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ACalculation of  the Statistical Distribution

         Maxima  of Nonlinear Responses

                  in Irregular Waves

                        (2nd Report)

of  the

by MotohireHineno*,Member

                                   Sllmmary

   An  approximate  method  is propesed  to calculate  the  statistical  distributions of  the  maxima

and  minima  of a  weakly  nenlinear  response  in irregular waves.  Different from  the  previeus
method  which  dealt with  the  same  problem,  the  present  formulation includes the  effect  of  the

band width  of  the  response  spectrum,  Therefore, the  present approximation  is even  applicable

to the  response  whose  spectrum  is not  narrow  banded but arbitrarily  wide  banded, as  may  be
frequently experienced  in most  seakeeping  problems.

   First, the  formulation  for the  quadratic  nonlinear  response  is derived in the  form  expressed

by the'Hermite  polynomiaL

   Second, calculations  are  carried  out  on  the  probability  density and  the  11n th  highest ex-

pected  amplitude  of  wave  elevation.  The  comparisens  of  the  caleulated  results  with  simulated

time  domain results  as  well  as  experimental  ones  suggest  that  the  present method  may  be use-
fu1 from  an  engineering  polnt of  view,

             1. Introduction

  In the  previous' paperi),  it was  $hewn  that the

prebability  densities of  maxima  and  minima  ef

a  quadratic nonlinear  response  can  be calculated

by the  Rayleigh  distributien multiplied  by the

higher  order  mornents  of  the  response  based on  the

Vinje method2).  Recently  Kato  and  Ando3) also

derived an  asymptetic  solution,  These  formula-
tlons  were  derived with  the  assumption  that  the

spectrum  of  the  respense  may  be narrow  banded,
Most  of the  problems  we  dealt with,  however,

involves rather  arbitrary  wide  band spectra,  which

means  the  number  of  maxima  is not  identical

with  the number  of  zero  up-crossings,  It.is neces-

sary  to derive a more  accurate  analytical  method

applieable  to those  responses,  including the  effect

of  band width  from the  point of  safety  and  econom-

ical operation  of  marine  structures.  Even in

this case,  the  formulation can  be obtained  by the

same  approach.  The  jeint probability density func-
tion  from which  the  probability  density of  maxima

or  minima  is obtained  can  be represented  by the

joint moments  of  the  responses,  as  for the  narrow

band case. In the  arbitrary  wide  band case,  how-
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ever,  the  joint probabillty  density fttnction of the

response  and  its two  derivatives must  be con-

sidered,  while  only  one  derivagive is needed  for
narrow  banded.

  Dalzel14] applied  the  foregoing  approaclt  to a cubic

nonlinear  response  including the  band width,

and  clerived the  joint probability  density expressed

by the  two  dimensienal  Hermite  polynomial.
Through  extensive  study  of  the  comparisons  be-
tween  the  analytical  results  and  simulated  ones,

he showed  that  this method  may  be useful  in

a  practlcal sense,  though  it needs  a cumbersome

manipulation.

  This  paper deals with  the  quadratic case  which

will  be a  useful  model  for some  nonlinear  preb-
lems, and  of course  makes  the  manipulation  easier

and  the  cornputation  time  shorter  compared  with

the  cubic  case.

  First, the  formulation  of  the  statistical  distribu-

tion  of  maxima  is derived in the  form  expressed

by the Hermite polynomial  without  using  the  two

dimensional Hermlte  polynomial  by  means  of  vari-

able  change.

  Second,  in order  to examine  the  effectiveness

of  the  present  method,  the  calculations  are  carried

out  for the  surface  elevation  of irregtt]ar wayes

and  compared  with  tirne domain  results  as  weli

as  experimental  ones.
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              fG,(to)e2"Tdto I
                   ffG,(tob02) i                   '

  Gi(to)=fgi(T)e-tmTdr

  G2(Ob W2)=ff  g2(vl, r2)eLt(OM+tu2r,)drldT2

where  Gi(to) : linear FRF

       C2(a)pa)2) : quadratic FRF

       te : circular  frequency.

Then  the  first and  the  second  time

are  derived from Eq, (1),

  2(t)=fgr(Daf(t-T)dT

       +2  a:ff  g,(Tl, T2)X(t-Ti)  rk (t-r

      f         giCT)di(t-r)dT

       +2aff

             2. Formulation

  2.1 General expression  of  the  response

  It is assumed  in the  following procedure  that

the  input, such  as  irregular waves,  is a  stationary

Gaussian  stochastic  process with  zero  mean.  The
response  to the  input, such  as  wave  induced  forces
or  motions  of  a  floating structure,  is assumed  to

be expressed  by  a functional polynomial  of  degree
two  in a  time  domain  as  follows:

  z(t)=fg,(T)x(t-T)dv                    .

       +`Yff  g2(Ti, T2)x(t-ri)x(t-r2)drrdT2

                                     (1)

  (Limits on  integrals, -oo  to eo  are  omitted

here in this paper)
where  xCt):input  at  timet

       z(t)  : response  to input
       gi(T):linear  kernel function
       g2(Ti, r2)  : quadratic  kernel function

       a  : small  quantity parameter.

  The  first term  of  the  right  hand side  of  Eq. (1)
is fer linear respense,  and  the  second  for quadratic
response  which  is assumed  to be smaller  than

the  linear term.

  The  kernel functions are  related  to the  FRF

(frequency respense  function) through  the  Fourler
transform  as  follows:

            1
     gi(T)=
           2rr

     g2(Ti,r2)=tstrr2  
(2)

              xet(tuITI+w2r2)ddildtu2

(3)

derivatives

                                  2)dTidT2

                                     (4)

  i(t)=

              g2(rl,r2)[th(t-ri)th(t-72)

       +X(t-Ti)di(t-T2)]dTidT2 (5)
where  

'
 signifies  differentiation with  respect  to time,

t. It should  be noted  that  the  quadratie kernel

function is symrnetrical  in its arguments,

  2.2 Joint cumulant  function

  The  necessaTy  fundamental  relatiens  used  here
will  be explained  briefly prior to the  derivation
of  the  probability  density function.

  Let ip be the  moment  generating  function. We
have

       di=:fffexp[i(e,z,+e,z,+e,z,)]
          Xf(ib  z2, z3)d2ida2dz3  (6)
where  f(2b 22,z3)  : joint probability density func-
                tion  of  zi, z2 and  z3

      eJ, eb e3 : arbitrary  dummy  real  variables

      Zl!e,  z2=-2,  z3i2t,

Applying  the  Tayler  series  expansion  to Eq. (6),
it follows that

   gS-i+:i]7.;l] £#iT:! (ie,)t(io,)m(ie,)n (7)

where  l,m  and  n  aie  positive jntegers whose  sum

is greater than  zero,  "imn  is a  joint moment

of  the density and  represented  as  foHows :

  ptimn=fff2iiz2Mz3nf(2i,z2,a3)dzidz2dfi3.  (8)

  In erder  to mal[e  the  calculation  easier  in the

following procedure,  the  joint cumulant  function
is defined as  follows :

                 K=log  ip, (9)
Then  substituting  Eq. (7) into Eq. (9), and  again

applying  the  Taylor  series  expansion,  we  have

               Kemn

     
K=

 li])}l};l] i!m!.! (iei)i(iO2)m(ie3)n (io)

where  Ktmn  is a joint cumulant  of  the  response

and  its two  derivatives.

  2.3 Joint probability  demsity  function
  The  joint probability  density function can  be
represented  by the joint cumulants  from  Eq. (6)
by means  of the  threefold  Fourier  transform  and

sbstituting  Eqs, (9) and  (10),

  f(zt, a2, z3)

     =tst  
rr)3

 fff e-i{eier+e2t2+e3Z3)eKdelde2de3
     ==  (2;)a fff e'i(eJtr+e2t2+e,t3)
       xexp[\;l]li] i51i?.n! (ie,)i(ie2)m(ie3)n]

       xdeide2de,.  (11)

Thus  it is evident  that  the  joint probabiiity density
function will  be obtained  if we  know  all ef  the

cumulants,  In this paper,  however, we  assumed

that  the  quadratic term  of the response  is in the
order  of a,O(cr),  and  is smaller  than  the  Iinear
term,  Therefore  Eq.(11) can  be expanded  in a

Taylor  series  and  truncated  at  O(cr).

  Before  applying  the  Taylor  series  expansion  to

Eq. (11), the  relationships  between the  joint cumu-
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lants and  the FRF's wijl  be described. From  Eqs.

(7),(9) and  (10), the  joint cumulants  are  repre-

,sented by the  joint moments  as  follows :

Kioo=Pioo

Keio==lteTo
Koos=ptooi

K2oe =g2oo-"iooZ  (variance of  the  response)

KoEo=seo2o-Ltoloa
Kooe:=ptee2-ptoe:2

Klol=ptlol-fllooPool

Kllo=ptilo-plooptolo

Koll==ptoll-"oloptoo:

K3oo==U3oo-3"ioopt2oo+2yioo3
Koo3=Uoo3-3ptoeipteoz+2"eei
K2oi==P2eiNPooi"2oo-2"ioogioi+2ptooiptioo2

Kt2o=pti2o-"ioopto2oh2psoioptiio+2paioo"oio2

Kio2=ptro2HptioePoo2-2geoeiptioi+2P:oo#ooi2
Kom=Sto2zr"ooipte2o-2ptoiepto"+2geootgoto2･

                           (12)
'The

 other  terms  of  degree three  such  as  Ko3e,
K2ro,Koi2 and  Kiri will  not  be necessary  for the

･calculation because these  terms  are  related  to z2

which  will  be set  at  zero  in the  calculation  later.

And  the  other  terms  greater than  degree three

･are also  not  necessary  because their  orders  are

higher than  O(a).

 On  the  other  hand, the  joint inoments  can  be

represented  by the  input spectrum  and  the FRF's
'from

 Eqs.(1),(3),(4)  and  (5) in the  same  way

as  in Ref.1, The  present  manipulation,  however,
is more  cumbersome  than  the  previous  work  but
not  different in principle. After some  manipula-

tion  we  have the  following relationships  considering

the  nonlinear  term  of  O(cr).

The  first degree moments  are

    :.
i

::,II/,

ev,fS(di)C2(0･-tu)dto

 l (,,)

'where
 S(to):input  spectrum  (double sided  spec-

'trum).The

 seeond  degree moments  are

      pt,,,=fS(o)[C,(to)[Zdtu

      pto2o=fto2S(to)IG,(to)g2dto

      ptlol=-pto2e

      #HO=O

      "Oll=O.

The  third  degree moments  are

 Ltsoo=3stloaxl2oo+6affS(wi)SCa]2)  1
     XGi(mtui)Gi(-to2)G2(tobtoz)dtoidto2  1

ptoe3=-6evfftu12to22(to1+toD)2S(toi)S(to2)

    XGr(-toi)Gi(-di2)G2(tubto2)doidtoz

Lt2oi=2Itieoltni

    
-4.JY(to,2+tu,di2+to,2)S(ni,)S(o,)

    xG,(-to,)G,(-tu2)G,(to,,to,)ddi,dto,

U120:=iUIOOU020

    +2a.(lf(ldi2+toito2+tu22)S(tu))S(tu2)
    XGi(-toi)Gi(mto2)C2(toi,wa)dtoidto2

ltle2=ptlooptoo2

    +2cuff[(to,E+u)2:)(ol+to2)2+tu12w22]
    xS(to,)S(to2)Gi(-dii)Ci(-W2)

    xG2(w,,to2)dtu,dw,

Atom=O.

                           (15)
Then  applying  the  Taylor  series  expansion  about

a=O  to Eq. (11) and  tTuncating  at  O(a),  we  have

 f(zb zb  z3)=  (2;)3 JIflf exp(--}  K2ooai2

   --}-Ko2oe22--llKoo2e32-KlolO!e3-ielzl

   
-ie2:2-iO323)[1+iK,,,e,

   +>i]X;I] iE/ ;i?/i.".i (ie,)i(ie,)m(ifi,)n]de,de,de3

                           (16)
where  l, m  and  n  are  positive  integers whose

sum  is equal  to 3. It should  be notecl  that  the

small  order  eomponents  higher  than  O(a)  must

be neglected  for each  cumulant  in Eq. (16).
 In order  to represent  Eq. (16) by the Hermite
po]ynomial,  the  following variables  are  introduced.

       Itttt,t
-il9iSl'Ig+I

S

I,lc

£
op

,

se ] a7)

Thus  with  this notation  we  have

f(zi, zb  z3)  := 
(v2i)K-ii

 exp[  iS (Koo2zi2+K2ooza2

  "
 2Kioiiizs) 

-
 2ft2o22o ] [1 +CiH3  (-t')

  +C,H,(t-A--)ll,(t-D-B-)+c,H,(vC-A.)H,(7DrB-)

  +  c, H, (7t) +c,H,  (7E-A-=) +c,  ff, (-t-)
  +c,H,(-vC--A-)H,(7ft-tst)+c,H,(7D-B-)

  XH2(7tf}';liE/,)+CgH2(vC-A')Hi(vii'l'k,;,)

  +Cioff2<lr'D=B=)H;(-v-tt-2,T,)+CiiHi(7t-)

  xH,(l7D:1-B-)H,(Ittt-,-s)+Ci2H3(ztillt-;s)]

                         (18)
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where

　d ＝ K2。oKeo2
− KiOi2

A − tK・・ （・＋… 2・）・去K … （・一・麟 ）

　　　 →
一κ lolsin2 守7

・ 一 去… （1− … 2q）・ 静 ・ ・（・＋ … 2ep）

　　　 − KiOisin2呼ワ

　 C ＝ a
且
cos 幹十 z3sin 甲

　 D ＝ 　
− Ztsinq ＋ Z3C 。SV

E
・ω ＝ 纛∫・

一
・
2

＠ ＋ iV2
’
t）

ndt

　　　　　　　　　　　 （Hermite 　PQIynom 三aD

・
・
−

tJ。Vtt［・（K ・・ ＋ Kt
・・）… O・

　　　 ＋3（K 。。3＋ K2
。エ）sin 　OP＋ （Kso 。

− 31（102）cos 　39

　　　
−

（Koo3− 3ic20
！）sin 　3ψ］

・
・
一諭雪 ［

一
（Kaoo十 Ks ）・・叩

　　　 十 （Koo3十 K20i）cos ψ
一（1（3DO

− 31（lo2）s工n 　397

　　　
−

（K 。。3
− 3K

，。、）cos 　3　q］

・
・
一諭 万〔（κ 3・ ＋ Kl

・・）・…

　　　
一
ト（Koo3一ト1（20ユ）sin ψ

一
（Kaoo− 3KIOE）cos3 ψ

　　　＋ （Ke 。 3
− 3K2ei）sin39 コ

　 　 　 　 　 1
C4；

248 お
［− 3（κ 1・・＋ κ

，・・）・i・ q

　　　−←3（Koo3一トK201）cos 　g7十 （K300− 3Klo2）sin 　3  

　　　 ＋ （Ko。 3
− 3K ， 。 エ）c。s　39］

・
・

一 瀞 1・ C・・ OP

・
・
一一謡 ・・

… OP

・・
一

、。
．論 （Kl・・c… ＋K … s ・・ の

C
・
−
2。

．訪 （
− K

… s… ＋ K …
c・…

・
・
一纛 瀟

匚（K …
− K

… ）… 2・ ＋・K
・ ll ・i・ 29

　　　十 K2iO十KOL2］
　 　 　　 　 ＿1

Ci
・

＝

4碑 賑
［（K21。

一κ
… ）c°s2q ＋2K

・nsin2ep

　　　
− 1く2二厂

KOi2］

　 　 　 　 　 ＿1
Cll＝＝

2、
／陋 編

匚（Kno一κ ・ 12 ）si” 2va− 2κ mc °s 刎

… 一

，。
。瓢薦

・

It　 can 　be　 seen 　that 　 Eq．（18） is　 the 　 same 　 result

that 　 Cartwr三ght 　and 　Longuet−Higgins5｝　derived，
provided 　that 　all　the 　quadratic　terms 　are 　neglected ．

　2．4　Probability　density 　 function

　The 　probability 　 density　 function　 of 　 maxima 　 can

be　obtained 　by　using 　the 　joint　probabUity　density．
Because 　 a　 maximum 　 occurs 　 when 　 the 　 l　st　 deriva，
tive 　is　zero 　and 　the 　2　nd 　is　negative ，　the 　expected

number 　Qf 　rnaxima 　per 　unit 　t［me 　lying　in　the

range 　（91，21
一
トdzl）　is61

・［・ （・ 1）］一一d・
・∫ン （・

・
・… 馬 （・9）

On 　 the 　 Qther 　 hand ，　 the　 expected 　 to亡a ［ number

of 　 rnaxima 　per　 unit 　 time 　 regardless 　 of 　their 　 magnl −

tudes 　 is

　E ［N ← ・ ・ ）］一一
∫二此 ・・∫（・ ・　O，　2 ・）d・ ・d・ ，・

　　　　　　　　　　　　　　　　　　　　　　　 （20）

　Carrying　out 　 the　 straightforward 　 lntegra亡ion　 of

Eq、（20），　it　正s　fQund 　that 　all　the 　terms 　of 　O （α ）

become 　 null 　 which 　 is　 the 　 same 　 result 　 with 　 tha ヒ

Dalzell4）　derived　for　a 　cubic 　non1 量near 　system ．

This エneans 　 the 　 expected 　 totai　 number 　 Qf 　 maxlma

iS　eXaCtly 　the 　same 　as 　in　that 　f。 r　a　linear　syStem ；

thaL 　is，　the 　average 　period 　between 　successive 　maxi −

ma 　 does　 noL 　 change 　 from 　 the 　 linear　 value 　 even

though 　th 巳　nonlinearity 　of 　quadrature 　is　con −

sidered ．　 Then 　 we 　 have

　　　　　　　E ［N （
一

・・ ）］一 毒畿ll・　 （2・）

Thus 　the 　probability　density　function　 of 　the 　maxl −

ma 。 f　 respoDse 　 to　 lie　 in　 the 　 range （z
且，zt ＋ dzi＞

is　o1 ）tained 　from 　the 　rat 三〇 　〇f　Eq ．（19）　and 　Eq ．

（21）．

　　　　　　　　　　　　　 E ［N （Xl ）］
　　　　　　　 F （al）dXl＝

　　　　　　　　　　　　　E ［N （
− oo ）］

After　 some 　 manipulation 　 we 　have

・（・1）一
、，詣痂［・｛・＋（・

・Vl− ・
・
… 23

・2P
・

　　　　・ … 舞 ・
・＋煮。 ）・

　　　　・ 論 、2 η
・

｝・

−vt／2・Z
＋｛・レ ・

・

論訓

　　　　・（… レ ・
・

舞 ・
・＋ ・F ・ 器

　　　　一・
・

齋 ・
・）・

・
＋ … 3 ・

一・・
・
… 2

… P
・

　　　　　
一蹠 …

P6｝e
一卿 ・fl

δ

・
一・ 2

岡
where

　P
、
＝C

、
EL3＋ C 、E ，

a
＋ E ，E ，（C2E 、 ＋C3E3）

（22＞

P2＝＝3（C ユ
E12E2 − C4E32E4 ）十 C2E1 （2E2Es − EtE

，）
一C3E3（2E ，

E
，
− E

，
E3）

P3＝（C5− C7）現 一（C6− C8）E ，
− 3C 、E2 ＋ 3C4E 、

　　 十 C2E
‘
− C3E2

P，
＝ C 、E23− C4Et3− CzE22E4＋ C3E2E42

P
，
＝3C

且
EIE22＋ 3C

，
E3E

，

2
＋ C

，
E

，（E ，
E

，
− 2EIE

、）

＋ C3E
，（EIE4 − 2E

，
E3）

P5＝＝ （C5− C
？）El一ト（C6− C8）E3 − 3（C 且

Ei 十 C
毛
E3）

一C2E3− CsEi

E1一等咢
E・

一 響
　 　 ε 1

η＝

π 売；

・
・噛 （K ・ ・… sq ＋ K1

・ IS ・・ の

E ・
一 ゐ

．
（K ・・ ・…

− K … C… 〉

・一無 一纛

N 工工
一Eleotronio 　Library 　
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the  component  waves  are  calculated  frem-the  2-

pararneter  Pierson-Moskowitz  wave  spectrum  divi-
ded into 50 sections  between O,1777 and  O.9036

radfsec  in such  a  ";ay  that  each  area  of  the  sections

is identical. It is necessary  to consider  50 com-

ponent  waves  at  least, in order  to obtain  the
statistically  stable  data7). It should  be noted  that

the  statistieal  characteristics  of  wave  elevation  de-
pend  on  the range  of  eircular  frequeneies of  the

wave  spectrum8}.  Therefore,  the  lowest and  the

highest frequencies of  the  cornponent  waves  were

decided in exactly  the  same  values  for the  analytical

calculation,  The  simulations  were  conducted  for
feur irregular waves  which  have  average  period
of  16,1 sec  and  significant  wave  heights of  5.8m

through  34.8rn. The  simulation  time  is leOOO  sec

in which  each  nuinber  of  maxima  and  the  mmima

is about  800 respectively,  The  calculated  results

are  shown  with  the  normal{zed  maxima  or  minima

by using  the  positlve square  roet  of  the  variance,

namely,  K2ooii2, which  is called  the  standard  devia-
tion  of  the  wave  elevation,  Figs.1 through  4

show  the probability  density functions obtained

from the  simulations  compared  with  the  results

by  the  present method  and  also  by  linear theery

in accordance  with  ascending  values  of  significant

wave  height. It should  be  noted  that  the  ordi-

nate  is normalized,  and  the  minima  are  shown

with  reversed  signs  in thes.e figures, From  these

figures, it can  be seen  that  the  probability  density
functions for maxima  and  minima  have some  value

at  negative  amplitudes,  which  is a  well  known

characteristic  of  a broad wide  spectrum.  Further-

more,  those  funbtions aTe  asymmetrlcal  regarding

maxima  and  minima  ; that  is, the  probability for
the  maxima  is greater than  for the  minima  in

the larger amplitudes  and  vice  versa  in the  srnaller

amplitudes.  This  tendency  becomes more  recognTz-

able  as  the  wave  height becemes Iarger, which

is consistent  with  the  fact we  experienced.  
'The

present. analytical  results  show  fairly good  agree-

ment-with  simulated  ones,  although  the  present

ones  have some  negative  value  at  larger amplitudes

in the  highest one  as  seen  in Fig. 4. 11n th highest

expected  amplitudes  for the  maximE  becomes Iarger
than  fer the  minima  as  shown  in Figs.5 through

8. The  agreement  between  the  present approxima-
tion  and  the  simulated  results  is good  except  for

the highest one,  For the  highest waves  which

could  not  be occured  in actuaL  the  present method

does not  explain  we]I  the  statistical  characteristic

of  the  simulated  results  in relatively  Iarge val-e

of  n.  It is, however,  confirmed  that  the  present

method  is applicable  to the  surfaee  elevation  of

iTregular waves  even  for considerably  high waves.

  The  other  cemparison  between  the  present meth-
od  ･and the  expeiimental  results  is conducted

to examine  the  applicability  of  the  present method

of  the  Maxima  of  Nonlinear Responses

         Ko2o2
               , (e:band width  parameter)  s2=Z-
        K!ooKeo2

It is obvious  that  Eq. (22) becomes the  well  known
result  that  Cartwright  and  Longuet-Higgins5j  de-
rived  for the  Iinear case  if all the  quadratic terms,

Pi through  P6, tend  to zero.

  Then the  probability  distr{bution function can

be obtained  from Eq, (22).

            P(zi)=LTF(gi)dgi  (23)

and  the  11nth  highest expected  value  of  maxima

is

          z'i,n:=J):ziF(zi)dzilP(zn)  (24)

where  zn:IIn  th highest maximum.

  The  fermulations  for minima  also  ean  be derived
in the  same  way  as  for rnaxima.

 3. Comparison of  the calculated  results

     with  the experimental  enes

  With the  FRF's  and  the  input spectrum,  the

probability  density, distribution functions andi  lln

th highest expected  value  of  response  can  be calcu-
Iated thTough  the  above  formulations.. In order

to provide  the  examples  of  a quadratic response

with  which  the  present analytical  results  can  be

compared,  the  surface  elevation  of  irregular waves

in infinitely deep water  will  be considered.  The

reason  why  the  wave  elevation  was  adopted  for
the  comparison  is that  the  exact  FRF's  can  be

obtained  analytically  and  the  nonlinearity  of  the

wave  elevation  has long been well  known. The
FRF's of  the wave  elevation  are  analytically  derived

as  followsi):

 G,(to)ml
            1
 G2(to1, w2)  =              (to12+ldz2)
           2g

   for sum  frequency cemponent

               1
  C2(tui, -  tu2) =]  -                 lw12-tu,21
               2g

   for difference frequency  component

whete  g  is gravitational  acceleration.

  The  instantaneous wave  elevation  at

also  represented  by a  different form
as  follows ;

  i(t)=ReZa.Gi(to.)et(tsntt+em)
         m

   +1
     2 mn

   +G2(tum,-tun)et{(mm-"n)e+ £ nt-en}]

where

   am=V2S(tum)dmm

S(wm):Iinear wave  spectrum

 dtom : interval of  discrete circular

       Oto2z.

The  amplitudes  and  the  cireu]ar

(25)

time  t ls

of  Eq,(1)

ReZZaman[G2(tom,a)n)et{(wn+wn}t+Em+sn}

                              (26)

                      (one sided  spectrum)

                           frequencies
em  : random  number  equally  distributed between

                           frequencies ef
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  Relatien between  the  band  width

  parameter  e and  statistical  values

  of  maxima  or  minima

 values  of  band width  pararneter. The

characteristics  of  irTegular waves  gene-

experimental  tank  have been investigated
by Takezawa  and  Kasahara9). Olle of

    is on  the relation  ef  band  width

 and  the  11nth  highest expected  wave

 which  are  maxima  and  minima,  shown

 As  may  be noted,  the  analytical  results

          data are  clenoted by whlte

 maxima  and  black ones  for minima.

Iine shows  the  calculated  ones  by Iinear
     into account  the  effect  of  band
       and  the  dashed line shows  the

       also  by Iinear theory  where  the

  parameter  is zero.  In order  to com-

these  results,  the  calculations  were  car-

  two  methDds  including the  noniinear

  is by  the  present method,  shown  by

    other  is by the  previous  method

  derived for narrow  band spectrum,

triangles,  It can  be seen  that  the  cal-

  dashed line. The  present  results,  on

 hand, are  distributed around  the solid

  means  that  the  present approximation

   effect  of  the  band  width  parameter
 Different frem the  caleulated  results

      
'
 of  narrow  band, the  present

      reasonably  well  the experimental

   this eomparison,  it can  be seen  that

  method  is applicable  to the  weakly

problern whose  spectrum  is arbitrarily

    and  is a  useful  approach  at  least

     waves  in most  cases  of  engineering

This method  will  be available  for other

responses,  For  example,  the  Iow  frequency  mo-

tion  of  a  semisubmersible  in iTregular waves,  one

of  the  typical  nonlinear  responses  in seakeeping

problems,  will  be explained  by the  present  formu-
Iation. The  quantitative accuracy  of  the  present

method  depends on  the  strength  of  the  nonlinearity

of  the  problem.  The  stronger  the  nonlinear  com-

ponent, it may  be necessary  to take  into account

the  higher  order  terms  in the  derivation which

wi11 bring a  much  more  cumbersome  manipulation.

It will  be a  further study  for the  present  method

to investigate the  applicability  to the  other  non-

linear problerns  and  the  relation  with  the  extent

of  nonlinearity.

         4. Concluding remarks

  An  approximate  method  to calculate  the  statisti-

cal  distribution of  a  quadratic nonlinear  response,

taking  into account  the  band width  of  the spec-

trum,  was  proposed. The  formulation  was  derived
in the  form  expressed  by the  Hermite  polynomial
without  using  the  two  dimensional Hermite  poly-

nomial,  The  calculations  were  carried  out  for the

elevation  of  irregular waves  and  compared  with

the  simulated  and  the  experimentai  results.  The
main  conclusions  of  the  present work  are  sum-

marized  as  follows :

  (1) The  asymmetrical  distributions of  the  max-

irna and  the  minima  of  a  weakly  nonlinear  re-

sponse  can  be obtained  by  the  present  method

with  the  input spectrum  and  the  fiequency response
functiens of  up  to 2nd  order,

  (2) The  pre$ent  method  explains  rnore  accu.

rately  the  statistical  distributions of  a  vveakly  non-

linear response  whose  spectrum  is arbitrarily  wide

banded than  the  previous  approximate  method  with

the  assurnption  of  narrow  band,

  (3) The  average  period between suc ¢ essive  max-

ima  for the  quadTatlc  response  is identical to

the  one  for a  linear case.

  (4) The  statistical  properties of  the  irregular

waves  in deep water,  such  as  probability densities

and  11n th highest expected  values  of  the  maxima

and  the  minirna,  may  .be coTrectly  caleulated  by
the  present method.

  It is necessary  to investigate the  applicability

of  the  present method  to  the  other  nonlinear  re-

sponses  and  to study  whether  this method  can

be useful  even  te relatively  stronger  nonlinear

responses,

            Aeknowledgernent

  The  author  is grateful  te  Dr. Y. Yamanouchi,
Technical Adviser  and  Dr. M.Kobayashi,  Head

of  Ocean  Engineering  ReseaTch Division of  Aki-

shima  Laboratory, Mitsui Engineering &  Shipbuild-

ing Co., Ltd. for their  stimulating  discussions,



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  ofNavalArchitects  of  Japan

  A  Calculation of  the  StatisticaT Distributionoi the M                                  183

   Response of  a  Nonlinear  System,  U. S. Naval

   Academy, Report No,EW-22-84  (Oct. 1984).

5) Cartwright,D,E.  and  Longuet--Higgins,M

   S.: The  statistical  distribution of  the  maxirna

  ,61 a  random  function, Proa of  the  Royal

   Society, A, Vol.237 (1956).
6) Price,W,G, and  Bishop,R.E.D.:  Probabilis-

   tic Theory  of  Ship  Dynamics,  Chapman  &

   Hall Ltd. (1974).
7) Goda,Y.:  Numerical  Experlrnents  on  Wave

   Statistics with  Spectral Simulation,  Rept.

   ef  the  Port &  Harbour  Res. Institute, Vol.

   9, No,3  (Sept. 1970).

8) Takezawa,S.  and  Wakiya,H,: On  the  Modi-

   fied Truncated  Waye  Spectra for the  Artificial

   Irregular Water  Wave  Generation,  Jou= of

   the  Soc. of Naval Arch, of  Japan, Vol,149

   (June 1981),
9) Takezawa,S. and  Kasahara,A,: On  StatistF

   cal  Propertles ef Artificial Irregular Water

   Waves, Jour. of  the  Kansai  Soc, of  Naval

   Arch., Japan, No.195 (Dec, 1984),

axima  of  Nonlinear  Responses

He  is also  grateful  to  Prof. T4kezawa of  Yoko-

hama  National University and  Mr. Kasahara ef

University of  Tokyo  for allowing  him to quote

their  experimental  results.

             
'
 References

 1) Hineno,M.:  A  Calculation of  the  Statistical

     Distribution of  the  Maxima  of  Nonlinear

     Responses  in Irregular Waves, Jour. of  the

     Sec. of  Naval Areh. of  Japan, Vol.156 (Dee.
     1984).

 2) Vinje,T.: On  the  Calculation of  Maxima

     of  Non--lineaT Waveforces and  Wave  Induced

     Motiens, International Shipbuilding Pro-

     gress, Vol.23, No.268 (Dec, 1976),

 3) Kato,S.  and  Ando,S,: On  the  Statistical

     Prediction of  Horizontal Motions of  Moored

     Floating Structures  in Random  Waves, JourJ
     of  the  Soc, of  Naval  Arch, of  Japan, Vol,

     158 (Dec, 1985),

 4) Dalzell, J, F. : Approxirnations to the  Probabil-

     ity Density  of  Maxima  and  Minima  of  the

NII-Electronic  


