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Summary

Computational schemes and numerical stability conditions of a modified version
of Marker and Cell method are studied and a new computing program is developed
using second-order upstream differencing representations of the momentum con-
servation equations and a SOR iterative method for solving a Poisson equation for
the pressure, which is applicable to 3-D wave making problems of steadily advancing
floating bodies in deep water. Computed results are given for nonlinear bow-waves

of wedge models.

1. Intreduction

Recently it is recognized that the wave making
in the near-field of an advancing ship in deep
water has nonlinear properties, which are analog-
ous to those of waves that involve discontinuity.
It is important to theoretically explain the non-
linear wave making, although familiar potential
theories cannot be applied. For the nonlinear
wave motion a numerical solution method is
often very useful, and the MAC method is one
of the most successful techniques for such prob-
lems. It is a technique for solving the time
dependent Eulerian or Navier-Stokes equations
of incompressible hydrodynamics and is suited
for flows containing free surface. The method is
based on finite difference representations of time
dependent partial differential equations of mo-
mentum conservation.

In the previous paper” the MAC method is
employed for the present problem and it is
modified and improved so as to cope with the
problem of 3-D wave making around steadily
advancing ship-bows in deep water. The modified
version of the MAC method is called TUMMAC
method.??

The TUMMAC method in the previous paper
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is based on centered difference representation
of the momentum equation and it necessitates
artificial viscosity to stabilize the solution. Be-
sides, the Poisson equation is solvéd by the
Richardson’s method with a relaxation factor
less than unity. These give some difficulties in
applications to various wave phenomena and
result in slow convergence of the solution.

In this report, the MAC algorithm is briefly
reviewed in Chapter 2. The centered and the
second-order upstream difference representations
for the momentum conservation equations are
compared, and their numerical stability condi-
tions are examined in Chapter 3. The Richard-
son’s method and the SOR method for solving
a Poisson equation for the pressure are examined
in Chapter 4, and a new computing program is
composed, which employs the second-order up-

- stream differencing and the SOR method, in

Chapter 5. Nonlinear wave formations around
bows of wedge models, whose half-entrance
angles are 20° and 45°, are computed by the new
computer program at various advance speed in
Chapter 6. The details of the experimental
investigation into the characteristics of waves.
around bows of wedge models can be seen in.
Ref. 3).

The TUMMAC method for wedge models is.
called TUMMAC-I so that it is distinguished from.
the TUMMAC method for wall-sided ships of
arbitrary waterlines, which is under develop-
ment and is to be called TUMMAC-II.

The variables are as defined in Chapter 2 of
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the previous paper unless otherwise defined.

2. The MAC algorithm

The algorithm of the MAC method which is
common to the TUMMAC method is briefly
described for convenience.

The Navier-Stokes equations in conservative
form are,
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By forward differencing in time and centered
differencing in space, Eqgs. (1) become,
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In the above equations subscripts are used for
the cell location and superscripts for the time
level. Variables with superscript (n+41) are
related to the (»+1)-th time step and variables
lacking a superscript are evaluated at the #-th
step. The convection terms are denoted UC,
VC and WC whose expression is described in
the following chapter.

The expression for the velocity components
at the (»+1)-th time step is derived by combin-
ing the terms except the pressure gradient term
and denoting them &, 5 and {.

udmie=Era/mir— I/Iiﬂjk _ Q/f”kDT
7 = RAAELNNR Sk
J DX
1 . ijrie " Yijk
U?ﬁ-a/z)k— Nijrarne— l/f g—'DT ( 3 )
DY
w"%uré fE+1/2 z/fijkﬂ —lbi“DT
? 27 b1 - A~
J J .DZ

The divergence at the (n+1)-th time step is
obtained from Egs. (3) as,
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D=0 is required to rigorously comnserve mass
and it is aimed at at the (- 1)-th time step, i.e,,
D4 in Eq. (4) is set zero. Then, the equation
for the pressure is derived as,
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Since Rijsx is determined when %, v and w are
given, Eq. (5) is a Poisson equation for the
pressure.

The momentum equations (3) and the Poisson
equation (5) are the principal equations to be
solved. Egs. (3) are hyperbolic equations which
are solved as an initial value problem and Eq.
(5) is an elliptic equation which is solved as a
boundary value problem.

The solution is advanced in time by a series of
repeated steps. First the Poisson equation (5)
is iteratively solved under given initial boundary
conditions and then new velocity components
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are derived from the momentum equations (3).
A new source term R for the Poisson equation
s calculated by the new velocity fields and the
cycle is repeated. Marker particles are used to
tell the new location of free surface. This solution
algorithm is suitable to unsteady problems,
although it is applied to a steady wave making
problem in this paper by letting an unsteady
solution approach to a steady state.

3. FTCS and donor-cell methods

In the previous paper the FTCS (forward-time,
centered-space differencing) method was applied
and it necessitated the introduction of artificial
viscosity.

There are some alternatives for the finite-
difference representation of the convection terms,
and the donor-cell (second-order upstream differ-
encing) method is chosen for the improved
TUMMAC-I method in this report. The proper-
ties of solutions remarkably depend on the differ-
encing scheme, as finite-difference representa-
tions are approximations to the original differ-
ential equations.

In this chapter numerical stability, degree of
accuracy and transporative property are examin-
ed for the centered differencing applied in the
Pprevious paper and the donor-cell method applied
to the improved TUMMAC-I. For simplicity
the property of the upstream differencing scheme
is studied with the first-order representation
instead of the second-order one, i.e., donor-cell
method.

3.1 Finite-difference representation of convec-

tive terms

Let us compare finite difference representa-
tions of the convective terms of the Navier-
Stokes equations (UC, VC and WC in Eq. (2)).
UC is chosen as a typical example and the
descriptions of ¥VC and W are abbreviated here.

By centered differencing,
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The upstream differencing depends on the flow
direction and by the first-order upstream differ-
encing UC becomes,
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The first-order upstream differencing scheme
violates the conservative property in the region
where reverse flow exists and this shortcoming
can be resolved by the second-order upstream
differencing in which, for example, velocity
component u for the x-directional gradient is
estimated at the mid-point of the velocity points.®
(see Fig. 1) This differencing method is called
donor-cell method and written as,
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Fig. 1 Velocity points for the second-

order upstream differencing (u-
component)

]

3.2 Numerical stability analysis

Conditions required in order to obtain stabilized
solutions are examined. The Nuemann’s method
of stability analysis®>® is applied. This method
is valid for linear equations, and therefore, the
finite-difference equations are linearized by as-
sumptions. And besides, a pressure gradient
term and a gravitational term are ignored. Thus,
this, analysis gives only approximate conditions.

The convective terms of Eq. (2) are expressed
by centered differencing and the pressure gradient
and gravitational terms are neglected, and then,
the model equation for the centered differencing
scheme becomes,

DT
q%ﬁz:{hmn+’D§[(%9)z—c1/2>mn“‘ (Mq)l-(-(l/?.)mn]

DT
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Note that » is as defined above unless it is used

as a superscript denoting time step in this sec-
tion. The right-hand-side terms are evaluated at
the #-th time step. Eq. (9) is linearized by sub-
stituting %imn Vimn and w;,, for u, v and w,
respectively, and assuming them constants.

Then Eq. (9) becomes,
g?:;}z=q1mn+%¥(QL—1mn_q1+lmn)

+%<q5m—1n_glm+ln) +%(Qm n—1"QLmn+1>
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+Ay(@imrintGim—1n—2G1mn)
+d, (len+-1+QLmn—1“2§’zmn) (IO)

in which ¢¢, ¢y and ¢, are Courant numbers and
dz, dy and d, are diffusion numbers in three
directions defined as,

oy = 2T Wimn _DTvinn
= Dpx “="Dvy
_DTwWima _DTv ,
s (1)
DTy DTy
=Dy “=Dz

Assume that the solution is expressed by a
P y
Fourier series whose component is,
qlm — VPI(kle_X+kymD Y+k:uDZ)
n 2
= Ve l{W0z+mby+tnls)

(12)

in which I is the imaginary unit and £, By, &z and
Oz; Uy, 0. are wave numbers and phase angles.
By substituting Eq. (12) into Eq. (10),
g—Iﬁx——gl't?r
Vri=yn4 V”<0x—2

e~10y—elty 6“192—8102>
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Eq. (13) is rewritten as,
Vn+1:GVn

+dz(COS G.— 1)]
—I(czsin Bz+cysin Oy+c,sin 6.)
|G|<1 is required for any value of 0z, Oy and 0.
to assure stability of solutions. This leads to
the following stability condition.
(0x+5y+0z>2£2(dx+dy+dz)g 1
that is,
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DX DY Dz

vDT vDT vDT
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(15)
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Stabilized solutions cannot be derived by the
centered differencing method unless artificial
viscosity is introduced. In other words, Eulerian
equations cannot be solved by this method. The
required value of kinematic viscosity v is bounded
by upper and lower limits.

Assume that #%;,,,, v;m, and Wimn are all half
of the uniform stream velocity U, and then,
Eq. (15) becomes,

DTy2 s 1 L 1 \2

4 (DX +W+ﬁ>

L L 1
DX2+DY2+DZZ>£1 (16)

By introducing nondimensional time increment
and Reynolds number,

1 1 1
8< 2+ 2+ 2>
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1 1 1
> 4«7 e =yt
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where
DIND=DT-Uld, Ra= Udlv

(17)

The Courant condition, which implies that
the fluid is not permitted to cross more than one
cell in one time step, requires simultaneously
the following upper limit of DTND.

2

1 ! 1

DITNDL
[

(18)
DX DY Dz

When cell dimensions are DX=0.05 m, DY =

0.018m and DZ=0.025m, and U and d are

1.0 m/s and 0.1 m, respectively, as in the previous

paper for a wedge model of a=20°, the required

upper limit of DTND is 0.17, and the required
ranges of Ry are,

10<Rx<31

when DTND=0.10
1<Rr<305 } (13

when DTND=0.01

Thus, the centered differencing method necessi-
tates the introduction of artificial viscosity.

The model equation for the first-order upstream
differencing scheme is,

DT

Q?;ﬁz:glmn 'TLB)?[(Mq)l—lmn— (ug)lmn]
DT

Tyl @Dim-1a—©g)1mn]
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* DY
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+ Dz?

(20)

Eq. (20) is linearized by substituting .- «,symn,
Yim-a/nn A0d Wimgs for u, v and w, respectively,
and assuming them constants.

q%iz%mn‘]‘%(%—mn—szn)
+6y(glm—-ln“qwnn)
+02((Zlmn—1“q1mn)
—}-dx(91+1mn+ql—1mn—“ZQLmn)
+dy(£7Lm+1n'ILng—In_zglmn)

+dz(qlmn+l+q1mn——l‘_Qlen) (21)
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_ DTML—(I/‘Z)mﬂ. . DTULm~(1/2)n
Cop=——""T—>"—, Cy=—"""
DX 22)
Cy = DTwlmnjﬁ
* DZ

Through the same procedure as the case of
centered differencing above-described, the ampli-
fication factor is derived as,

G=1+[(cs+2dz) (cos Bz—1)
+(cy+2dy) (cos 6y~ 1)
+(c2+2dz) (cos 6,—1)]
—I(czsin Oz +cy sin Gy+c. sin 6.) (23)

Stability condition becomes,

(G:c+6y+6z)2_<.(Cx+Cy+Cz)+2(dz+dy+dz) <1

(24)
Eq. (24) is decomposed into the following two
conditions.

Coteyte<l 25)
2VDT( L +“1—+—1~
DX?2 DY: D22>
gl—(Cx'}'Cy‘i‘Cz) (26)

The former is the Courant condition and the
latter imposes an upper limit of kinematic
viscosity.

The lower limit of Reynolds number is estimat-
ed by the values used to obtain Eq. (19) as

follows.
Ru>27

when DTND=0.10
Ra>1.1

when DTND=0.01 27)

The linearized model equation for the donor-

cell method is,

9?7;1’—}1':'len_}'CI(QZ—lmn-“QZmn)
+Cll(q1m—1n“glmn)
+GZ<QLmn—1_glmn)
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+dx(qt+17nn+q1~lmn""2qlmn>

+dy(qml+ln+glm—ln'—‘2q1mn)

+dz(q1mn+1+q1mn—l"QQZmn) (28)
in which Courant numbers and diffusion numbers
are defined in the same manner with the centered
differencing scheme.

Eq. (28) is quite the same with Eq. (21), and
therefore, the stability conditions for the donor-
cell method is supposed to be nearly equivalent
to those of the first-order upsteam differencing
method. The upstream differencing does not
necessitate artificial viscosity.

It must be noted that the present analysis of
numerical stability gives only approximate con-
ditions, because it is based on the simplification
of the equations. The computation of waves
around a wedge model of «=20° by FICS
method gives stable results when R,=>50 and
DTND=0.01, while it gives unstable ones when
Rz=200 and DTND =0.0i». Both values of
Ryn are within the stable range of Eq. (19).

3.3 Degree of accuracy and transporative pro-

perty

Finite-difference representations of the momen-
- tum equations are approximations to the differ-
ential equation, and the degree of accuracy
depends on the way of finite-differencing. The
accuracy analysis® shows that the centered
differencing of the convective terms possesses
second-order accuracy, i.e., the error due to the
approximation is the order of cell length squared
and that the first-order upstream differencing
possesses only first-order accuracy. The degree
of accuracy of the donor-cell method is supposed
to be in between.

It is also shown that the FTCS scheme implicit-
ly includes negative diffusion terms which make
solutions unstable and that the donor-cell scheme,
on the contrary, implicity includes positive
diffusion terms which make the solution stable
and simultaneously cause numerical dissipation.®
Thus the donor-cell method gives smoothed
solutions whose degree of accuracy is not greater
than the centered differencing method, although
it gives stable solution with less effort without
artificial viscosity. The wave height computed
- by the donor-cell method is supposed to be lower
than that in the previous paper computed by the
centered differencing method.

When an influence of disturbance is conveyed
only along the flow direction by the convection
of a difference equation, this equation is said
to have transporative property. It is desired for
a differencing scheme of convection terms to
possess transporative property. The centered
differencing does not possess this property while
the upstream differencing does,® and therefore,

the latter differencing, including the donor-cell
method, is desirable in this respect.

4. Poisson equation for the pressure

4.1 Richardson’s and Liebmann’s methods
The Poissen equation (5) is iteratively solved
by the following equation.

U =Yl oW T i — YT (29)

Yew is the value calculated by Eq. (5). The
superscripts m and (m-4-1) denote iteration
number and w is a relaxation factor. The itera-
tion is continued until the difference of pressure
between the (m--1)-th and m-th steps converges
within an allowable error.

The Richardson’s method which was used in
the previous paper is described as,

1
1 1 1
2<DX2+DY2+D22>
. [ ;[,;'}{-ljk—i"lﬁ?f-ljk_*_ Elfg;ﬂk'}'w%'—lk
DXz DYz

+ ¢“?}k+1 + ’ﬁ%k—l_
Dz2

2 4+1 —
Y=

Russ | (30
All the pressures on the right-hand-side are
evaluated at the previous m-th step.

The Liebmann’s method uses the new pressures
successively obtained at the (m+1)-th step as
seen in Fig. 2 and writes,

I
m+i__
v 1 I 1

ijk
2<DX2+ +D22>

DY?
. [ wiﬁljk"_gﬁ?—.}l—}k_{_ Q&%njﬂrc'l"%/f?}ﬂk
DXz DY?
Bro Bt
+ w Jk'*-BZZf ik I_Rij}c_]

(31)

Fig. 2 Pressure points for SOR method

4.2 Numerical stability analysis

Numerical stability of the Richardson’s method
is examined by substituting Eq. (30) into Eq.
(29).

2]

I 1 1
2 <DX2 oyt DZZ})

i ==y f+
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. [!ﬁﬁfljk’*‘l/fim—ljk_{_ wﬂ?}+1k+¢f§"j~1}:
DX DY?
It e A
+ &%_1._ R, k} (32)
The Neumann’s analysis of numerical stability
applied in Chaptre 3 is again applied to Eq. (32)
and consequently the amplification function
is derived as,

G=1—-w(l—cosb) (33)
Then, the stability condition requires the follow-

ing range of the relaxation factor. Under-relaxa-
tion is required for the Richardson’s method.

0<w<1 (34)

For the case of the Liebmann’s method, the
relaxation equation and the amplification func-
tion are, respectively,

mil— (] — m @
J
‘S&L k ‘_<1 w)wuk—‘—
2( 1 n 1 L 1 )
DX? DY?' DZz2
. [I/f;-.ium—z/fﬁﬁ}k + VBt YT,
DX2 DY*
rm m4-1
+ ?;L z;lcz';guk—l_Riij (35)
16
l—-w w;
G=—— (36)
=3

To secure stability the following range of the
relaxation factor is required.

0<w<? (37)

One can obtain stabilized solution by over-
relaxation when the Liebmann’s method is used.
The Liebmann’s method which uses a relaxation
factor greater than unity is called successive
over-relaxation (SOR) method. Faster converg-
ence of the SOR method can save computation
time.

In the calculations in the previous paper the
Richardson’s method with w=0.3 is employed
and in the following chapters the SOR method
with w=1.5.

3. Improved TUMMAC-I computa-
tional program

The TUMMAC computational program for
water flows around wedge models (TUMMAC-I)
is improved so that stable state can be attained
more easily with shorter computational time.
The donor-cell method is applied to the difference
representation of the convective terms and the
SOR method to the solution of the Poisson
equation for the pressure.

The computational procedure, the boundary

conditions, the initial conditions and the treat-
ment of the marker particles of the improved
version of TUMMAC-I are almost the same with
the original in the previous paper. However,
the description in that paper is too brief, and
therefore some explanations are added below.

The initial state of computation is at rest and
the inflow velocity is gradually accelerated until
the assumed speed of advance of floating bodies
is reached at about 100-th time step. To impul-
sively start the bodies does not give favorable
rapid convergence.

The kinematic free surface condition is satisfied
by the movement of marker particles and the
dynamic free surface condition is satisfied by
letting P=Po=0 at the exact location of the
free surface. The expression of the pressure
near the free surface for 3-D case is given by 3-D
“irregular stars’ as,

N172Ms7 47576

Pi = T
T s st s
. ‘:772P1+771P2 774P3+773P4
M+ 9ena(s+7)

776P5+7]5P6 ____1_ :' (38)

N5 +75) 2 p

In this equation P on the right-hand-side is set
zero for the cells on the free surface (see Fig. 1 (c)
of the previous paper). The viscous effect on the
free surface condition is not taken into account.

The velocity gradient along the local stream-
line is set zero at the outflow boundaries to
prevent wave reflection. The computed flow
field is connected to the previously calculated
double model flow at a deep horizontal plane.
The body boundary condition is a free-slip con-
dition as described in the previous paper.

€. Computed waves around wedge
models

The improved version of TUMMAC-I was
applied to the calculation of waves generated by
steadily advancing floating wedge models in
deep water. The details of the characteristics of
these waves are experimentally studied in Ref.
3).

6.1 Computational conditions

Two wedge models whose half-entrance angle
(o) is 20° and 45° are chosen for the computa-
tion.

The length and depth of the wedge model of
o=20° are 720 mm and 100 mm, respectively,
and cell dimensions (DX, DY, DZ) are (36, 13,
25mm). The number of cell is 32x40x12.
These values of the wedge model of a=45> are
400 mm and 100 mm, (DX, DY, DZ)=(25, 25, 25
mm) and 37x27x 14,
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Waves are computed at three Froude num-
bers based on draft (Fa) for each model.
parameters used for the computations are listed

Architects of Japan

in Table [.

Table 1 Conditions of computations

BASMERRTE FI52F

The

Fd U DT DTND A
(m/s) ( sec)
0.8 0.792 0.00631
o= 20° 1.1 1.089 0.00459 0.05 1.5
1.4 1.386 0.00361
0.6 0.5947 0.00421 0.025
a=45°10.8 0.792 0.00631 1.5
0.95
1.0 0.990 0.00505

Fig. 3

Wave pattern pictures of a wec

mHdel of a=20°

6.2 Wave formation

Wave pattern pictures around a wedge model
of «=20°, whose length is about 1.0 m, photo-
graphed at the towing tank are present in Fig. 3.
The foremost free surface shock wave (FSSW)
is round-shaped and it is transformed into
straight-lined at the Froude number (Fa) greater
than 0.95. Then the angle of the foremost wave
crest line to the centerline is decreased with the
increase of Fa.

The computed wave height contours are shown
in Fig. 4. The qualitative variation of wave
formation above-described is present in this
figure. Comparing these contours to the experi-
mental ones in Ref. 3), it is noted that the com-
puted wave height is about 709, of the measured
and that the computed location of wave crest
is shifted slightly backward. These are presum-
ably due to truncation error, numerical dissipa-
tion and phase error caused by the numerical
scheme. Perspective views of wave formation
are present in Figs. 5 and 6, in which wave height
is nondimensionalized by the reference length
of H(=U?2g) and somewhat exaggerated and

4 >

3 A

T ™ T
; 1> \& A

0 (/@ . . i F(li - 0'[8

-4 -3 2 A [ 1 2 3 4 5 6 k]

2 /’\ :

o LA

T

P P N - S A
< —

3 / 4

2 /3 B Sals=

e el | ﬂﬁl}/

SR

Fig. 4 Wave height contours around a

wedge model of a=20° calculated
by the donor-cell-SOR method
(at intervals of 0.1 H)
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that of Fig. 6 is two-times magnified in compari-  with the observed (Fig. 3).

son to Fig. 5. The formation of the foremost and Wave pattern pictures, computed wave height
partly the second waves are in good accordance  contours and perspective views for the csae of
a=45° are present in Figs. 7 through 10. The
foremost wave keeps to be round-shaped in the
wide range of advance speed and is not trans-

REEESSE
RS

RESSS formed into straight-lined, i.e., the foremost
RS . o
‘l‘ - wave is almost always normal FSSW, as seen
eSS . . . .
T in Fig. 7and 8. With the increase of Fg the normal

FSSW around the bow is enlarged and the wave
slop= on the forward face becomes steep, which
will cause breaking of wave crest and unsteady

R I\
s AR
SR S

R R R RN \I X
T s
=

Fig. 5 Perspective views of wave configu-
ration of a wedge model of a=20°
calculated by the donor-cell-SOR
method (wave height is non-
dimensionalized by H)

4

Iig. 7 Wave pattern pictures of a wedge

Fig. 6 Same as Fig. (wave height is

two-times magnified) model of a=45°
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fluctuation of the free surface at high speed of
advance. The wave height in the perspective
views is nondimensionalized in the same way
with the case of «=20°, and therefore, the wave
height seen in Figs. 9 and 10 is nearly invariant,
lLe., the maximum wave height is from 709, to
90% of H. This indicates that the wave height
at the bow approaches very close to H and that
in comsequence the wave slope on the forward
face is relatively very steep at high speed of
advance.

FSSW is supposed to have four time-develop-
ing stages as described in Ref. 3), namely, I)
formation of very steep nonlinear waves, 2)
breaking of wave crest and energy deficit, 3) dif-
fusion of energy deficit with turbulence and
sometimes air-entrainment on the free surface,
and 4) formation of momentum-deficient wake
far behind. The first stage is wave making ruled s =
by Froude number and the followings are com- = = ao;{%?g;:f}gg’gf?:%"ﬁﬁﬁ
plicated and may suffer from the effect of = "‘{—‘;‘:: ".":’:"i’i’i'?"
viscosity. The present computation can explain =
the fluid mechanism of the first stage, which is

Fig. 9 Perspective views of wave con-
- figuration of a wedge model of =
45° calculated by the donor-cell-
/ v / SOR method (wave height is non-

T — :\\
S~

n k
\

, - / ; i > dimensionalized by H)
: 4 -

/1

{ [ Y

/'/ [
- £ Jmc;l.c. -©

y
S S
e
\\

S
N
.

(=}
1
<
o

P

f

5 R \.. \\a xa )
I /i
‘/ ! P //?M\ /
, // //\Js
| B/
| i/f{{f‘( 7 Fa=10
: BRI '

- - - o . 2 3

Fig. 8 Wave height contours around a
wedge model of a=45° calculated
by the donor-celi-SOR method Fig. 10 Same as Fig. 9 (wave height is
(wave height is nondimensional- two-times magnified)
ized by H)
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the most substantial for FSSW, and cannot property with nonlinear shallow water waves,
demonstrate the subsequent stages, to which the pressure distribution coincides with ®,
considerable efforts must be devoted.

6.3 Velocity and pressure distributions

Vertical fluid velocity distributions are present P~ Rul 'y pU*
in Fig. 11 for the case of a=45°. The velocity .
component % reaches to more than 409 of the Fd=08

speed of uniform stream in the region where the
wave is high. The extremely steep variation of
vertical distribution of u# near the free surface
at the wave front seen in Fig. 24 of Ref. 3) is
not realized in the computed result. This dis-
accord is attributed to the coarse cell dimension
and the numerical dissipation as well as the com-
plicated aspects of real phenomena {stages 2 to
3) that TUMMAC-I cannot take into considera-
tion.

The calculated pressure distribution in the
water is present in Fig. 12. The pressure must
be in-between the two solid lines @ and 3,
which are the pressure distribution when waves
do not exist and the hydrostatic distribution,
respectively. When the waves have the same

NS

0.2
L 1
[oR] 0.2 Xtmi 03 0.4

0
(FP)

Fig. 13 Calculated pressure distribution
on wedge surface (wedge model
of «=20° d=0.1 m)

Ps - P 1 1PV
S L__J,J
06 10 06 10 06 10
Fd =06
Fig. 11 Vertical distribution of calculat- A b ) AN
1 !
ed velocity component 1+%/U . /z |y R
(wedge model of x=45°, d—=0.1 m o /° e
£a=0.8, y/d=1.0) ot 8
’ 0 o 02 xim 03 0.4
(ER)
0825 0375 -ops X 0125 €d=08
FREE_SURFACE ® cat by TUMMAC
P=-097 + pgrem{KZ3)
0 P=-pg(z-5)
P=-pgz
-05

Fig. 12 Calculated pressure distribution
on the vertical plane at y/d=
1125 (wedge model of g=45° Fig. 14 Same as Fig. 13 (wedge model
Fa=0.38) of @=45°, d=0.1 m)

GQ
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and when they have the property of deep water
waves, it coincides with the dotted curve @
which is drawn under the postulation that wave
number K, is ¢/U?% The computed curve @ is
in-between @ and @), and it is very close to the
hydrostatic distribution near the free surface.
The presence of the hydrostatic pressure distribu-
tion revealed in the experimental results® is
also demonstrated by the computation.

The computed pressure distributions on the
surface of the wedge models are shown in Figs.
18 and 14. The variation of wave formation due
to changes of advance speed and wedge angle is
closely connected with the pressure distribution.
Although the accuracy cannot be examined
because of the lack of measured pressures, the
resistance of the body can be estimated by
integrating these distributions, which will be
very useful for the design of the body configura-
tion, i.e., hull form design, in future.

7. Conclusion

The numerical solution method TUMMAC-I
for free surface motions around advancing wedge
models in deep water is improved by employing
the donor-cell differencing and the SOR method.
The improved method gives stable solutions at
various computational conditions more easily
than the method in the previous paper, although
the degree of accuracy is not very satisfactory.

The steep wave generation in the near-field
of advancing floating bodies, which is the first
and substantial stage of nonlinear wave making
phenomenon called free surface shock wave,
can be demonstrated by the TUMMAC-I. When
this method is further developed into an advanced
one which can be applied to ships of arbitrary

hull forms, the hull form design procedures will
become more rigorous and economical.
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