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Numerical Analysis of  Free Surface Shock Waves
       around  Bow  by Modified MAC-Method

                         (Second Repo't"t)

by  Akira Masuko*, Member

   Hisashi Kajitani**, MemberHideaki

 Miyata*", MeTvtber

                               Summary

    Computational schemes  and  numerical  stabil,ity  conditions  of- a  modified  version

of  Marker  and  Cell method  are  studied  and  a  new  computing  program  is developed
using  second-order  upstream  differencing representatiDns  oi  the  momentum  con-

servation  equations  and  a  SOR  iterative rnethod  for solving  a  Poisson  equation  for
the pressure, which  is applicable  to 3-D  wave  maldng  problems  of  steadily  advancing

fioatin.cr bodies in deep water.  Computed  results  are  given for nonlinear  bow-waves
of wedge  models.

            1. Introduction                '                      '                         '                               '

  Recently  it is recognized  that  the wave  making

m  the near-field  of  an  ,advancing ship  in deep
water  has nonlinear  properties, which  are  analog-

ous  to those of  waves  that  ipvolve discontinuity.
It is important  to theoretigally explain  the  non-

linear wave  making,  although  familiar potential
theories cannet  be applied.  For  the nonlinear

wave  motion  a  numerical  solution  method  is
often  very  useful,  and  the MAC  method  is one
of  the most  successful  techniques  for such  prob-
lems. It is a  technique  ior soiving  the  time
dependent  Eulerian or  Navier-Stokes equations

oi incompressible hydrodynamics and  is suited

for fiows contai.ning  free surface.  The  method  is
based  on  finite difference representations  oi  time
dependent  partial differential equations  of  me-

mentum  conservation.

  In the previous papert) the MAC  method  is
employed  for the present  problem and  it is
medified  and  improved  so  as  to cope  with  the
problem  of  3-D  wave  making  around  steadily

advancing  ship-bows  in deep  water.  The  modified
version  of the MAC  method  is called  TUMMAC
method.i),:)

  The  TUMMAC  method  in the previeus paper
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is based on  centered  diffeTence representatiorr

of  the momentum  equation  and  it necessitates

artificial  viscosity  to stabilize  the  solution.  Be-

sides,  the  Poissen equation  is solved  by  the-
Richardson's  methed  with  a  relaxation  factor
less than  unity.  These  give sorne  difficulties in.
applicatioms  to various  wave  phenomena  and.

result  in slow  cepvergence  ef  the solution.

  In this report,  the MAC  al./ orithm  is briefiy
reviewed  in Chapter  2. The  centered  and  the

secend-order  upstream  difference representatiens
for the  momentum  conservation  equations  are-

compaied.  and  their nunierical  stability  condi-

tions are  examined  m  Chapter  3. The  Richard-･

son's  method  and  the' SOR  method  for solving/

a  Poisson equation  for the pressure  are  examined

in Chapter 4, and  a  ne-tr cornputing  program  i$-
composed,  whieh  employs  the second-order  up-･

stream  differencing and  the  SOR  method,  in.

Chapter 5. Nonlinear  wave  iormatiens around

bows  of  wedge  models,  whese  half-entrance
angles  are  200 and  450, are  computed  by  the new

computer  program  at  various  advance  speed  iri.
Chapter 6. The  details of  the  experimehtal

investigation into the  characteTistics  of  waves-

around  bows  oi  wedge  rnodels  can  be  seen  in.
Ref, 3).

  The  TUMMAC  method  ior wedge  models  ls･

called  TUMMAC-I  so  that  it is distinguished from.
the  TUMMAC  method  for wall-sided  ships  e/f

arbitrary  waterlines,  which  is under  develop-

ment  and  is to be called  TUMMAC-II.

  The  variables  are  as  defined in Chapter 2 of'
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 The  algorithm  of  the  MAC
common  to the  TUMMAC
described for convenience.

 The  Naxrier-Stol{es equations  in

form  are,

    ,e. w. +. 
o(op-

 +  .qg.Ttr). +  .o=(mp.).
    0t Ox             ev                   Oe

      --e,-di.+v(gse+g:-u,+z2. ℃)
   .Lo.v". +  . o. geqg.J)- +  .a..gtte ). +  a(g!.t, )rr
    fit ex oy ag

      ..  -gtiv.,( g.2: . g.2: . g2,z )
   ."O.ap..+{ICu.-w-).+,P-(vw)+.O-/w-22
    Ot Ox Oy 0g

      =-O,V,+v(:/fg-+gi',W,+O,2,W,)+,

 By  forward differencing in time  and

differencing in space,  Eqs. (1) become,

  Uliilt2)jk-Ui,+cl/2Mk

       DT

               ybri+ijk-lthijk
    ..  

-
 UCttol"j  it 

-
                 DX

     +v[Ui+(at2)1'k+Uib(tt,;'k-2tii-(li?)J'k
       Ui,+ata)i+ik+Ui+a･'2)j-ikn2Us+{i/2)jk
     +
                Dy2

     +Ui+{1/2)sk+1+Ui+clt2)Jkrl-2tti+utE)J-ic]

H  lt st-.kfin ?  ft ta tr esag  152 g

paper unless  otherwise  defined,

   The  MAC  aRgorithm

             method  which  is

            method  is briefly

                 conservative

                 IO'i+ljk-bO'ii･k
   Ul++{!ly2)fk;gi+(],,2)J･kum                         DT
                   DX

    n+i
 Sb'ij+ikHlb"ijk

                                {3)                         DT   Vij+(lt2)k=opis'+CIX2)k'
                   DY

   zevge･j+,i.,,,=g,j,.,,,-lb"iJ'kis,z-lb'ijkDl-

 The  divergence at  the (n+l>-th time  step

obtained  £rom  Eqs. (3) as,

       u:i{!in)jk-u?t'(iva>jk , t'.lv`ii.ion)k-v.!J+'-i{i,vit

  
D?iki==

 Dx  t-  Dy

       ,
 Wtn)+kl+112-W,!J':k]-v2

       r

             DZ

     N gi+(V2)jk-gi-{U2)J'k+ nyii- CIJ!)k-ntJLCIi2)k

is

<1>

centered

  vt"･i+･+ictn]kuvij'+an)k

       DT

               be'w÷ lk-Y-ijk
    =-VCij+(1/2)k-                       +,-.
                 DY

  w:jic1+1/s-Wlik+11s･

      i5T

   =mVVCt,'k-/2--l-thiLt-i'!tt.th.-'2.ig+g+...

In  the above  equations  subscripts  are

the  cell  location and  superscripts  for

level. -Variables with  superscript

related  to the

lacking  a  superscript  are  evaluated  at

step.  The  cenvection  terms  are

VC  and  PVC  whose  expression  is

the following chapter.

 The  expression  ior the  veloeity

9mand
 denoting them  g, v  and  g.

(2)

                            used  ior

                            the time

                          (n+1) are

          <n+1)-th time  step  and  variables

                            the n-th

                         denoted  UC.

                         described  in

                          components

t the  (n+1)-th time $tep  is derived by  combin-

g the  terms  except  the pressure gradient term

   
t"kH

 2( Dig, 
+  Dlyz 

+  Dlz2')

         SP't+ijk+ISri-ijte                    vr,,.,,+v.-iin
       '[ DX2  +  DYr--  1

      .  
VijtS+.i,PPijk-i

 -R,,,]

where

  R,,,.,k-{iii)jiDE-i(ii2)fte÷
opi-"ctt}-TdefiTitvetJ-.[}.L2,hic.

        giJk+uz-gijkml/2
      +
          DT･DZ

                                (5)
Since RiJ'ic is determined when  tt, v  and  w  are

given, Eq, (5} is a  Poisson  equation  for the

pressure.
 The  momentum  equations  C3) and  the  Poisson
equation  (5) are  the principal equations  to be

solved.  Eqs. <3> are  hyperbolic equations  which

are  solved  as  an  initial value  problem  and  Eq.

(5) is an  elliptic  equation  which  is solved  as  a

boundary  value  problem.
 The  solution  is advanced  in time  by  a  series  of

repeated  steps.  First the Poisson  equation  (5)
is iteratively solved  unaer  given initia! boundary
conditions  and  then  new  veloclty  compoiients

           DX  DY

        g.:iit+112-gis'k-IM
       +
            DZ

        DT
       +Dx,[2Vijk-Vi.,i.-V,-,j,]

        DT

       +Dy,[2Vijk-Vij.,-V,j-,,]

        DT

       +Dz2[2VwknVin"rrrkuk"i]  (4)

 D==O  is required  to rigoreusly conserve  mass

and  it is aimed  at  at  the (n+ 1)-th time step,  i.e.,
DP･,"-k' in Eq. (4) is set  zero.  Then, the  equation

for the  pressure  is derivedi as,

  V
l
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are

 
derived

 from  the  momentum  equations  C3).
 
A

 
new

 source  term  Rvk  for the Poisson equation
.is calculated  by  the new  velocity  fields and  the

 cycle
 is repeated.  Marker  particles are  used  to

 tell the new  location oi  free suriace,  This  solution

 algorkhm  is suitable  te unsteady  problems,
 although  it is applied  to a  steady  wave  making

 problem  in this paper by  letting an  unsteady

 solution  approach  to a  steady  state.

      3. FTCS  aRd  donor-cell methods

   In the  previous paper the fi"rCS (forward-time,
 
centered-space

 differencin.cr) method  was  applied

 and  it necessitated  the introduetion of  artificial

 viscosity.  
'

   There are  some  alternatives  ior the finite-
 difference representation  of  the convection  terms,
and  the donor-cell {second-order upstream  differ-
encing)

 method  is chosen  for the  improved
TUMMAC-I

 method  in this  report.  The  proper-'ties
 oi solutions  remarkably  depend en  the differ-

encmg  scheme,  as  finite-difference representa-

tions are  approximations  to the oTigina}  differ-
entlal  equation$.

  
In

 this chapter  numerical  stability,  degree  of
accuracy  and  transporative  property are  examin-

ed
 for the centered  differencing applied  in the    'previous

 paper and  the denor-cell method  applied
±e

 
the

 improved TUMMAC-I.  For simplicity

the property of  the upstream  differencing scheme
is

 studied  with  the  first-order representation

instead  of  the  second-order  one,  i.e., donor-cell
method.

  3.1 Finite-difference representation  of  convec-

      tive terms

  Let us  compare  finite differeRce representa-
tions oi  the convective  terms  of  the  Navier-
Stokes equations  {UC. VC  and  HXC  in Eg. (2)),
UC  is chosen  as  a  typical example  and  the
descriptions of  VC  a- nd  JVC  are  abbreviated  here.
  By  centered  differencing,

            1
 
(JCi="n).ik==Lbl[(uL')i,+ivk-(u2)ij:･]

            i

         +D-iYT[(UV)i+{i,･:,)i+ci.,･2)k-(UV)i+ciJ2)J'-ai2)k]
            1
         +[i52I(U:ff),/if:･,t).ii-;v-.T(uies)itutvjt-i,,2]

where

  ("2)iik=t(ui.+cin)ik+re,--",..).ik):

  (ZtV)i+(li:}.i+{1,,'l]k==t(Ui+/I･'t,)ifo-'Ui+UIt･)J'+lk)
               

.
 (ZJi.i.-{1,･L.)k+Z･'t-.+11･+(1,7)l,)

  <Z･IW)i+,.vt,)jL･+1.,s=i(2ti+[1,,:)jk+Ui-y(1/2)jk+l)
              

'
 (tV:jk+1/L, 

't'
 ifJ i, ll.ltt t･ L).,t)/

                                   (6}

  The  upstream  differencing depends on  tlie flow
direction and  by  the  first-order upstream  differ-
encing  UC  becomes,

   UCi+"n)fk ==  DIx  [(u2) tiatmi'  ib

             
-iE:,2i;;illZ;:.

 if u,+a-,k:l:l]

           +Diy  [(uv)iFa/?))k
             

"/E::311[;liii::
 if vt+{iivisi:]]

           + Dlz [(u ze)i+arLore

              C(UW)i+(rn)Jit-1
             

-1(utev),+a12)sk+1
 if lgc+alvlkig],  ]

where

            1

   
Ui,j+CV2}k=if(cai+(IJSJjk+Ui-CV2)jde

            
-}'Ui+ai2}j+i2H

 Ui-"tm.it'  ik)

                                    C7)

  The  first-order upstreain  differencing scheme
violates  the conservative  property in the  region

where
 reverse  fiow exists  and  this shortcoming

can
 be resolved  by  the  second-order  upstream

differeRcing in which,  for example.  velocity

component  u  for the x-diTectional  gradient.is
estimated  at  the mid-point  oE  the velocity  points.`>
(see Fig. 1> This  differencing method  is called

donor-cell method  and  written  as,

             I
  

UCi+(Ii2)jk=Dx[Ui+]j･kUXn'UijkUNL]

             1

wheTe

UxR  :=I

UA･L=IZ

¢ I.H  IUYL

UzR

Uzl/

  +Dy[Vi+{1,IS))'+Cln>kUyn

  
-Vt+Clt!)1'-{1,,'2)Lt･tFl.]

     !
  +Dl[Wi+(1.,!)jk--],,2UzR

  
htViTO!2)jk-1/!UZL]

 ::::;;/;;:.: if zte+iJkil:l

 Slr,lllii,l: iE u,,･,iig]

;'ill:lll,]llll,, if v,.,,,,..,.,,il8i･

I:ll:liillit if v,.,,..,,,,.,,ilg]

f zai+(1 ,,2)1'  J:                      >o)

 Ui+cu2)jic+1 
if
 

Wi+<1/2)jk+ln<o)1

I:i;['ili.IIi-i if zeit+{vL,)..k-i.2i::l

F

l
  11

l
l

(8)
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 3.2 Numerical  stability  analysis

 Conditions required  in order  to obtain  stabilized

solutions  are  examined.  The  Nuemann's  methed

oi  stability  analysis`)i5)  is applied.  This  method

is valid  for linear equations,  and  therefore, the

finite-difference equations  are  linearized by as-

sumptions.  And  besides, a  pressure  gradient
term  and  a  gravitational terrn are  ignored, Thus,

this. analysis  gives only  approximate  conditions.

 The  convective  terms of Eq. (2) are  expressed

by  centered  differencing and  
'the

 pTessure  gradient
and  gravita±ional terms  are  negiected,  and  then,

the model  equation  for the centered  differencing
scheme  becomes,

        DT
of.+in=9tmn+
        DX

        DT
       +
        DY

        DT
       +
        DZ

[(Ue)t-(u2)mn-(Ug)l+af:}mn]

[(ZJg)lm-uf2)n-(Vg)lm+as!)n]

+vDT[gt+imn

+g

[(Zetg)tmn71n-(Ze]e)[mn+ln]

     +gE-imn-2gt:nn

        DX2

im+in+eim-n-2gimn

+

     DY2

glmn+1+eLmn-1-Dzz2gimnl

where

   l=z+1/2  m=1'  n==h

   l=i  m=jTF  I12 n=k

   l==i m=]  n=h+1!2

        1
   UiJk=-2"CUill/!}Jk+Ult(1,2)ik),  etC.

ii g=u

  g=v

  9=w

(9)
Note  that  n  is as  defined  above  unless  it is used

as  a  superscript  denoting time  step  in this sec-

tion. The  right-hand-side  terms  are  evaluated  at'

the  n-th  tirne step,  Eq.  (9) is linearized by  sub-

stituting  ui..  vt..  and  zvi..  for u,  v  and  tv.

respectively{  and  assuming  them  censtants.

Then  Eq.  (9) becomes,

  gr.-,'L=eimn+tl'!T(ft-inzn-gi+imn)

      +!S' Ceim-in"gi n;+in)  +S' (etmn-i-gsmn+i)

      -dt(gi+i.i,+g"-i..-2gi..)

      +{lv(gt.+t.+et.-i.-2gi..)

      +ds(gimn+i+eimn-i-2gtmn) (tO)
in which  or, ev and  cs  are  Courant numbers  ana

dx, dv and  dt are  diffusion numbers  in three

djrections defined as,

     DTUtmn
  ex ==

      DX  
'

    DTtVtmn
  eg =

      DZ  
'

     DTv

  dy=Dy2  .

Assume  that

DTVtmn
cv  ==-

d.==
   DX2

   DTv
dz=  

-
   Dzu

 DYDTv

(11)

            the solution  expressed  by  a

Fourier series  whose  component  is,

   gi..::Vel(kxtDI+feymDY+h.inDZ)

      =velUex+mey+nee)  

'
 (12>

in which  J is the imaginary unit  and  hx. ky, kt and
ex; ey, es are  wave  numbbrs  and  phase angles.

By  substituting  Eg.  (12) into Eq,  <10),

    vn+1=vntvn(cthe'uax2-erer

        +cve-re/ 
erey+

 c,e"JP3-eret)
                            '

        +V'i[d=(ere=+e"re=-2)

        +dz,(erev+e-rav-2)

        +d2(eree+errree-2)] (13>
Eq. (13) is rewritten  as,

   Vn+1=GVn

   G==1+2[d=(cosex-l)+4z･<cosOy-I)

      +ds(cosOe-l)]

      -I(cxsine=+cvsinOv+czsinez)

[G]K1 is required  for any  xralue  of

to  assure  stability  of solutions,  This
the following stability  condition.

   (cx+cy+cs)2S2(dx+dy+dt)Kl
that  is,

   (aDT":r.ft'-n+D.Tv"re.n.D.S.w..J-n)2
      K2(itt:-Fiii'yT,+"DDz{)gi

C14>

e=, ey and  0.
   Ieads to･

C15>
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     s(-ii, + .D 
ly,

 +  
Dlz,

 )                    '

   D  TND  (islgi Tr i-)i}F t iz ), 
22R"

      )2DTND-d2C-Dk-;l+IJII],+

where

   DTND=DT'Ufd,  Rn=Ud!v

  Stabilized solutions  cannot  be derived  by  the
£ entered  differencing method  unless  artificial
viscosity  is introduced. In other  words,  Eulerian
equations  cannot  be solved  by  this methodi,  The
requiTed  vaiue  oi  kinematic  viscosity  v is bounded'by

 upper  and  lower limits.

  Assume  that tti..,  vi..  and  zevL..  are  all half
£ f the uniform  stream  velocitlr  U, and  then,
Eq,  (I5> becomes,

    
DTiU'2'(DrvIx-+DIy'--t'lir)2

      S2vDT('Dlg,+Dly,+b-lz",7)Kl  (16)
By  introducing nondimensienal  tiine increment
and  Reynolds  number,

.i.,)

                                (!7)

  Tl}e Courant condition,  which  implies that

    uid  is not  permitted to cross  more  than  one
the fleell

 in one  time  step,  requires  simuitaneously

the following upper  limit ef  DTND.

    
DTNDK(D-lx;D12

y+illz)i
 (18)

When  cell dimensions are  DX==O.05m,  DY==
O.O18m  and  DZ=O.025m,  and  U  aiid  d  are
1.0

 m,fs  and  O. I m,  respectively,  as  in the previous
paper  f?r a  wedge  model  of  cr==:20e, the  required
upper

 
}imit

 of DTND  is O.i7, and  ±he  required
ranges  of  Rn  are,

   IO<Rn<8I  when  D71ND=O.10  >

    i<Rn<305  whenDTND.,o.o"  (19)

Thus, the  centered  differencing method  necessi-

tates
 
the

 
introduction

 of  artificial viscosity.

 
The

 model  equation  for the first-order upstream

differencing scheme  is,

          DT

  g:.".=gt..+bx[(ue)i-]..-(ug)tm.]

          DT
         +Dy[(Ve)i,rz-inH(V9)imn]

          DT
         -'Dz[([eve)lmn--1"(zele>t..]

      tyD7'F!i+]mn+ei-imnm2.e.,/u,y.!
           L DX2

    9tmn7gtmn+Cx(et-]mn-ei7nn)

        +Cy(etm-in--9tmn)

        +Ct(almn-1-gtmn)

        +d=(gt+imn+g-mn-2gimn)

        +dy(gim+in+gtnt-in-2gsmn)

        +d2Cetmn-/-i'l'gimn-iL2aimn)

where

   c.=:DTttiil"iv!}m",  cynvDT`vimi.gn)n

   c:  =QT.  
Wtmzui"A

         DZ

  ThTough  the  same  procedure as
centered  differencing above-described

fication factor is derived as.

   G=I+[(cx+2al=)(cosex-1)

      +(oy+2dr) (cos ev-  1)

      +(ct+2d.)(coset-I)]

      
-l(cx

 sin  ex+cy  sin Oy+c: sin  e.)
Stability condition  becomes,

   (c=+cy+cx)2-<(cm+cv+o2)+2(ax+dv

      +gt.+i,?±gL.--.i.-2gim"
             DY2

      +  mq,m 
n+]

 
±.gi

 
"z,

 
n,-i

 
L
 
29tm

 v.] (2o)

 Eq. (20) is linearized by  substituting  ut-fvsinn.

Vim-a,,2).
 and  [evem.-i/2  for u. v and  zv, respectively,

and  assuming  them  constants,

    n+1  -

(21)

(22)

the  case  of

,the  ampli-

(23)

                            +de)Si

                                (24)
Eq.

 (24) is decompesed  into the following two
conditiQns.

    
cm+ov+c2-<1

 (25)

    2vDT(  Dk2  +tiy-2 +  Dlz2 )
         

Sl-(cm+cy+c:)
 (26>

The  former  is the Courant condition  and  the
latter imposes an  upper  limit of  kinematic
viscositv.

  The  loxver limit of  Reynolds number  is estimat--

feodllob.ys.the 
values

 
used

 
to
 

obtain
 Eq. (Ig) as

   
Rn>27

 when  DT-MD=e.10  )
   Rn>1･1  when  DTND:=:o.ol  S (27}

 The  linearized model  eguation  for the  donor-
cell  method  is,

   eli"+zin=:gimnui'C=(ge-imnLgtn-t)

        
'f'Cy(gtm-lnnvgtmn)

        +Cg(gtmn-ine9ltnn)
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         +d=(gi･nmn+ei-i7]n-2gEmn)

         +dy(etm+in+gim-in-2gimn)

         +dti(gtmn+i+girrLTe-i-2girt.) (28)
in which  Courant numbers  and  diffusion numbers
are  defined  in the  same  manner  with  the centered

differencing scheme.

  Eq. {28) ts quite the  same  with  Eq,  (21), and

thereiore, the  stability  cenditions  for the doner-
cell  method  is supposed  to be  nearly  equivalent

to  those  ei the first-order upsteam  differencing
method,  The  upstream  differencing does  not

necessitate  artificial  viscosity.

  It must  be  noted  that  the present analysis  of

numerical  stability  gives only,  approximate  coll-

ditions, because  it is based on  the  simplification

of  the equations.  The  computation  of waves

around  a  wedge  model  of  ct==200  by  M]CS
method  gives stable  results  when  Rn=50  and

DTND=O.Ol,  while  it gives unstable  ones  when

Rn==200  and  DTND=O.O12).  Both  values  of

Rn  are  within  the stable  range  of  }i;q. (19).
  3.3 Pegree of  accuracy  aRd  transporative pro-
      perty
  Finite-difference representations  oi  the momen-

tum  equa'tions  are  approximations  to the  difier-
ential  equation,  and  the degree oi  accuracy

depends  en  the  way  of  finite-differencing, The
accuracy  analysisO  shows  that  the centered

differencing of  the  convective  terms  possesses
second-order  accuracy,  i,e., the error  due to the
approximation  is the  order  o £  cell  length  sguared

and  that  the  first-order upstream  differencing
possesses only  first-Drder aceuracy.  The  degree
of  accuracy  of the donor-cell method  is supposed
to be in between.

  It is also  shown  that the  FTCS  scheme  impliciV
ly includes negative  diffusion terms  which  make

solutions  unstable  and  that  the donor-cell scheme,
on  the  contrary,  implicity includes positive
diffusion terms  which  make  the  solution  stable

and  simultaneously  cause  n"merical  dissipation,O
Thus  the donor-cell method  gives smoothed

solutions  whose  degree of  accuracy  is not  greater
than

 the centered  differencing method,  altheugh

it gives stable  solutien  with  less effort  without

artificial  viscesity.  The  wave  height  computed

by  the  donor-cell method  is supposed  to be lower
than  that  in the previous paper  computed  by the
centered  differencing method,

  NXihen an  infiuence of disturbance is consreyed

only  along  the fiow  direction by  the convection
of  a  difference equation,  this equation  is said

to have transporative property.  It is desired for
a  differeneing scheme  ot  convection  terms  to

possess transperative  proper2L'y. The  centered

differencing does not  possess this preperty while
tlie upstream  differencing does,`) and  thereiore,

the latter differencing, ineluding  the donor-cell
method,  is desirable in this respect.

    4. Paisson equation  for the pressure

  4.1 Richardson's and  Liebmann's metheds

  The  Poissen  equation  C5) is iterative]y solxred

by  the  following equation.

    V,"-"'i=:,bSp;･/tk+to(sb';･3･ki,.i-V,Z,･k) (29}
V'caz is the value  calculated  by Eq.  {5). The
superscrJpts  fn  and  Cm+i) denote  iteration
number  and  e) is a  relaxation  factor. The  itera-
tion is continued  untjl  the  differenee of  pressuie
between  the (m+I>-th and  m-th  steps  cenverges
within  an  allowable  error.

  The  Richardson's method  which  was  used  in
the previous paper  is described as,

    
vz･:i

 
==

 
'i<

 
.kl.

 -S i.-, + -.i.2 )
         . [ th:+iS,I}Y:-ijk. Vij･i-b,t.V, 

:･}-iic

         +  -}icZrvj'k+Di 
+z,di

 
3njk-i

 7  R,,.,] (30)

All the pressures on  the right-hand-side  are

evaluated  at  the  previous m-th  step.

  The  Liebmann's  method  uses  the  new  pressures
successively

 obtained  at  the (m+1)-th step  a$

seen  in Fig. 2 and  writes,

    
v:T+k
 
i

 
-

 s( 
D}li,

 + Iilll,-, + 
Dlz2
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VtM'+ib,itgetM･-'i}k+
 VtM,･+b,+yV, t!j±lic

         {
           LPrz,.,+V'z-,#i
         +  Dzz  

-Riii]
 (31>
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Fig. 2
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Pressure points for SOR  method

  4.2 Numericalstability anaEysis

  Numerical stability  of  the Richardson's metliod
is examined  by substituting  Eq, (SO) into Eq.
(29).
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 conditions,  the initial conditions  and  the treat-

 ment  of  the marker  particles of the  improved

 version  of  TUMMAC-I  are  almost  the same  with

 the original  in the previous  paper. HoweKrer,

 the descriptien in that  paper is too  brief, and

 therefore  some  explanatious  are  added  below.

   The  initial state  of  computation  is at  rest  and

 the  infiow velocity  is gradually accelerated  unti!

 the  assumed  speed  of  advance  oi  fioa,ting bodies

 is reached  at  about  100-th time  step.  To  imptil-

 sively  start  the bedies  does  not  gtve favorable

 rapid  convergence.

  The  kinernatic free surface  cendition  is satisfied

 by  the  movement  of marker  particles and  the

 dynamic  free surface  condition  is satisfied  by

 letting P==-:-Po==O at  the  exact  location  of  the

 free sllrface. The  expression  of  the pTessure
 near  the free surface  for 3-J) case  is given b}r 3-D
 

``irregular

 stars'' as,

    P,ik=. V/Lop?.V-3.Lop].op.EUe .r-.
          opit72?7s174+V3ny`Vs776+07,072VsVs

          
･[g,2,',l,',V.'SIS+:,`,ill,',optTt,-;)

         ":,!vP'2vlttf3-SpR]  (3s)

In  this equation  P  on  the right-hand-side  is set

zero  for the  cells on  the free surface  {see Fig. 1 (c>
of the previous paper). The  viscous  effect  on  the
free surface  condition  is not  taken  into account.

  The  ve!ocitY  gradient along  the  local stream-

line is set  zero  at  the outflow  boundaries to

prevent wave  refiection.  The  computed  fiow
field is connected  to the  previously  calculated

double model  fiow  at  a  deep horizontal  plane.
The  body  boundary  condition  is a･ free-slip con-

dition as  deseribed in the previeus paper.

     6. Competed  waves  around  wedge

                medels

  The  improved  version  oi  TUMMAC-I  was

a[pplied  to the calculation  of  waves  generated  by
steadily  advancing  fieating wedge  models  in
deep water.  The  details of  the  charaeteristics  of

these waves  are  experimentally  studied  in Ref.
3>.

  6.1 Computationalconditions

  Two  wedge  models  whose  half-entrance  angle

(ec) is 200 and  450 aye  chosen  for the computa-

tion.

  The  Iength  and  depth of  the wedg'e  model  of

ct==20e  are  720mm  and  100mm,  respectively,

and  cell dimensions (DX, DY,  DZ)  are  (36, I3.
25mm).  The  number  oi  cell  is 32 × 40 × 12.
These values  of the wedge  model  ef  ct==45=  ai'o

4eO mm  and  IOO mm,  <DX, DY,  DZ)=(25,  25, 25
mm)  and  37 y. 27xl4.

Bow

           L DX2  
'

 Dy2

          i  -Sk 
"ilic

 
+D,

 
+zip,
 
'tZ]k!i

 -  R  ,i,]  (3s)

             oera
        1-to+

    G==  
(,,-2re

 (36)
         1-  -
             2

  To secure  stabiiity  the  following range  of  the
relaxation  factor is required.

    OSld<2  (37)
One  can  obtain  stabilized  solution  by  over-

relaxation  when  the Liebmann's  method  is used.
The  Liebmann's  method  which  uses  a  relaxation

factor greater than unity  is called  successive

over-relaxation  (SOR) method.  Faster  converg-

ence  of the SOR  method  can  save  computation

time.

  In the  calculations  in the previous paper the
Richardson's  methed  with  bl=::O.3  is employed

and  in the fellowing  chapters  the  SOR  method

with  w=I.5.

     5. ImprovedTUMMAC-rcemputa-

             tional pregram

  The  TUMMAC  computational  program  for
water  fiows around  wedge  models  (TU"alvrAC-I)
is improved  so  that stable  state  can  be attained

more  easily  with  shorter  computational  time.
The  donor- ¢ ell  method  is applied  to the difference
         '
representatien  of  the  convective  terms  and  the
SOR  meUiod  te  the  solution  of  the  Poisson
equation  for the  pressure.

  The  computational  procedure, the boundary

         
.
 [ VtM+ib, igiM-i,k. 

V,M･j+bk
 
+.l

 
tM,-ite

         + 
V;]s'k+D,

 
'i

 YPj 
ic-IHR.,,]

 (32)-

  The  Neumann's  analysis  of  numerical  stability

applied  in Chaptre  3 is again  applied  to Eq,  (32)
and  consequently  the amplification  function
is derived  as,

    G=1-tu(l-eose)  (33)
Then,  the  stability  condition  requires  the  follow-
ing range  oi  the relaxation  factor. Under-relaxa-
tion is required  for the Richardson's method.

    ogblsl  (34)

  For  the  case  of  the  Liebmann's method,  the
relaxation  equation  and  the  amplification  func-
tion are,  respectively.

    
th;:.+v

 
=

 
(1
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to)VrM-Jis
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 2 ( 
'
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 k, + D
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 + -D!z' i)
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  Waves  are  computed  at  three

bers  based  on  draft <Fd) for ea ¢ h

parameters  used  lor the 

'

in Table l.

     Table 1 Conditions of  com

Hptinde M- 7  ft 7. V  eslj  152 g

        Froude

         model.

computauens  are

putatLons

IIUM-
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Fig.3  Wave  pattein  p:Lctureg of a

   m')del  of  a=200

we.t  ge

  6.2 Wave  formation

  Wave  pattem  pictures around  a  wedge  medel

of  ec=200,  whose  length  is about  1.0 m,  photo-
graphed at  the  towing  tank  aTe  present  in Fig. 3.
The  ioremost free surface  shock  wave  {FSSVgT)
is round-shaped  and  it is transformed into

straight-lined  at  the Froude number  (Fd> greater
than  O.95. Then  the angle  oi  the foremost wave
crest  line to the centerline  is decreased with  the

inerease of  Fd  .

  The  computed  wave  height  centours  are  shown

in Fig. 4. The  qualitative variatien  oi  wave

formation  above-described  is present in this
figure. Comparing  these contours  to the  experi-

mental  ones  in Ref. 3), it is noted  that  the  com-

puted wave  height is about  70%  ofthe  measured

and  that  the  computed  Iocation of  wave  crest

is shifted  slight]y  backward. These are  presum-
ably  due  to truncation  error,  numerical  dissipa-
tion and  phase error  caused  by  the  numerical

scheme.  Perspective views  of  wave  formation

are  present in Figs. 5 and  6, in which  wave  height
is nondimensionalized  by  the reference  length
of  II(==:U2f2g) and  somewhat  exaggerated  and

4121e
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Fig.4  Wave  height  conto"rs  around  a

      wedge  modiel  of  a==200  calculatea

      bv  the donor-cell-SOR method

      (5t intervals of o.r H)
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that  of  Fig. 6 is two-times  magnified  in compari-
son  to Fig. 5. The  formation of  the loremost and
partly the second  waves  are  in good  accordance

       

   

[

Fig. 5

ptem

Perspective  views  of wave  configu-

ration  of  a  wedge  model  oi  a==200

calculated  by the donor-cell-SOR

method  (wave height is non-

dimensionalized  by H)
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Fig,6  Same  as  Fig. 5 Cwax'e heiglit is

      tMo-timcs  magnified)

wave  is almost  always  nerma,I  FSSXV, as  seen

in Fig. 7 and  8, "rith  the  increase ol  Fa  tlie normal
FSSSV  around  th: bow  is enlaiged  alld  the  wave

slope  on  the forwarcl lace bccome3  steep,  wh]ch

will  cause  breaking of  wave  crest  and  unsteadv

-rith  the observed  (Fig. 8).

  Wave  pattern pictures, computed  wave  height
contours  and  perspective  views  for the csae  of

a=45e  are  present in Figs. 7 thiough  IO. The
foremost  wave  keeps  to be  round-shapad  in the
wide  range  of aclvance  speed  and  is not  trans-
forme4

 into straight-}ined,  i.e,, the foremost

Fibcr 7 XJx'ave pattern  pic'Luros c'if a  wec'IbcFt

      ml[i,el  o±C a  .L. 45"
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fiuctuation ei  the free surface  at  high  speed  oi

advance.  The  wave  height in the  perspective
views  is nondimensionalizecl  in the same  way

with  the case  of cr=200,  and  therefore, tlie wave
height  seen  in Figs. 9 and  rO is nearly  invariant.
i,e., the maximum  wave  height  is from  709,tt to
90%  of  El, This indicates that  the  wave  height
at  the bow  approaches  very  close  to ff and  that
in consequence  the  wave  slope  on  the iorwayd
faee is relatively  very  steep  at  high speed  of

advance.

  FSSW  is supposed  to have  four  time-develop-
ing  sta.cres  as  described in Ref.  3), namel.v,  

;1>

formation of very  steep  nenlinear  waves,  2}
brealiing of  wave  crest  and  energy  defici"c, 3) dif-
fusion of  ene:gy  deficit with  turbulence  and

sometim:s  air-entrainment  on  the  iree surface,

and  4) formatien of  momentum-deficient  wake

far
 behind,  The  first stage  is wave  making  ruled

by, Froude number  and  the follo"Fings are  com-

plicated and  may  suffer  from  the  effect  of

viscosity.  The  present computation  can  explain
the  fiuid mechanism  o.F the first stage,  which  is

1･O JX eeag  152 g
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the most  substantial  for FSSW,  and  cannot
demonstrate the subsequent  stages,  to which

collsiderable  efforts  must  be  devoted.

  6.3 Ve!ocity and  pressure distributioRs

. 
Vertical fiuid velocity  distributions are  present

m  Fig. H         for the case  of ct=45e.  The  velocity

component
 u  reaches  to more  than  40%  oE  the

speed  oi  uniform  stream  in the Tegion  where  the
wave  is high. The  extremely  steep  variation  ef

vertical  distribution of "  near  the iree suriace
at

 
the

 
wave

 frent seen  in Fig. 24 oi  Ref. 3) is
not  realized  in the computed  result.  This dis-
accoxd  is attributed  to the  coarse  cell  dimension
and  the numerical  dissipation as  well  as  the eom-

plicated aspects  of  real phenomena  (sta.cres 2 to
3) that  TUMMAC-I  cannot  take  into comsidera-

tion.

  The  calculated  pressure  distributien iR the
water  is present in Fjg. 12. The  pressure must
be in-between the  two  solid  lines @  and  @.
w,hich  are  the pressure  distribution when  waves

do  not  exist  and  the hydrostatic  distribution,
respectiveiy.  When  the waves  have  the same
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and  when  they  have  the  preperty  o £ deep water

waves,  it coincides  with the dotted  curve  @
which  is drawn  under  the  postidatieii that  wave

number  Ko  is glU2.  The  computed  curve  O  is

in-between @  and  @, and  it is xrery  close  to the

hydrostatic distribution near  the  iree surface,

The  presence ol the hydiostatic pressure distribu-

tion revealed  in the  experimental  results3)  is

also  demonstrated by  the computation.

  The  computed  pressure distributions on  the

surface  oi  the wedge  models  are  shown  in Figs.

13 and  14. The  variation  oi wave  formation  due

to  changes  of  advance  speed  and  wedge  angle  is

closely  connected  with  the  pressure distribution.
A!though  the  accuracy  cannot  be examined

because of  the lack  of  measured  pressures, the

resistance  of  the  body  can  be estimated  by

integrating these distrib"tions, which  wi],1  be

very  useful  for the design oi  the body  configura-

tion, i.e., hul! ferm design, in iuture.

             7. £ o]cigsioR

  The  numerical  solution  method  TVMMAC-I

for free surface  motions  around  advancing  wedge

models  in deep water  is improved  by  employing

the donor-cell differencing and  the SOR  method.

The  improved  method  gives stable  solutions  at

 various  computational  conditions  more  easily

 than  the  method  in the previous  paper, although

 the  degree of accuracy  is not  very  satisfactory.

  The  steep  wave  generation  in the near-field

 of  advancing  floating bodies, which  is the  first

 and  substantial  stage  of  nonlinear  wave  making

 phenomenon  called  free surface  shock  wave,

 can  be  demonstrated  by the TUMMAC-I.  When

 this method  is iurther devcloped into an  advanced

 one  which  ean  be appliedi  to ships  of arbitrary

huU  foims,  the hull ierm design procedures wil!

become  rnore  rigeTous  and  economica!.
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