裂材の試 験温度差が ±3℃ の範囲内にあるものについて、 機械 切欠材より得られた δ_c^a 値と、 疲労亀裂材より得られ た δ_c 値との関係を調べた。その結果を Fig.2 に示す。 試験に採用された試験片は大部分が W/B=2, $a/W\approx$ 0.5 の標準試験片であり、一部 W/B=3.5 で $a/W\approx0.5$

Fig. 4 Cumulative frequency of δ_c^a/δ_c

の試験片を含んでいる。さらに機械切欠付試験片の切欠 先端幅は 0.2mm の標準のものである。

この結果をみれば $\delta_c^a \sim \delta_c$ 座標で $\delta_c^a = \delta_c$ の線上を中 心として上下にばらついており,材料の強度レベルに依 存した傾向的差は認められない。ここでの δ_c 値あるい は δ_c^a 値は実験で得られた値そのものであることから, この結果のばらつきは主として材料固有の靱性値のばら つきに起因しているものと考えられる。

そこで δ_c^a/δ_c のヒストグラムを作成した。 その結果 を Fig.3 に示す。 δ_c^a/δ_c の対数の平均値より得られた δ_c^a/δ_c は 1.051 となり、この結果を Fig.2 の一点鎖線 として示してあるが、 δ_c 値と δ_c^a 値の平均値は非常に 良く一致していることがわかる。また $\log(\delta_c^a/\delta_c)$ 値の ヒストグラムをみれば $\delta_c^a/\delta_c=1$ を中心に左右にほぼ対 称な分布を示している。 Fig.4 は対数確率紙に δ_c^a/δ_c (or δ_c/δ_c^a) の累積相対度数をプロットした結果であり、 δ_c^a/δ_c に対する累積相対度数も δ_c/δ_c^a に対するそれも、 ほぼ同じ直線で与えられることから、 $\delta_c \geq \delta_c^a$ の出現 確率は等価であると判断できる。

したがって切欠付三点曲げ試験において疲労亀裂を賦 与するという面倒な手続きを踏むことなしに,非常に鋭 い切欠の δ_c 値を(1)式を使用して求められることに なる。

Deep Notch 試験片における切欠尖 鋭度が *δ*。値に及ぼす効果

3.1 available COD について

切欠付三点曲げ試験片において, available COD は切 欠底部の幅 d が変形する量を機械切欠先端におけるCOD 値より減ずることにより求められた。そこで d を変化さ せたモデルを有限要素法により解析し, 切欠先端におけ

Fig. 5 Displacement at a notch tip of an idealized machined notch (non-available COD δ_c) in wide plate subjected to uniform tension

Fig. 6 The effect of initial notch width on COD (V_{10}) at the location 10mm away from a notch tip

る切欠底部の変位 δ_e を求めることにした。有限要素法 による解析においては 8 節点を有するアイソパラメトリ ック四辺形要素を使用し、平面応力状態で弾塑性解析を 行なった。モデル形状は、 試験片幅 (2 W) を 400 mm と一定にし、 切欠長 (2 a) が 160 mm のものに対し、 切欠先端幅 d を 0mm, 0.2mm, 0.4mm と変化させた 3種,および切欠先端幅(d)を 0.2mm で 2a が 200 mm と 240mm の 2 種, 計 5 種とした。 解析に際して 用いた材料定数は降伏点 $\sigma_Y = 40 \text{kgf/mm}^2$ {392MPa}, ヤング率 E=21,000kgf/mm² {206GPa},および2次硬 化指数 H=E/100 である。Fig.5に解析結果を示す。図 中実線が有限要素法により得られた切欠先端底部変位δe である。また 2a=160mm の試験片で d=0, 0.2, 0.4 mm とした場合に、切欠先端から 10mm 離れた位置の COD を求めた結果が Fig.6 である。Fig.5 と比較して 明らかなように、dが変化すれば Se はdとともに変化し ているが,切欠先端から 10 mm 離れた位置での COD 値 はdに関係なくほぼ同じ値を与えている。 切欠付三点曲 げ試験片では、試験片が剛体的な回転変形をするため、 δ_e 値が mouth で拡大され V_e となっていた⁴⁾のとは挙 動を異にしている。 なお有限要素法解析において H= E/100 としたが、この値をかなり変化させても開口変位 量には影響を与えないことがわかっている。

したがって切欠先端付近を除けば、 d=0.4 mm 程度 以下の切欠幅を有する試験片に対し、 D-M モデル¹⁰)に より COD 値を計算することができるものと考えられる。 すなわち

$$V(x) = \frac{4 W \sin \alpha \cdot \sigma_Y}{\pi^2 E} \int_{\chi}^{\pi/2} \frac{\cos \chi}{\sqrt{1 - \sin^2 \alpha \cdot \sin^2 \chi}} \\ \cdot \ln \left| \frac{\sin(\chi + \phi)}{\sin(\chi - \phi)} \right| d\chi$$
(3)
$$t = t^2 U, \quad \sigma_g = \sigma_Y \left(1 - \frac{2}{\pi} \phi \right) \\ \sin(\pi c/2W) = \sin \alpha \\ \sin(\pi a/2W) = \sin \alpha \cdot \sin \phi$$

 $\sin(\pi x/2W) = \sin\alpha \cdot \sin \chi$

oy:降伏点

og:グロス応力

a: 切欠半長

W:試驗片半幅

c:切欠中央から塑性域先端までの距離 *x*:切欠中央からの距離

V(x): xの位置における COD

D-M モデルにおいては d=0 mm とした場合の COD 値 の解を与えているが,これまで多くなされた機械切欠付 (通常 d=0.2 mm)の Deep Notch 試験において,2Wが 100~2,000 mm 程度のもので,クリップゲージ変位が (3)式でよく表わされていたことは上記の解析結果 よりうなづける。

切欠付三点曲げ試験片同様、 δ_e を破壊に直接関係しない量だと考えれば、Deep Notch 試験片の場合には上記の結果より、available COD δ^a は以下のように与えられる。

$$\delta^{a} = V_{cl} \cdot \frac{V(a) - \delta_{e}}{V(x)} \tag{4}$$

ただし、 V_{cl} : 切欠中央から x 離れた位置で測定され るクリップゲージ変位

V(x):切欠中央からx離れた位置で D-M モデルによって計算される COD ((3) 式)

V(a):(3) 式で x=a とした時の COD

全面降伏後の破壊に対しては、通常行なわれてきたと 同様、V(a)、V(x) さらには δ_e として全面降伏時のも のを採用すれば良いものと考えられる。

そこで δe と D-M モデルによって得られる切欠先端 の COD 値 V(a) との関係を, Fig.5 に示した結果を 使用して調べた。その結果を Fig.7 に示す。 本結果を みれば σ_{net}/σ_{Y} (σ_{net} : ネット応力) が小さい場合 δ_{e} の 方が V(a) よりも大きくなっている。本来 δ_e は切欠先 端の COD 値より小さくなければならず、本結果は理論 的におかしい。このような結果が生じた理由は以下のよ うに考えられる。 すなわち D-M モデルにおいては d= 0mm に対する V(a)が計算される。厳密にはdが0で ない場合には開口変位そのものは 切欠中央部付近でも d=0 の場合より大きいが, dが切欠中央部の開口変位 に及ぼす影響は onet/oy が増大するにつれて相対的に低 下し, Fig.6 に示したように d を少々変化させても COD の絶対値はほぼ一本の曲線で表わされる。 しかし σ_{net}/σ_{y} が小さい範囲ではdが切欠中央部の開口変位に 与える影響が相対的に増大し,絶対値的には無視できて も相対的には切欠中央部の COD 値は d の影響をかなり 受ける。したがってdが0でなくかつ onet/or が小さい 場合は、(3)式に代わる d の影響を含んだ開口変位を 求める必要がある。しかしながら実用に供される温度 域では、 $\sigma_{net}/\sigma_Y < 0.2$ 程度の低応力破壊をする靱性レ ベルは対象としないので、上記の取扱いで十分であると 考えられる。このことについては後に実験結果との対比 において言及する。

さて以上の方法によって Deep Notch 試験結果を解析 する場合, δe を数式表示した方が便利であるので, Fig. 5 に示した数少ない有限要素解析結果より多項式近似を 試みた。その結果は

$$\delta_{\varepsilon} = \frac{\sigma_{Y} \cdot d^{0.31}}{E} \left\{ -3.682 \left(\frac{\sigma_{\text{net}}}{\sigma_{Y}}\right) + 245.2 \left(\frac{\sigma_{\text{net}}}{\sigma_{Y}}\right)^{2} -342.3 \left(\frac{\sigma_{\text{net}}}{\sigma_{Y}}\right)^{3} + 201.3 \left(\frac{\sigma_{\text{net}}}{\sigma_{Y}}\right)^{4} \right\} \quad (5)$$

ただし, d (単位 mm)

Fig. 8 Test result of fracture net stress using center notched specimens for mild steel

Fig. 9 The effect of notch acuity on δ_c for center notched specimens and the comparison between δ_c from center notched tests and δ_c from 3-point bend COD tests (mild steel)

であり、上式による $\delta_e \$ Fig. 5 に点線で示した。当然 のことながら上式は 2W=400 mm, $d \le 0.4$ mm, 80 mm $\le a \le 120$ mm と限られた範囲内で $\delta_e \$ を近似する式であ る。

以上の限定された範囲でではあるが,次項には実験結 果との対応を試みた。

3.2 実験結果との対比および考察

Fig.8 は板厚 20mm の軟鋼 (記号 MB) の Deep Notch 試験結果である。疲労亀裂賦与条件は、本試験お よび以後の試験すべてにつき(2)式を満たしている。 図にみるように疲労予亀裂材の破壊応力遷移曲線は, d=0.2mm の機械切欠材のそれより約 20℃ 高温側に位 置している。切欠中央に配置したクリップゲージより計 測されたクリップゲージ変位を D-M モデルにより切欠 先端の COD 値 δc に換算した結果を Fig.9 で●印 (疲 労予亀裂材), □印(機械切欠材)として示す。 さらに (3), (4), (5)式より, 機械切欠材の available COD (δ_c^{α}) を求めた結果が**避**印である。 疲労予亀裂材の δ_c 値と機械切欠材より得た δ_c^{α} 値はほぼ一致している。本 実験では onet/or が 0.28 以上であるので Fig.7 に示 したような矛盾は生じていない。これら3種の COD 値 をそれぞれ別個の値だと意識的に考え、 δ_c 値の温度依 存性を与えた線を Fig.9 に示してある。そこでこの δ。 値の温度依存より(3)式を用いて破壊応力推定曲線を 求めた。 その結果は Fig.8 に示したとおりであり、当 然のことながら疲労予亀裂材の δc 値より推定した破壊 応力曲線は、疲労予亀裂付試験片の破壊応力と、また機 械切欠材の δc 値より推定した破壊応力曲線は機械切欠 付試験片の破壊応力と良い一致を示している。また機械 切欠材より得た available COD 値 δ_c^a より推定した破壊 応力曲線は、疲労予亀裂付試験片の破壊応力より少し大 きな推定をしているようにみられるが, これは Fig.9 で

Fig. 10 Test result of fracture net stress using center notched specimens for HT-80 steel

Fig. 11 The effect of notch acuity on δ_c for center notched specimens and the comparison between δ_c from center notched tests and δ_c from 3-point bend COD tests (HT-80 steel)

Fig. 12 The effect of notch acuity on δ_c for center notched specimens (KEN steel)

印あるいは**闘**印と同等の値を示しており、試験片形状に、 依存しない量となっていると判断される。

Fig. 10, Fig. 11 は板厚 20mm の 80 キロ級高張力鋼 (記号 H8B) を使用して Deep Notch 試験を行なった 結果であり, それぞれ Fig. 8, Fig. 9 に対応している。本 結果からも Fig. 8, Fig. 9 で論じたと全く同じことがい える。

上記の試験は日本溶接協会鉄鋼部会 FTC 委員会で行 なわれたものである。そこでこれまでに同一材料で疲労 予亀裂付と機械切欠付の両者についての Deep Notch 試 験が行なわれた結果を 3.1 項の方法により解析 した。 Fig. 12 は日本造船研究協会 RR3M 委¹¹⁾ で行なわれた KEN 鋼の Deep Notch 試験結果である。やはり疲労予 亀裂材の δ_c 値は機械切欠材 (d=0.1mm)の δ_c 値よ りも小さくなっている。機械切欠材の実験結果より, (3),(4),(5) 式を使用して available COD δ_c^a 値 を求めた結果が**國**印で示してあるが,疲労予亀裂材の δ_c

Fig. 13 The difference between the effect of notch acuity on δ_c for center notched tension specimens and that for 3-point bend COD test specimens

値と良い一致を示していることがわかる。しかしながら -161 $^{\circ}$ の機械切欠付 Deep Notch 試験片の破壊時の σ_{net}/σ_Y は 0.18 であり, Fig.7 で示したように δ_e が V(a) と同程度となっており, この結果は低い δ_c^a 値を 与えているものと思われる。

Fig. 13 は TM 委員会⁸⁾で行なわれた軟鋼(板厚 25 mm)の Deep Notch 試験および切欠付三点曲げ試験の 試験結果である。この試験では機械切欠付試験片の切欠 底幅は 0.4 mm が採用されている。機械切欠付の三点曲 げ試験あるいは Deep Notch 試験から得られた δ_c^a 値, および疲労亀裂付の三点曲げ試験あるいは Deep Notch 試験から得られた δ_c 値の四者の結果には有意差は認め られないと判断でき,良い一致をみていると判断でき る。一方三点曲げ試験と Deep Notch 試験で機械切欠に おける δ_c 値を比較すると両者は異なっており,高温側 では Deep Notch 試験で得られる δ_c 値の方が三点曲げ 試験で得られる δ_c 値より明らかに低くなっている。ま た低温側ではその差は縮まり逆転しているようにもみら れる。この現象は以下のように考察できる。

すなわち前報⁴⁾で示したように三点曲げ試験では,疲 労亀裂材で得られる δ_c 値 (δ_c^F) と機械切欠材で得られ る δ_c 値 (δ_c^M) の比 δ_c^F/δ_c^M は試験片高さ W と材料 の降伏点の温度依存に関連して、ある δc^M のところで 最小値を示す。この試験ではこの δ_c^M は約 0.1mm で ある。一方 Deep Notch 試験片の場合には Fig.5 に示 したように最小値は生じておらず、 δ_c^M が小なるほど $\delta_c F/\delta_c^M$ は小さくなっている。これはV(a)が σ_{net}/σ_Y の 小なるところでdが0でない場合 D-M モデルで評価す ると相対的に大なる誤差が生じることに由来しているも のと思われ, V(a) が評価できれば Deep Notch 試験片 においても δ_c^F/δ_c^M がある δ_c^M のところで最小値を示 すような結果が得られる可能性もある。しかし $\delta_c{}^F/\delta_c{}^M$ が最小値を示すとしても、上記までの実験結果から考え て、 δ_c^F / δ_c^M が最小となる時の δ_c^M は三点曲げ試験にお けるよりも小さいところで生じるものと考えられる。三 点曲げ試験および Deep Notch 試験において疲労亀裂材 に対しては両者の δc 値は同等の値を与えていることか ら考えて、上記のことを考慮に入れると機械切欠材の δc 値が三点曲げ試験と Deep Notch 試験で生じている差の 傾向が理解される。

以上の結果から考えて 2W=400 mm で a/W=0.4~ 0.6, $d \le 0.4$ の場合 $\sigma_{net}/\sigma_Y \ge 0.2$ 程度なら(3),(4), (5) 式によって、 δ_c 値に及ぼす切欠尖鋭度の効果を計 算できる。 $\sigma_{net}/\sigma_Y < 0.2$ 程度の低靱性 レベルでの δ_c 値は実用上問題とならない範囲であり、実用的には上記 の方法による評価で十分であると思われる。なお試験片 幅が変った場合には 3.1 項と同様な方法で有限要素法に よる解析が必要となる。

4 結 論

本研究によって得られた結果を要約すると以下のようになる。

(1) 機械切欠付三点曲げ試験片で得られるクリップ ゲージ変位より(1)式によって換算された available COD(δ_c^a 値)は、疲労予亀裂付三点曲げ試験で得られ る限界 COD 値(δ_c 値)と非常によい一致を示し、さ らに両者の出現確率も有意差がない。したがって疲労予 亀裂付三点曲げ試験の代りに機械切欠付三点曲げ試験が 有効な破壊靱性試験として使用できる。

(2) Deep Notch 試験において available COD は (4) 式で与えられる。ただし σ_{net}/σ_Y (σ_{net} : ネット応 力, σ_Y :降伏点)<0.2 程度の低応力破壊レベルにおい ては(3) 式をもとに開口変位を計算し(4) 式を使用 すると低目の available COD 値を与える。 このような 低応力レベルでは切欠先端幅 d を考慮した D-M モデル に代わる COD 値の計算式が必要となる。

(3) Deep Notch 試験においての切欠底の変位 δ_e (non-available COD) は試験片幅 2W=400 mm, a/W= 0.4~0.6 (a:切欠半長),切欠先端幅 $d \leq 0.4$ mm の場 合(5)式で与えられる。

(4) Deep Notch 試験においても available COD 値は、疲労予亀裂材から得られる限界 COD 値 δ_c と良 い一致をみた。

(5) 切欠付三点曲げ試験片, Deep Notch 試験片の いずれの試験片を用いても,疲労予亀裂材で得られる限 界 COD 値, および機械切欠材で得られる available COD 値は等価な値を示す。

(6) 切欠尖鋭度が限界 COD 値に与える影響は切欠 付三点曲げ試験片と Deep Notch 試験片で異なる。試験 片幅が 400mm の標準 Deep Notch 試験片では,切欠 付三点曲げ試験片よりも切欠尖鋭度が限界 COD 値に及 ぼす効果は小さい。

なお本研究については日本溶接協会鉄鋼部会 FTC 委員会, TM 委員会のデータを主として使用させていただいた。さらに FTC 委員会, 日本造船学会溶接研究委員会第1分科会の委員各位には本論文に対し非常に有益な討論を賜った。ここに関係各位に謝意を表します。

参考文献

- ASTM: Standard Test Method for PLANE-STRAIN FRACTURE TOUGHNESS OF ME-TALLIC MATERIALS, ASTM Designation, E 399-74 (1974) p. 471.
- BSI: Methods for Crack opening displacement (COD) testing, BS 5762 (1979).

- 3) 3 阪野賢治: 圧縮予荷重により発生する亀裂を用い た破壊靱性評価法に関する研究,日本造船学会論 文集,第144号(1978), p.352.
- 豊貞雅宏:曲げ COD 試験片における Notch Acuity 効果の定量化に関する一提案,日本造船学会 論文集,第143号(1978) p.455.
- 5) 日本溶接協会:破壊靱性クライテリオンに関する 研究,日本溶接協会鉄鋼部会 FTC 委員会,昭和 53,54 年度,報告書作成中.
- BSI: Methods for Crack Opening Displacement (COD) Testing, DD 19 (1972).
- 7) 金沢武,板垣浩,町田進,川本要次:信頼性工学の概念を導入した欠陥の破壊力学的評価について、日本造船学会論文集,第146号(1979)p.444.
- 8) 日本溶接協会: 脆性破壊の発生特性に基づく鋼体の材質判定規準の確立に関する共同研究, 鉄鋼部会技術委員会 TM 委員会共同研究綜合報告書(昭和50年11月).
- 9) 建材試験センタ:構造材料の安全に関する調査研究,研究報告書, JMC 委員会(昭和51年3月).
- D. S. Dugdale : Yielding of Steel Sheets Containing Slits, J. Mech. Phy. Solids, Vol.8 (1960) p. 100.
- 11) 日本造船研究協会:危険物の特性および運搬船の 特殊設備に関する調査研究報告書(別冊),基準部 会 RR3M 委員会,資料 59R (昭和52年3月).
- 12) T. Ingham, G. R. Egan, D. Elliot, T. C. Harrison: The Effect of Geometry on the Interpretation of COD Test Data, Instn Meah. Ergrs. C 54 (1971), p. 200.

付録A 圧縮予荷重による亀裂材のCOD 値

Fig. A-1 は軟鋼 (板厚 20 mm) を使用して, -20° C の Fig. 同一温度で, 疲労予亀裂を賦与した切欠付三点曲げ 試験と, 阪野による予荷重による亀裂導入法³⁾を採用し た切欠付三点曲げ試験を 20 数本それぞれ行ない, Wells の式⁶⁾ より δ_c 値を求め, その累績相対度数を調査した 結果⁵⁾ である。 δ_c 値の平均値は予荷重による亀裂材の 方が, 疲労予亀裂材よりも大である. また予荷重による 亀裂材の方が, 疲労予亀裂材よりもバラッキは小さい。

疲労亀裂導入時に繰返えされるヒステリシスループに より疲労被害が生じ,このため材質劣化が生じたのでは ないかとも考えられるが,他方予荷重によって亀裂を導 入することにより,予亀裂は低靱性個所を伝ばし,予亀 裂先端には低靱性個所が存在しにくくなるとも考えられ る。後者の考察は上記の δ_c 値の相異を定性的にうまく 説明できるし,前者の考察もある程度上記の現象を説明 できるので,どちらが真とは断言できないが,疲労亀裂 挿入条件を多少変化させても, δ_c 値に系統的な差が生 じない範囲で疲労予亀裂がこれまでの試験では賦与され ていることから考えて後者の現象がある程度生じている ように思われる。

Fig. A-1 Difference between the distribution for δ_c value deviation obtained by using fatigue pre-cracked specimens and that by precompression cracked specimens

付録 B Wells の式⁶⁾と BS 5762 の式²⁾ の比較

切欠付三点曲げ試験でクリップゲージ変位から, 亀裂 先端の COD δ 値に換算する式が Wells により与えら れ, この式が BSI 規格の Draft⁶) に 1972 年規定され た。その式は(1) 式で $V_e=0$ としたものであり, こ の式によって求められる δ_c 値のデータの蓄積および妥 当性の検討がなされてきた。この式によって得た δ_c 値 と Deep Notch 試験で得られる δ_c 値は本報告にも示し た様に良い一致を示しており, Wells の式は実用上充分 な精度で破壊靱性値を与えることがこれまでの研究で判 明している。 しかし 1979 年に BSI 規格が改正され, 切欠付三点曲げ試験から δ 値を与える以下の式 が BS 5762²)</sup> として規定された。

$$\delta = \frac{K^2(1-\nu^2)}{2\sigma_Y E} + \frac{0.4(W-a)V_P}{0.4W+0.6a+z} \quad (B-1)$$

ただし, *K*:応力拡大係数

V_P:クリップゲージ変位の塑性成分

他は(1)式と同じで完全脆性破壊時に は *K*。値で靱性値を評価する。

いま変形が充分大きい領域においては rotational factor¹²⁾ r が δ を支配すると考えられる。Wells の式では r=0.45, BS 5762 の (B-1) 式では r=0.4 であり, a/W=0.5 の場合ごく大まかに見積れば

$$\frac{\delta}{V} = \frac{r}{r+1} \tag{B-2}$$

となり, BS 5762 による δ 値は Wells の式によるそれ の 0.921 倍となる。Fig. B-1 は FTC 委員会で行なわれ たa/W=0.5の切欠付三点曲げ試験で両者の式により δ_c 値を求めその関係を調べた結果であり, バラッキはある ものの少し BS 5762 で与える δ_c 値の方が Wells の式 で与える δ_c 値よりも低目になっている。そして上記の 大まかな考察の結果と平均的には良く一致している。し

Fig. B-1 Comparison between δ_c from Well's equation and δ_c from BS 5762's equation

たがって機械切欠材から BS 5762 で規定する疲労予亀 裂材の δ_c 値を推定するには(1)式で与える δ_c^a 値を 0.921 倍すれば良いものと考えられる。

しかし一方これまでの Wells の式によって得られる

 δ_c 値が, 他の試験片 (例えば Deep Notch 試験片) で 得られる δ_c 値とほぼ一致するし有意差がないと考えら れるのに, ことさら BS 5762 の式で δ_c 値を与える必 要はないものと思われる。