(昭和60年5月 日本造船学会春季講演会において講演)

没水型曳航体の曳航特性に関する研究 (第2報)

――没水型曳航体の縦方向運動計算法について――

正員 山 北 和 之*

Investigation on the Dynamics of Underwater Towed Body System (Part 2)
——On the Longitudinal Dynamics of Underwater Towed Body System——

by Kazuyuki Yamakita, Member

Summary

This report presents the longitudinal dynamics of underwater towed body system.

Firstly, the longitudinal equations of motion of underwater towed body system were derived by treating the cable as lumped parameter system of discrete masses.

Secondary, hydrodynamic characteristics of the hypothetical towed body, which is necessary for the analysis, were obtained experimentally. Utilizing above results, the longitudinal equations of motion of underwater towed body system under external disturbances were solved numerically.

As the result, dynamic characteristics of underwater towed body system, mainly towed body response to the heaving towing point, were made clear.

1 まえがき

水面下の状況を調査するために使用される没水型曳航体には映像装置、ソナーあるいはハイドロホンなどといったセンサが通常搭載されている。そのため水面下の状況を十分の精度で調査しようとすれば、曳航体の曳航特性はセンサ自体の特性などにより定まる制限を受けるのが普通である。したがってもし曳航体の曳航特性がこの制限を越えるようなことがあれば、最悪の場合には曳航システム全体の設計変更を余儀なくされる事態すら生じうる。

このように没水型曳航体を設計するにあたってはその 曳航特性を明らかにし検討することが必要となるが、そ のためにはまず曳航体および曳航ケーブルの流体力学的 特性を明らかにした上で、曳航特性を求めるための準静 的計算法さらには動的計算法を確立することが必要であ る。この内曳航ケーブルの流力特性、曳航体流力係数の 一部および準静的計算法についてはすでに報告している ので1)、本報では曳航体縦方向運動の動的計算法と、そ の計算法に必要な仮想的な形状をした曳航体の流力係数 を求めた結果とについて報告する。

以下ではまず曳航体の縦方向運動方程式を示した後、 必要な曳航体の流力係数については縮尺模型を用いた水

* 防衛庁技術研究本部第1研究所第3部

槽試験により求め、その結果を用いて運動方程式の数値 計算を行う。計算は曳航体を曳航する水上船が波浪など の原因により動揺する場合を想定して行い、この時の曳 航体の動揺特性などについて検討を行うことにした。

2 没水型曳航体および曳航ケーブルの 縦方向運動方程式について

まず運動方程式等を記述するために必要な座標軸などの定義について述べよう。 earth axes $O_E - X_E Y_E Z_E$, vertical axes $O_V - X_V Y_V Z_V$ および body axes $o_B - x_B y_B z_B$ の定義は本研究第1報 1 0場合と同様であり、それらの間の関係を Fig. 1に示す。ただし vertical axes の移動する速度 U は第1報の場合とは異なり、一定値である必要はない。また曳航点は $X_V Z_V$ 面内の一点 $(x_t(t), 0, z_t(t))$ にあるものとする。

曳航システムの縦運動を数値計算するため Fig.1 に示すごとく曳航ケーブルを N+1 個に分割し,それぞれの節点に質量 $m_j(j=2\sim N+1)$ の質点を N 個おく。質点間は長さ $l_j(j=1\sim N+1)$ の重さのない剛棒でつながれており,その傾きは Fig.1 に示すように定義する。また各節点においてモーメントの伝達はないものとする。曳航体の番号は j=1 とし,流体力はこれらの曳航体および質点 $1\sim N+1$ にのみ作用するとする。

上記の数学モデルに従い,Lagrange の運動方程式を

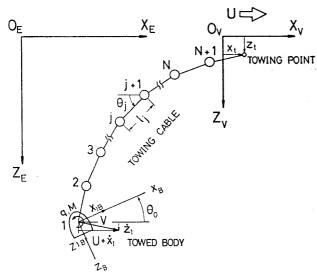


Fig. 1 Definition of axes

用いて曳航体および曳航ケーブルの運動を記述する。

$$\frac{d}{dt} \left(\frac{\partial T_E}{\partial \dot{q}_k} \right) - \frac{\partial T_E}{\partial q_k} = Q_k \tag{1}$$

ただし

$$T_{E} = \frac{1}{2} \sum_{i=1}^{N+1} \{ m_{i} (U + \dot{x}_{i})^{2} + m_{i} \dot{z}_{i}^{2} \} + \frac{1}{2} I_{y} \dot{\theta}_{0}^{2} \quad (2)$$

$$x_t = x_t - \sum_{j=1}^{N+1} l_j \cos \theta_j \tag{3}$$

$$z_t = z_t + \sum_{i=1}^{N+1} l_i \sin \theta_i \tag{4}$$

$$Q_{k} = \sum_{i=1}^{N+1} \left(X_{i} \frac{\partial x_{i}}{\partial q_{k}} + Z_{i} \frac{\partial z_{i}}{\partial q_{k}} \right) + M_{0}$$
 (5)

 $q_k:$ 一般化座標

 X_i : 質点iに加わる力の X_V 成分

 Z_i : 質点iに加わる力の Z_V 成分

Mo: 曳航体に働くモーメント

I_y:曳航体の慣性能率

である。

とこで

$$\frac{\partial T_{E}}{\partial \dot{q}_{k}} = \sum_{i=1}^{N+1} \left(\frac{\partial T_{E}}{\partial \dot{x}_{i}} \cdot \frac{\partial \dot{x}_{i}}{\partial \dot{q}_{k}} + \frac{\partial T_{E}}{\partial \dot{z}_{t}} \cdot \frac{\partial \dot{z}_{t}}{\partial \dot{q}_{k}} \right) + I_{y} \dot{\theta}_{0} \frac{\partial \dot{\theta}_{0}}{\partial \dot{q}_{k}}$$

$$\tag{6}$$

であること, および

$$\frac{\partial \dot{x}_i}{\partial \dot{q}_n} = \frac{\partial x_i}{\partial q_n} \tag{7}$$

$$\frac{\partial \dot{z}_{t}}{\partial \dot{q}_{k}} = \frac{\partial z_{t}}{\partial q_{k}} \tag{8}$$

$$\frac{\partial \dot{\theta}_0}{\partial \dot{q}_k} = \frac{\partial \theta_0}{\partial q_k} \tag{9}$$

$$\frac{\partial \dot{x}_i}{\partial q_k} = \frac{d}{dt} \left(\frac{\partial x_i}{\partial q_k} \right) \tag{10}$$

$$\frac{\partial \dot{z}_i}{\partial a_i} = \frac{d}{dt} \left(\frac{\partial z_i}{\partial a_i} \right) \tag{11}$$

の関係を用い、さらに一般化座標 q_k として $\theta_k(k=0\sim N+1)$ を採用することにすれば (1) 式は次式のごとく

なる。

$$\begin{cases}
I_{y}\ddot{\theta}_{0} = M_{0} & (12) \\
\sum_{t=1}^{N+1} \left\{ m_{i} (\dot{U} + \ddot{x}_{t}) \frac{\partial x_{t}}{\partial \theta_{k}} + m_{i} \ddot{z}_{t} \frac{\partial z_{t}}{\partial \theta_{k}} \right\} \\
= \sum_{t=1}^{N+1} \left\{ X_{t} \frac{\partial x_{t}}{\partial \theta_{k}} + Z_{t} \frac{\partial z_{t}}{\partial \theta_{k}} \right\}, \quad (k=1 \sim N+1) \quad (13)
\end{cases}$$

ただし

$$\frac{\partial x_t}{\partial \theta_k} = \begin{cases} 0, & i > k \text{ obd} \\ l_k \sin \theta_k, & i \leq k \text{ obd} \end{cases}$$
(14)

$$\frac{\partial z_i}{\partial \theta_k} = \begin{cases} 0, & i > k \text{ obs} \\ l_k \cos \theta_k, & i \le k \text{ obs} \end{cases}$$
 (15)

$$\frac{\partial \theta_0}{\partial \theta_1} = \begin{cases} 1 & , k = 0 \text{ obs} \end{cases}$$

$$k = 0 \text{ obs} \end{cases}$$

$$k = 0 \text{ obs} \end{cases}$$

$$k = 0 \text{ obs} \end{cases}$$

$$(16)$$

である。

(12)式および(13)式が求める運動方程式であり、 X_i, Z_i および M_0 が与えられれば曳航体およびケーブルの運動を解くことができる。

そこでまず曳航ケーブルに働く力は付加質量による力、抵抗、自重および浮力よりなるとし、ケーブルの付加質量による力については中嶋ら 2)の示した法線方向流体力を、また抵抗については、本研究第1報に示した $\mathbf{E}^{\mathbf{ames}}$ のモデルを採用することにする。 したがってケーブルに働く力は次式のごとく書き表わされる。

$$X_j = f_{mx_j} + f_{dx_j}, \quad (j = 2 \sim N + 1)$$
 (17)

$$Z_j = f_{mz_j} + f_{dz_j}, \quad (j = 2 \sim N + 1)$$
 (18)

ここで

$$f_{mx_j} = A_j (\ddot{x}_j \sin^2 \bar{\theta}_j + \ddot{z}_j \sin \bar{\theta}_j \cdot \cos \bar{\theta}_j) \tag{19}$$

$$f_{mzj} = A_j(\ddot{x}_j \sin \bar{\theta}_j \cos \bar{\theta}_j + \ddot{z}_j \cos^2 \bar{\theta}_j) \tag{20}$$

$$f_{dx_{j}} = -(1 - \mu - \nu)R_{j}|\sin(\bar{\theta}_{j} + \psi_{j})|$$

$$\sin(\bar{\theta}_{j} + \psi_{j})\sin\bar{\theta}_{j}$$

$$-\{\mu + \nu \sin(\bar{\theta}_j + \psi_j)\} R_j \cos \psi_j \qquad (21)$$

$$f_{dz_j} = -(1 - \mu - \nu)R_j |\sin(\bar{\theta}_j + \psi_j)|$$

 $\sin(\bar{\theta}_j + \psi_j)\cos\bar{\theta}_j$

$$-\{\mu + \nu \sin(\bar{\theta}_j + \psi_j)\} R_j \sin \psi_j + W_{cj} - B_{cj}$$

$$\bar{\theta}_j = (\theta_j + \theta_{j-1})/2$$

$$R_{j} = \frac{1}{2} \rho SC_{D} V_{j}^{2}$$

$$V_j^2 = (U + \dot{x}_j)^2 + \dot{z}_j^2$$

$$\psi_{i} = \tan^{-1}(\dot{z}_{i}/(U + \dot{x}_{i}))$$

$$A_j = -A_{nj}$$

であり、 ρ は流体の密度を、S はケーブルの正面面積を、 W_{cj} はケーブル要素の重量を、 B_{cj} は浮力を、また A_{nj} は質点j の法線方向付加質量を表わす。

次に曳航体に作用する力の body axes 成分 X_{1B} , Z_{1B} は次のごとく書き表わすことができるとする 3)。

$$\begin{split} X_{1B} &= X_{\dot{u}} (\dot{U} + \dot{u}) + X_{uu} V^2 + X_{\dot{w}} \dot{w} + X_w w \\ &+ (X_{\dot{q}} - m_1 Z_G) \dot{q} + (X_q - m_1 w_e) q \\ &- (m_1 g - \rho g V_H) \sin \theta_0 \end{split} \tag{23}$$

(22)

であり、 Z_G および Z_B はそれぞれ曳航体の重心および 浮心の位置を、 V_H は曳航体の排水容積を表わす。また X_u などは、曳航体の安定微係数 $\partial X/\partial u$ などを簡略化 して表わしたものである。

曳航体に働く力 X_1 および Z_1 は (23) および (24) 式 を vertical axes 成分に変換することにより得られる。

$$X_1 = X_{1B}\cos\theta_0 + Z_{1B}\sin\theta_0$$

$$Z_1 = -X_{1B}\sin\theta_0 + Z_{1B}\cos\theta_0$$

(27)

以上によりケーブルおよび曳航体に作用する力を変 位、速度などの関数として表わすことができたので、こ れらを (12) および (13) 式に代入し, さらに Table 1 に示す無次元化法により無次元化して、次の形にとりま とめる。

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & \cdots & a_{0,N+1} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1,N+1} \\ a_{20} & a_{21} & a_{22} & \cdots & a_{2,N+1} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{N+1,0} & a_{N+1,1} & a_{N+1,2} & \cdots & a_{N+1,N+1} \end{bmatrix} \begin{bmatrix} \hat{\theta}_{0} \\ \hat{\theta}_{1} \\ \vdots \\ \hat{\theta}_{N+1} \end{bmatrix} = \begin{bmatrix} b_{0} \\ b_{1} \\ \vdots \\ \vdots \\ b_{N+1} \end{bmatrix}$$

$$(28)$$

Table 1 Definition of non-dimensionalization

DUVCION	50.000.000		
PHYSICAL QUALITY	DIMENSIONAL QUALITY	NON-DIMENSIONA- LIZATION FACTOR	NON-DIMENSIONAL QUALITY
FORCE	F	$\frac{1}{2} P \nabla^{\frac{2}{3}} V^{2}$	C _F
MOMENT	М	1 PV V 2	См
LINEAR VELOCITY	٧	٧	Ŷ
ANGULAR VELOCITY	ω	V∕∆ ³	û
LINEAR ACCELERATION	Ý	$V^2\sqrt{\frac{1}{3}}$	Ŷ
ANGULAR ACCELERATION	ώ	$(\sqrt[4]{\sqrt{3}})^2$	٤
MASS	m	1/2 ₽ ₹	ŵ
BUOYANCY	В	½ p∇g	Ê
MOMENT OF INERTIA	I	½ 9 V 5	Î
TIME	t	∆ ³ \	ŧ
DIFFERENTIAL OPERATOR	S	V \\[\sqrt{\sqrt{3}} \]	D

V: VOLUME OF A TOWING CABLE V: VELOCITY P: DENSITY OF FLUID G: ACCELERTION OF GRAVITY

- 男する研究(第2報)	121
ここで	
$a_{00} = (V_H/V)^{5/3} (\hat{I}_y - C'_{m\dot{q}})$	
$a_{0j} = -\hat{l}_{j}(\nabla_{H}/\nabla)^{4/3}(C'_{m\dot{u}}\sin\theta_{j} + C'_{m\dot{w}}\cos\theta_{j}),$	
$j=1\sim N+1$	
$a_{ij} = \left(\sum_{p=1}^{j} \hat{m}_{p}\right) \hat{l}_{i} \hat{l}_{j} \cos \left(\theta_{j} - \theta_{i}\right)$	
$-\hat{l}_{i}\sin\theta_{i}\cdot\hat{l}_{j}\left\{\sin\theta_{j}\left(\sum_{p=1}^{j}R_{p}\right)+\cos\theta_{j}\left(\sum_{p=1}^{j}S_{p}\right)\right\}$	$p \biggr) \biggr\}$
$-\hat{l}_{i}\cos\theta_{i}\cdot\hat{l}_{j}\left\{\sin\theta_{j}\left(\sum_{p=1}^{j}T_{p}\right)+\cos\theta_{j}\left(\sum_{p=1}^{j}U_{p}\right)\right\}$	$\binom{p}{p}$
$i,j=1\sim N+1$	
$a_{i0} = -\hat{l}_i (\nabla_H / \nabla)^{4/3} (C'_{x\dot{q}} \sin \theta_i + C'_{z\dot{q}} \cos \theta_i),$ $i = 1 \sim N + 1$	
$b_0 = (\nabla_H/\nabla)^{4/3} \left[\sum_{j=1}^{N+1} \hat{I}_j (C'_{m\dot{u}} \cos\theta_j - C'_{m\dot{w}} \sin\theta_j \right]$	$(\hat{\dot{ heta}}_j)\hat{\dot{ heta}}_j^2$
$+C'_{m\dot{u}}(\hat{\hat{U}}+\hat{\hat{x}}_t)+({\cal V}/{\cal V}_H)^{1/8}C'_{m\dot{u}}(\hat{U}+\hat{\hat{x}}_1)$	
$+ (V/V_H)^{1/3} C'_{muu} \hat{V}^2 + C'_{mw} \hat{z}_t$	
$+ (V/V_H)^{1/3} C'_{mw} \hat{\hat{z}}_1 + C'_{mq} \hat{\hat{\theta}}_0$	
$-\left(\hat{m}\hat{Z}_{G}-2\hat{Z}_{B}\right)\sin\theta_{0}/F_{n_{F}}^{2}$	
$b_i \!=\! \sum\limits_{j=1}^{N+1} \left(\sum\limits_{p=1}^{j} \hat{m}_p\right) \! \hat{l}_j \hat{l}_t \sin{(\theta_j \!-\! \theta_i)} \hat{\dot{\theta}}_j^2$	
$-\Big(\sum_{p=1}^{\hat{t}}\hat{m}_p\Big)\hat{l}_t\{\sin\theta_t(\hat{\dot{U}}+\hat{\ddot{x}}_t)+\cos\theta_t\hat{\ddot{z}}_t\}$	
$+\hat{l}_t\sin\theta_t\sum_{j=1}^{N+1}\hat{l}_j\bigg\{\cos\theta_j\bigg(\sum_{p=1}^{j}R_p\bigg)$	
$-\sin\theta_j \left(\sum_{p=1}^j S_p\right) \hat{\theta}_j^2$	
$+\hat{l}_{i}\sin\theta_{i}\left\{\left(\sum_{p=1}^{i}R_{p}\right)(\hat{U}+\hat{x}_{t})+\left(\sum_{p=1}^{i}S_{p}\right)\hat{z}_{t}\right\}$	
$+(\nabla_H/\nabla)^{2/3}C'_{xu}(\hat{U}+\hat{\hat{x}}_1)+(\nabla_H/\nabla)^{2/3}C'_{xv}$	$_{\iota u}\hat{V}^{_2}$
$+ (\nabla_{H}/\nabla)^{2/3} C'_{xw} \hat{\hat{z}}_1 + (\nabla_{H}/\nabla) C'_{xq} \hat{\hat{\theta}}_0 + \sum_{j=2}^t C'_{xj} \hat{\hat{\theta}}_$	fdx_j
$+\hat{l}_i\cos\theta_i\sum_{j=1}^{N+1}\hat{l}_j\left\{\cos\theta_j\left(\sum_{p=1}^jT_p\right)\right\}$	
$-\sin\theta_j \left(\sum_{p=1}^j U_p\right) \right\} \hat{\theta}_j^2$	
$+\hat{l}_t\cos\theta_t\left\{\left(\sum_{p=1}^tT_p\right)(\hat{\hat{U}}+\hat{\hat{x}}_t)+\left(\sum_{p=1}^tU_p\right)\hat{\hat{z}}_t\right.$	
$+(V_H/V)^{2/3}C'_{zu}(\hat{U}+\hat{x}_1)+(V_H/V)^{2/3}C'_{zu}$	$_{\iota u}\hat{V^{2}}$
$+ (\nabla_H / \nabla)^{2/3} C'_{zw} \hat{\hat{z}}_1 + (\nabla_H / \nabla) C'_{zq} \hat{\hat{\theta}}_0$	
$+(\nabla_{H}/\nabla)(\hat{m}-2)+\sum_{j=2}^{i}C_{fdz_{j}}$, $i=1\sim N+$	1
$R_{j} = \left\{ egin{array}{ll} (m{V}_{H}/m{V}) C'_{xu} \;\;,\;\; m{j} = 1 \;\; \mathcal{O}$ とき $\hat{A}_{j} \sin^{2}ar{ heta}_{j} \;\;\;\;\;\;\;\;\;\;\; m{j} eq 1 \;\; \mathcal{O}$ とき	
$S_{j} = \left\{ egin{array}{ll} (m{V}_{H}/m{V}) m{C}'_{x\dot{w}} \;,\;\; j = 1 \;\; arrho$ とき $\hat{A}_{j} \sinar{ heta}_{j} \cosar{ heta}_{j},\;\; j eq 1 \;\; arrho$ とき	
$T_{j} = \left\{ egin{array}{ll} (m{V}_{H}/m{V}) m{C}'_{z\dot{u}} \;,\; j = 1 \; o$ とき $\hat{A}_{j} \sinar{ heta}_{j} \cosar{ heta}_{j},\; j eq 1 \; o$ とき	
$U_{j} = \left\{ egin{aligned} (m{V}_{H} / m{V}) C'_{zw} &, & j = 1 & \mathcal{O} \ \hat{A}_{j} \cos^{2} ar{ heta}_{j} &, & j \neq 1 & \mathcal{O} \ \end{pmatrix} ight.$	

$C'_{x\dot{u}} = C_{x\dot{u}}\cos^2\theta_0 + C_{x\dot{w}}\sin\theta_0\cos\theta_0$
$+C_{z\dot{u}}\sin heta_{0}\cos heta_{0}$
$C'_{xw} = C_{xw}\sin\theta_0\cos\theta_0 + C_{zw}\sin^2\theta_0$
$C'_{xuu} = C_{xuu}\cos\theta_0 + C_{zuu}\sin\theta_0$
$C'_{x\dot{w}} = C_{x\dot{w}}\cos^2\theta_0 - C_{x\dot{u}}\sin\theta_0\cos\theta_0 - C_{z\dot{u}}\sin^2\theta$
$+C_{z\dot{w}}\sin\theta_0\cos\theta_0$
$C'_{xw} = C_{xw}\cos^2\theta_0 + C_{zw}\cos\theta_0\sin\theta_0$
$C'_{x\dot{q}} = C_{x\dot{q}}\cos\theta_0 + C_{z\dot{q}}\sin\theta_0 - \hat{m}\hat{Z}_G\cos\theta_0$
$C'_{xq} = C_{xq}\cos\theta_0 + C_{zq}\sin\theta_0$
$C'_{z\dot{u}} = C_{z\dot{u}}\cos^2\theta_0 - C_{x\dot{u}}\sin\theta_0\cos\theta_0 - C_{x\dot{w}}\sin^2\theta_0$
$+C_{z\dot{w}}\sin\theta_0\cos\theta_0$
$C'_{zu} = -C_{xw}\sin^2\theta_0 + C_{zw}\sin\theta_0\cos\theta_0$
$C'_{zuu} = C_{zuu} \cos \theta_0 - C_{xuu} \sin \theta_0$
$C'_{z\dot{w}} = C_{z\dot{w}}\cos^2\theta_0 - C_{z\dot{u}}\sin\theta_0\cos\theta_0$
$-C_{x\dot{w}}\sin\theta_0\cos\theta_0+C_{x\dot{u}}\sin^2\theta_0$
$C'_{zw} = C_{zw}\cos^2\theta_0 - C_{xw}\sin\theta_0\cos\theta_0$
$C'_{z\dot{q}} = C_{z\dot{q}}\cos\theta_0 - C_{x\dot{q}}\sin\theta_0 + \hat{m}\hat{Z}_G\sin\theta_0$
$C'_{zq} = C_{zq}\cos\theta_0 - C_{xq}\sin\theta_0 + \hat{m}\hat{U}$
$C'_{m\dot{u}} = C_{m\dot{u}}\cos\theta_0 + C_{m\dot{w}}\sin\theta_0 - \hat{m}\hat{Z}_G\cos\theta_0$
$C'_{mu} = C_{mw} \sin \theta_0$
$C'_{muu} = C_{muu}$
$C'_{m\dot{w}} = C_{m\dot{w}}\cos\theta_0 - C_{m\dot{u}}\sin\theta_0 + \hat{m}\hat{Z}_G\sin\theta_0$
$C'_{mw} = C_{mw} \cos \theta_0$
$C'_{m\dot{q}} = C_{m\dot{q}}$
$C'_{mq} = C_{mq} - \hat{m}\hat{Z}_G\hat{U}\sin\theta_0$
$F_{n_{\overline{s}}} = U/\sqrt{g\overline{V}^{1/8}}$
$\hat{m} = (\nabla_H/\nabla)\hat{m}_1$

である。 ただし、 曳航体安定微係数の無次元化は、 \mathcal{V}_H を用いて行っており、また $\sum_{n=1}^{J}$ の記号は j>i のとき p=i までの総和をとることを意味するものとする。

3 水槽試験およびその結果について

前章に示した曳航体および曳航ケーブルの縦方向運動 方程式(28)式を用いて曳航体の運動特性を求めるため には、曳航体および曳航ケーブルの流力係数が必要であ る。そこで運動方程式中の流力係数の内,本研究の第1 報には示さなかった曳航体の流力係数を、水槽模型試験 により求めることにした。

試験に供した曳航体は、本研究の第1報に示したもの と同じ、想定実物(高さ:2.000m,最大直径:1.500m) の 1/4 縮尺模型であり、釣鐘形状をしている。

試験は強制運動装置を用いて行い、同装置に取り付け たスウォードの先に検力計を介して曳航体縮尺模型を取 り付けた。模型中心線の没水深度は約1m とした。強制 運動はピュアーヒービング、ピュアーピッチングおよび ピュアーサージングの3種類行い, その時模型にかかる x_B 軸および z_B 軸方向の力と y_B 軸回りのモーメント

Table 2 Results of forced oscillation tests

Cxů	-0.66	Схф	-0.04
Czů	0.09	Czģ	0.10
Cmů	-0.11	Cmq	-0.08
Cxw	0.0	Cxq	-0.02
Czŵ	-0.55	Czq	1.30
Cmw	0.07	Cmq	-0.24
Cxw	1.32	Cxuu	-0.52
Czw	-0.46	Czuu	-0.18
Cmw	-0.22	Cmuu	-0.10

NOTE: $\hat{m} = 3.53$

 $\hat{I}_{V} = 0.843$

とを計測した。試験のパラメーターは、ピュアーヒービ ング、ピュアーピッチング、ピュアーサージングの振幅 がそれぞれ 0.1m, 5°, 0.1m であり、周波数がそれぞ れ 0.12~0.7 Hz, 0.2~0.8 Hz, 0.05~0.333 Hz であ る。 模型を曳引する速度はいずれの場合も 1.286 m/sec とした。

模型にかかる力を検出するための検力計はストレンゲ ージ方式であり、その容量は2つの normal force がそ れぞれ 30kg, また axial force が 10kg である。

実験の結果得られたデータは sin 成分と cos 成分と に分け, 所定の無次元化法により整理して所要の流力係 数を求めた。その結果を、本研究の第1報で報告した曳 航体の流力係数と合わせ、とりまとめて Table 2 に示 す。スケールエフェクトは小さいことが知られているの で、Table 2 に示した値を想定実物の流力係数の値とし て以後の計算に用いることにする。

4 曳航体の縦方向運動計算結果について

前章において必要とする流力係数の値を得たので、本 章ではその結果を用い、本研究で想定した仮想的形状の 没水型曳航体の運動特性を数値計算により検討する。解 くべき運動方程式は2章に示した。本研究ではこれを, 連続型シミュレーションプログラム DDSL (Digital Dynamics Simulation Language) を用い、ルンゲ・ク ッタ法により時刻歴として解く方法を採用した。

計算の条件はシミュレーションのステップ幅 At が $0.1 \, \mathrm{sec}$, ケーブル分割数が N+1=16 である。 計算に 使用した曳航ケーブルの特性としては特に明記したもの の他本研究の第1報に示したフェアリング付ケーブルの 値 (C_D =0.22, 最大厚さ:24.6mm, 単位長当り重量: 3.9kg/m, 単位長当り容積:0.001900m³/m) を用いた。 ケーブル長は主として \hat{L}_c =800 (\hat{L}_c = $L_c/V^{1/3}$, L_c : ケーブル長, V: ケーブル総排水量)とした。 ケーブルの付加質量係数としては便宜的にケーブルの厚みと同じ直径をした円柱の値を用いたが、ケーブル付加質量係数が曳航システムの運動に及ぼす影響はほとんどないことが計算の結果わかっている。

まず曳航体を曳航する水上船が発進する場合の曳航ケーブルの挙動を計算した結果を Fig. 2 に、またその時の曳航体ピッチ角 θ_0 の時刻歴を Fig. 3 に示す。 与えた速度の時刻歴は次式である。

$$U = \begin{cases} U_e \{1 - \cos(\pi t/t_{\rm I})\}/2, & 0 \le t \le t_{\rm I} \text{ obs} \\ U_e & , & t_{\rm I} < t \text{ obs} \end{cases}$$
 (29)

ただし、 U_e : 定常曳航速度 (m/sec)、t: 時間 (sec)

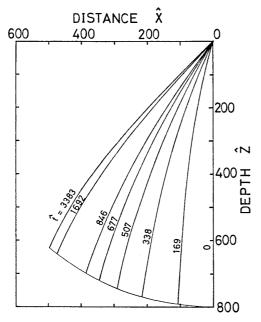


Fig. 2 Transition of towing cable configuration due to starting of a towing point $(F_{nr}=1.0 \text{ when } \hat{t}>113)$

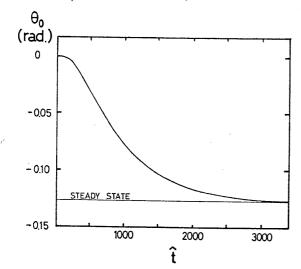
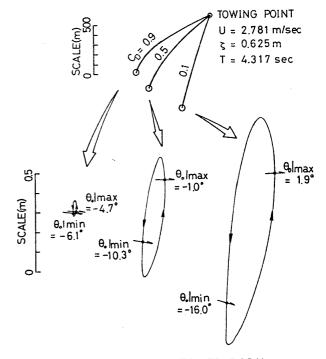


Fig. 3 Transition of towed body pitch angle due to starting of a towing point $(F_{nr}=1.0 \text{ when } \hat{t}>113)$

であり、 $t_{\rm I}$ としては実船の条件を考慮して $40 \sec$ とすることにした。

Fig. 2 および Fig. 3 から、水上船が発進する時曳航ケーブルがからまるようなことはないこと、またこの場合 $(F_{np}=1)$ にはほぼ平衝状態に達するまで $\hat{t}=3383$ $(t=1200\,\mathrm{sec})$ 要していることなどが知れる。


次に水上船が波浪などの原因により上下動した時の曳 航体の運動特性について検討する。水上船の上下動は簡 単のため正弦波的であるとし、次式で表わす。

$$z_t = \zeta \sin\left(2\pi t/T\right) \tag{30}$$

ここで ζ :上下動の振幅,T:上下動の周期= $2\pi/\omega$ である。

まず水上船が上下動した時に、曳航体と水上船との位置関係が曳航体の動揺特性に及ぼす影響を調べるためにケーブル抵抗係数 C_D の値のみを3種類変えて計算を行い、その結果得られた曳航体の運動を軌跡として表わしFig. 4 に示す。Fig. 4 から、ケーブルの抵抗係数が大きくなって曳航体が後方に流されるほど、水上船の上下動による曳航体の動揺は小さくなることなどがわかる。

曳航体の動揺特性に関する検討は、曳航体に搭載されるセンサ固有の特性に応じてなされるべきであるから、検討の対象とする縦方向運動のモードとしては Fig. 4 に示したようないわゆる変位だけではなく、一般には変位の速度なども含めるべきであろう。しかし本論文ではこの内、重要なモードの一つであるピッチングの振幅 $\bar{\theta}_0$ ($=(\theta_0|_{\max}-\theta_0|_{\min})/2$) について計算結果をとりまとめることにした。その一例を Fig. 5~Fig. 8 に示す。これ

MOTIONS OF A TOWED BODY

Fig. 4 Comparison of motions of a towed body.

Cable drag coefficient is varied

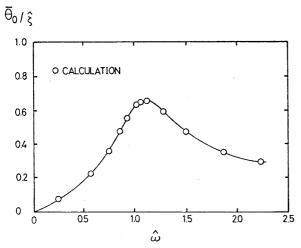


Fig. 5 Relationship between heaving angular frequency of a towing point and pitching amplitude of a towed body $(F_{n_F} = 1.0, \hat{\zeta} = 0.203)$

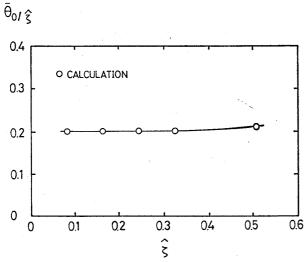


Fig. 6 Relationship between heaving amplitude of a towing point and pitching amplitude of a towed body $(F_{n_F}=1.0, \hat{T}=12.17)$

らはそれぞれ曳航体ピッチングの振幅と,曳航点上下動 周波数,上下動振幅,曳航体重心位置およびケーブル長 との関係を示したものである。

Fig. 5 および Fig. 6 から、本報で計算を行った範囲内において曳航体ピッチング振幅は、曳航点の上下動振幅に概ね比例すること、また曳航点上下動周波数にピッチングが同調する点のあることなどが知れる。Fig. 5 においてカーブが極大値を示す周波数は曳航体ピッチングの固有周波数に一致すると考えられるので、曳航体重心位置を変化させればこのカーブの特性は変化するであろう。すなわち、重心位置が下がればピッチングの復原力は増すので固有周波数は増大し、Fig. 5 のカーブは図の右側へシフトするであろうと推測される。したがって曳航点上下動の周波数が元の周波数応答カーブ極大値の右

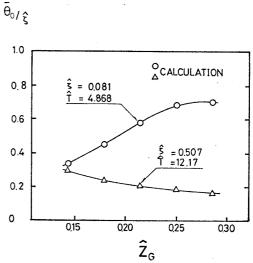


Fig. 7 Relationship between vertical position of center of gravity and pitching amplitude of a towed body $(F_{np}=1.0)$

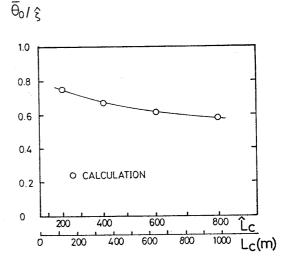


Fig. 8 Relationship between cable length and pitching amplitude of a towed body $(F_{nr}=1.0, \hat{\zeta}=0.081, \hat{T}=4.868)$

側にある場合には、曳航体重心位置を下げることによりピッチングの応答は増し、逆に左側にある場合には、重心位置を下げることによりピッチングの応答は減少するであろうと考えられる。このことを計算により示したのが Fig.7 である。また Fig.8 からはケーブル長が増せば曳航体ピッチングの振幅は減少するということがわかり、それは常識とも一致するが、その減少する割合はこの計算例の場合予想されたほど顕著ではない。

5 結 語

本報では没水型曳航体の縦方向運動について定式化を 行い、水槽実験により求められた曳航体の流力係数を用 いてその動揺特性を数値計算により明らかにした。本報 に示した計算法は水上船が上下動した場合を主として取 扱ったが、水上船が前後動した場合などを取扱うことも 可能であり、さらに他の種類の曳航システムに応用することも容易であるという特徴を持つ。本論文は、曳航体の流力係数が与えられたときの曳航特性について論じたものであるが、逆に望ましい曳航特性を得るためにはいかなる形状の曳航体を設計すればよいかという問題を解決するための一つの手がかりを与えたものでもある。

今後の研究課題として考えられることは次のような事 柄であろう。

- (1) 本計算法の実験的検証
- (2) 曳航体横方向動揺特性計算法の開発

さらに、曳航ケーブルがほぼ水平に近くなるようなコンディションを想定する曳航システムにおいては、ケーブルに働く流体力の特性が十分明らかにされているとはいえないので、その方面の研究のなされることが望まれる。

最後に、本研究に関し御助言下さった防衛庁技術研究

本部第1研究所第3部長村上俊一氏, および模型製作, 水槽実験などに御協力下さった第1研究所第3部関係各位に感謝の意を表する次第である。なお, 計算には第1研究所第1部計算機室 HITAC M-200 H を使用したことを付記する。

参考文献

- 1) 山北和之:没水型曳航体の曳航特性に関する研究 (第1報),日本造船学会論文集,第156号,(1984), pp. 209~217.
- 2) 中嶋俊夫,元良誠三,藤野正隆:係留浮体の運動 を考慮した係留ラインの動的挙動について,日本 造船学会論文集,第150号,(1981),pp.266~277.
- 3) 村上俊一:細長型没水体の縦方向運動に関する研究(第1報 運動方程式とその固有値について), 日本造船学会論文集,第138号,(1975),pp.256~ 268.