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A Calculation of the Statistical Distribution of the
Maxima of Nonlinear Responses
in Irregular Waves

(2nd Report)
by Motohiro Hineno*, Member

Summary

An approximate method is proposed to calculate the statistical distributions of the maxima
and minima of a weakly nonlinear response in irregular waves. Different from the previous
method which dealt with the same problem, the present formulation includes the effect of the
band width of the response spectrum. Therefore, the present approximation is even applicable
to the response whose spectrum is not narrow banded but arbitrarily wide banded, as may be

frequently experienced in most seakeeping problems.

First, the formulation for the quadratic nonlinear response is derived in the form expressed

by the Hermite polynomial.

Second, calculations are carried out on the probability density and the 1/z th highest ex-
pected amplitude of wave elevation. The comparisons of the calculated results with simulated
time domain results as well as experimental ones suggest that the present method may be use-

ful from an engineering point of view.

1. Introduction

In the previous paper?, it was shown that the
probability densities of maxima and minima of
a quadratic nonlinear response can be calculated
by the Rayleigh distribution multiplied by the
higher order moments of the response based on the
Vinje method?. Recently Kato and Ando® also
derived an asymptotic solution. These formula-
tions were derived with the assumption that the
spectrum of the response may be narrow banded.
Most of the problems we dealt with, however,
involves rather arbitrary wide band spectra, which
means the number of maxima is not identical
It is neces-
sary to derive a more accurate analytical method
applicable to those responses, including the effect
of band width from the point of safety and econom-
ical operation of marine structures.
this case, the formulation can be obtained by the
same approach. The joint probability density func-
tion from which the probability density of maxima
or minima is obtained can be represented by the

with the number of zero up-crossings.

Even in

joint moments of the responses, as for the narrow
band case. In the arbitrary wide band case, how-
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ever, the joint probability density function of the
response and its two derivatives must be con-
sidered, while only one derivative is needed for
narrow banded. v .

Dalzell® applied the foregoing approach to a cubic
nonlinear response including the band width,
and derived the joint probability density expressed
by the two dimensional
Through extensive study of the comparisons be-
tween the analytical results and simulated ones,
he showed that this method may be useful in
a practical sense, though it needs a cumbersome
manipulation.

Hermite polynomial.

This paper deals with the quadratic case which
will be a useful model for some nonlinear prob-
lems, and of course makes the manipulation easier
and the computation time shorter compared with
the cubic case.

First, the formulation of the statistical distribu-
tion of maxima is derived in the form expressed
by the Hermite polynomial without using the two
dimensional Hermite polynomial by means of vari-
able change.

Second, in order to examine the effectiveness
of the present method, the calculations are carried
out for the surface elevation of irregular waves
and compared with time domain results as well
as experimental ones.
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2. Formulation

2.1 General expression of the response

It is assumed in the following procedure that
the input, such as irregular waves, is a stationary
Gaussian stochastic process with zero mean. The
response to the input, such as wave induced forces
or motions of a floating structure, is assumed to
be expressed by a functional polynomial of degree
two in a time domain as follows :

z(t):f g1(D)x(t—1)dr

+a’ff 92(7y, T — 7D (t—7,)dr dr,
(1

(Limits on integrals, —oo to oo are omitted
here in this paper)
where 2(¢) : input at time ¢

2(#) : response to input

9,1(7) : linear kernel function

92(t1, 7o) : quadratic kernel function

« : small quantity parameter.

The first term of the right hand side of Eq. (1)
is for linear response, and the second for quadratic
response which is assumed to be smaller than
the linear term.

The kernel functions are related to the FRF
(frequency response function) through the Fourier
transform as follows :

1@ =5 [ Gt

9:(7y, 72>=ﬁff Gy(wy, @y) ] (2

X ei(m1r1+w2r2)dwl d(l)z
Gi@= [ g.(e)eordr

Gy (o, wz)?—ff 92(7y, Tp)e Hemteragy dr,
(3)

where Gi(w) : linear FRF

Gy (wy, @y) : quadratic FRF

o : circular frequency.
Then the first and the second time derivatives
are derived from Eq. (1).

é(t):fgl(r)a':(t—r)dr
+2aff 92070 T (E—T ) (E—7,)d7 d7,
(4
i"(t):fg,(r)éé(t—r)df
+2aff 02(7y, T E(—TDE(E—72)

+ta(t—7DE(E—7,)]drdT, (5)

where * signifies differentiation with respect to time,
t. It should be noted that the quadratic kernel

function is symmetrical in its arguments.

2.2 Joint cumulant funection

The necessary fundamental relations used here
will be explained briefly prior to the derivation
of the probability density function.

Let ¢ be the moment generating function. We
have

$= [ [[ explicOz, +0,5+012)]
X f(zy, 25, 23)d2,d2;dz, (6)
where f(z,, 2,, z;) : joint probability density func-
tion of 2z, 2z, and z;

01,04, 05 : arbitrary dummy real variables

21=2, Z,=2, z,=2Z.
Applying the Taylor series expansion to Eq.(6),
it follows that

=1+ SIS IR (0, (0™ (T)

where [, m and n are positive integers whose sum
is greater than zero. gimn is a joint moment
of the density and represented as follows :

mimn= [ [ [ aitamas £, 2, 20 dnsdzadz. (8)

In order to make the calculation easier in the
following procedure, the joint cumulant function
is defined as follows :

K=log ¢. (9>
Then substituting Eq. (7) into Eq.(9), and again
applying the Taylor series expansion, we have

K=SISI51 5 (i6,)1Gi0)m (00" (10)

where Ky is a joint cumulant of the response
and its two derivatives.

2.3 Joint probability density function

The joint probability density function can be
represented by the joint cumulants from Egq. (6)
by means of the threefold Fourier transform and
sbstituting Eqs. (9) and (10),

f(zl: 29, Zg)
=__(#)3fff e—i(ﬁl21+5222+0323)8Kd01d02d03

V4

xexp| SIS ARE (10,4 i0,)™ (10" |

tm!
X d6,d0,d0;. ar

Thus it is evident that the joint probability density
function will be obtained if we know all of the
cumulants. however, we assumed
that the quadratic term of the response is in the
order of «,0(«), and is smaller than the linear
term. Therefore Eq. (11) can be expanded in a
Taylor series and truncated at O(a).

Before applying the Taylor series expansion to
Eq. (11), the relationships between the joint cumu-

In this paper,
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lants and the FRF’s will be described.
(7), (9 and (10), the joint cumulants are repre-
sented by the joint moments as follows :

From Egs.

Ki00= 100
Koro=to10
Koo1= o0y

Kooo=togo— L1002 (variance of the response)
Kooo=ttoz0— Ho10®
Kooo= ooa— Loo1?

K101= 01— L100to01
Ki110= 10— L1ooMo10
Ko11= tto11— Lorotoos

Ka00= 300 — 3100200+ 2 100°
Koo3= Loo3— 3001 ooz +2 oo,
K01= 201~ Loo1 H200— 2L 1004101+ 2 Lo01 L1007
K 190= 1120 1000202 0104 110+ 221000107
K102= K102~ 100 Ko02—2 001 101+ 2100 K001
Koa1= os1— Moo1 Mozo—2 010 011+ 2 001 Lo10%

az

The other terms of degree three such as Ko,
K10, Kops and Ky, will not be necessary for the
calculation because these terms are related to 2z,
which will be set at zero in the calculation later.
And the other terms greater than degree three
are also not necessary because their orders are
higher than O(a).

On the other hand, the joint moments can be
tepresented by the input spectrum and the FREF’s
from Egs. (1), (3),(4d) and (5) in the same way
as in Ref.1. The present manipulation, however,
is more cumbersome than the previous work but
not different in principle. After some manipula-
tion we have the following relationships considering
the nonlinear term of O(a).

The first degree moments are

tw=a [ S@)Gy(, —0)do

13

Ho10=0 (s
Hoo1=0

where S(w) : input spectrum (double sided spec-

trum).
The second degree moments are

t300= [ S@)IGi(@)2do

toro= [ 0?S(0)]G1(@)|2dw

#ooz”—‘fw‘S(w)[Gl(a))Pdm (14)
H101=— Hoz20

4110=0

Lo11=0.

The third degree moments are

ﬂsoo=3ﬂlooﬂzoo+6“ff S(w)S(wy) 1
X G (=0 G (—0,) Gy (wy, wp) dw,dw,

:Uoos=_6afff 0?02 (0 +0,)2S(w;) S(w,)

X G1(—0 )G (—w) Gy (wy, W) dwdw,
H201=2L100 101

—ta [ @00+ 055050

XG1(—0)G (=) Gy (wy, p)dw,dw,
Hiy20= L1o6&o20

+2a [ [ @00+ 0,)50) 50y

X G (—=0)G (=) Go(wy, ) dwdw,
Kioe= Lioolooe

+2a [Tt +oD (040 +o 0]

X S(01)S(0) G (=) G (—wy)
X Gy(0y, 0y)dw,dw,
Ho21=0.

(15)
Then applying the Taylor series expansion about
a=0 to Eq. (11) and truncating at O(a), we have

f(z1, 29, 23) = Zn )3fffexp<

“E'Kozoﬁzz_"2‘K002032—K1010103—i0121

K20001

—i0222—2'0323> [1 +iK 000,

Klmn

SIS A (10 (0™ (050" | 40,0505

16)
m and # are positive integers whose
sum is equal to 3. It should be noted that the
small order components higher than O(a) must
be neglected for each cumulant in Eq. (16).
In order to represent Eq.(16) by the Hermite
polynomial, the following variables are introduced.

where [,

2,=0,cos p+0;sin ¢
T3=—0,sinp+0scos ¢

an
tan2p= 2Ks01
K00— Kooz
Thus with this notation we have

(2m)—32 -1, 2 2
fzy, 2, 23)-— VAR exp[ 54 (Koo2212+ K023

—2Km¢ﬂ9—2K2;H}+cgﬁ<§%>
o) m( 7g) + o () :(75)
+QH% >+CH< >+CH(j%>

0ot (5 ) (i ) o (75)
(g o5 ) i (7E)
+Cuth 7)1 (77Ot (77)

VI S )
18)
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where
A=K,00Kg93— K 1012
A =%K200(1 +cos2¢) +%f(002(1—cos 2¢)
+Kio18in2¢
B=%K200<1—cosz¢)+%fc0°2<1 +cos2¢)

—lesin2(p
C =zcos p+z3sing
D =—2zsinp+z3c08 ¢

Hn@c)::};f ez +ivEHndt
(Hermite polynomial)
1
C1=m[3(Ksoo+K102)COS @

+3(Kooz+ Kaop)sin @+ (Kyoo—3K02)c08 3¢
— (K03 —3K301)sin3¢]

1 .
C2=8—AQ7§[—<K300+K102)SIH¢

+ (Koos+ Kpo1)c0s 90— (K500 —3K02)5in 3¢
— (K03 —3K ;)05 3¢]

1
Ca=8_B"ij[(Ifaoo+K102)C05 p

+ (Koos+ Kao1) sin o — (Kz90—3K02)c0s 3¢
+ (K3 —3Kp1)sin3¢]

1 .
C4=24_—B7"§[—3(K300+K102)Sm 4

+3(Koos+ Ks01)c08 @+ (K300—~3K102)5in 3¢
=+ <K003—3Kzo1)cos 3¢]

C; —:/A K goc0s @

Ce= _7—31 KigoSin g

1
Ci= 2K020«/A (K 120008 @+ Kooy sin ¢)
1 .
CS:EK_OZ‘;/fC—K12°Sln(p+K°21COS(’0)
1
Cg=ZZ?/??"'—[(sz—sz)COS2§0+2K1115m2(ﬂ
+K210+K012:]
Cm-4B¢K——[(K210—K012)C05240'{-21&11151112(0
—Ky10— Koo
—1 .
1 2\/ABK = (Kp10—Ko12)sin2¢—2K4,c08 2¢]
C,.= K°3“?_:
2T 6Kop0v Kozo

It can be seen that Eq.(18) is the same result
that Cartwright and Longuet-Higgins® derived,
provided that all the quadratic terms are neglected.

2.4 Probability density funection

The probability density function of maxima can
be obtained by using the joint probability density.
Because a maximum occurs when the 1 st deriva-
tive is zero and the 2nd is negative, the expected
number of maxima per unit time lying in the
range (zy, 2;+dz;) is®

BING)J=—dz [ /(21,0 2)dz, (19)

On the other hand, the expected total number
of maxima per unit time regardless of their magni-
tudes is

E[N(—co)]= -f:f_:zaf(zl, 0, z3)dzadz,.
(20)

Carrying out the straightforward integration of
Eq. (20), it is found that all the terms of O(a)
become null which is the same result with that
Dalzell? derived for a cubic nonlinear system.
This means the expected total number of maxima
is exactly the same as in that for a linear system ;
that is, the average period between successive maxi-
ma does not change from the linear value even
though the nonlinearity of quadrature is con-

sidered. Then we have

1 Koox

Kogo
Thus the probability density function of the maxi-
ma of response to lie in the range (z;,z;+dz)
is obtained from the ratio of Eq.(19) and Egq.
D).

E[N(=)j=5— (2D

E[N(zp)]
E[N(—o)]

After some manipulation we have

F(Zl) ‘\/2 K?_oo[ {1+(821/1~€2K0023/2P1

P
2622002 p, ___l_>
+ \/Kgoo +‘\/K200 7

3}e~7}2/252+ {V/l_ez

F(zy)dz =

P P4 4
+ K2003/2 7 K2003/2 7

+ (53«/1—

Ky, P,
P,/
TRy DtV 7

X %99—2135) 772_*_«'/1"‘_"8”2‘77 —3e*K0,%2P,
200

n/é
——62-\/K002Ps}e—vzlzf e'xa/zdx] (22)1

where

Py=CEP+CES+E Ey(CoE +CHEs)

P2=3(01E12E2—C4E32E4)+C2E1(2E2E3“E1E4)
~C3E3(2E\E—EzEy)

Py=(C5—CE,—(Ce—Cy)E,—3C E,+3C,E,
+CoE—CyE,

P,=CE—C,E3—-C,E2E,+C3EE?

P,=3C,E\E;*+3C,E;E*+C,E,(E,E3—2E\E,)
+C,E (E\E,—2E,Ey)

P5:(C5——C7)E1+(C6—C3)E3—3(C151+C4E3)

——'CzEg_CSEl
E,= sylee 7—— (K 590008 ¢+ K yq,8in @)
E3= i‘;%B@ =,;/B (KZOOSIn Y— KlOlcos @)
& s=v4 ___?_.
\/Kzoo _K101 Vi-
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2
KOZO
KZOOKOOZ

It is obvious that Eq. (22) becomes the well known
result that Cartwright and Longuet-Higgins® de-
rived for the linear case if all the quadratic terms,
P; through Pg, tend to zero.

Then the probability distribution function can
be obtained from Eq. (22).

el=1— . (e : band width parameter)

P(zp= [ F(z)dz, (23)

zZ1

and the 1/nth highest expected value of maxima
is

Zyn= f " 2 F(z)dz, P (zy) (28

2n ¢ 1/n th highest maximum.
The formulations for minima also can be derived

where

in the same way as for maxima.

3. Comparison of the calculated results
with the experimental ones

With the FRF’s and the input spectrum, the
probability density, distribution functions and 1/n
th highest expected value of response can be calcu-
lated through the above formulations.. In order
to provide the examples of a quadratic response
with which the present analytical results can be
compared, the surface elevation of irregular waves
in infinitely deep water will be considered. The
reason why the wave elevation was adopted for
the comparison is that the exact FRF’s can be
obtained analytically and the nonlinearity of the
wave elevation has long been well known. The
FRF’s of the wave elevation are analytically derived
as follows? :

Gi(w)=1
1
G, (o, a)z):-ﬁ(a)lz—pa)z?)
for sum frequency component (25)
1
Go(wy, —0)2):—'_2‘!‘;‘[@12‘““)2”

for difference frequency component

where g is gravitational acceleration.
The instantaneous wave elevation at time ¢ is
also represented by a different form of Eq. (1)

as follows :
2()=Re> anG (wp)etlent ten)
m

+%R9220man[62(wm, Wp)etllentonttenten)
m n

+ G0y, —wp)etl(on—ontten—enl] (26)
where

an=+v2S(wn) don
S(wm) : linear wave spectrum (one sided spectrum)

dwm : interval of discrete circular frequencies
em @ random number equally distributed between
0 to 2nx.

The amplitudes and the circular frequencies of

the component waves are calculated from~ the 2-
parameter Pierson-Moskowitz wave spectrum divi-
ded into 50 sections between 0.1777 and 0. 9036
rad/sec in such a way that each area of the sections
is identical. It is necessary to consider 50 com-
ponent waves at least,

statistically stable data?.

in order to obtain the
It should be noted that
the statistical characteristics of wave elevation de-
pend on the range of circular frequencies of the
wave spectrum®. Therefore, the lowest and the
highest frequencies of the component waves were
decided in exactly the same values for the analytical
calculation. The simulations were conducted for
four irregular waves which have average period
of 16.1 sec and significant wave heights of 5.8 m
through 34.8 m. The simulation time is 10000 sec
in which each number of maxima and the minima
is about 800 respectively. The calculated results
are shown with the normalized maxima or minima
by using the positive square root of the variance,
namely, Ky40!’2, which is called the standard devia-
tion of the wave elevation. Figs.1 through 4
show the probability density functions obtained
from the simulations compared with the results
by the present method and also by linear theory
in accordance with ascending values of significant
wave height. It should be noted that the ordi-
nate is normalized, and the minima are shown
with reversed signs in these figures. From these
figures, it can be seen that the probability density
functions for maxima and minima have some value
at negative amplitudes, which is a well known
characteristic of a broad wide spectrum. Further-
more, those functions are asymmetrical regarding
maxima and minima ; that is, the probability for
the maxima is greater than for the minima in
the larger amplitudes and vice versa in the smaller
amplitudes. This tendency becomes more recogniz-
able as the wave height becomes larger, which

is consistent with the fact we experienced. The
present analytical results show fairly good agree-
ment- with simulated ones, although the present
ones have some negative value at larger amplitudes
in the highest one as seen in Fig.4. 1/nth highest
expected amplitudes for the maxima becomes larger
than for the minima as shown in Figs.5 through
8. The agreement between the present approxima-
tion and the simulated results is good except for
the highest one. For the highest waves which
could not be occured in actual, the present method

does not explain well the statistical characteristic
of the simulated results in relatively large value

of n. It is, however, confirmed that the present
method is applicable to the surface elevation of
irregular waves even for considerably high waves.

The other comparison between the present meth-
od and the experimental results is conducted
to examine the applicability of the present method
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Fig.9 Relation between the band width
parameter ¢ and statistical values
of maxima or minima

for several values of band width parameter. The
statistical characteristics of irregular waves gene-
rated in a experimental tank have been investigated
in detail by Takezawa and Kasahara®. One of
their studies is on the relation of band width
parameter and the 1/nth highest expected wave
amplitudes which are maxima and minima, shown
in Fig.9. As may be noted, the analytical results
of the experimental data are denoted by white
circles for maxima and black ones for minima.
The solid line shows the calculated ones by linear
theory, taking into account the effect of band
width parameter, and the dashed line shows the
results calculated also by linear theory where the
band width parameter is zero. In order to com-
pare with these results, the calculations were car-
ried out by two methods including the nonlinear
effect. One is by the present method, shown by
squares. The other is by the previous method
which was derived for narrow band spectrum,
shown by triangles. It can be seen that the cal-
culated ones by the previous method are distributed
around the dashed line.
the other hand, are distributed around the solid
line, which means that the present approximation
includes the effect of the band width parameter
correctly. Different from the calculated results
with the assumption of narrow band, the present
method explains reasonably well the experimental
ones. From this comparison, it can be seen that
the present method is applicable to the weakly
nonlinear problem whose spectrum is arbitrarily
wide banded, and is a useful approach at least
to the irregular waves in most cases of engineering
interest. This method will be available for other

The present results, on

responses. For example, the low frequency mo-
tion of a semisubmersible in irregular waves, one
of the typical nonlinear responses in seakeeping
problems, will be explained by the present formu-
lation. The quantitative accuracy of the present
method depends on the strength of the nonlinearity
of the problem. The stronger the nonlinear com-
ponent, it may be necessary to take into account
the higher order terms in the derivation which
will bring a much more cumbersome manipulation.
It will be a further study for the present method
to investigate the applicability to the other non-
linear problems and the relation with the extent
of nonlinearity.

4. Concluding remarks

An approximate method to calculate the statisti-
cal distribution of a quadratic nonlinear response,
taking into account the band width of the spec-
trum, was proposed. The formulation was derived
in the form expressed by the Hermite polynomial
without using the two dimensional Hermite poly-
nomial. The calculations were carried out for the
elevation of irregular waves and compared with
the simulated and the experimental results. The
main conclusions of the present work are sum-
marized as follows :

(1) The asymmetrical distributions of the max-
ima and the minima of a weakly nonlinear re-
sponse can be obtained by the present method
with the input spectrum and the frequency response
functions of up to 2nd order.

(2) The present method explains more accu.
rately the statistical distributions of a weakly non-
linear response whose spectrum is arbitrarily wide
banded than the previous approximate method with
the assumption of narrow band.

(3) The average period between successive max-
ima for the quadratic response is identical to
the one for a linear case.

(4) The statistical properties of the irregular
waves in deep water, such as probability densities
and 1/n th highest expected values of the maxima
and the minima, may be correctly calculated by
the present method.

It is necessary to investigate the applicability
of the present method to the other nonlinear re-
sponses and to study whether this method can
be useful even to relatively stronger nonlinear
responses.
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