
The Society of Naval Architects of Japan

NII-Electronic Library Service

TheSociety  ofNavalArchitects  of  Japan

139

(Read at  the  Spring Meet:,iig of  TheSociety  ofNaval  At'chitects of Japan, May  1987)

Solutionsto Three-dimensional Second-order Diffraction
Problems by Means of  Simple-source

        Integral-equation Method

by KiyoshiShimada*,Member

                                    Summary

  Second-order diffraction preblems  for a  three-dimensienal  body are  solved  by the  use  of

simple  sources  and  eigen  functions. Numerical results  of  second-order  velocity  potentials  are

available  as  well  as  second-ordeT  wave  forces, which  are  usually  computed  from  first-order

veloeity  potentials  only,  invoking  Green's theorem,

  Numerical  analyses  are  done for a vertical  circurar  cylinder  in deep water  so  as  to  verify

the validky  of  the  methed.  Agreement  between the  results  by the  present method  and

existing  results  are  satisfactory.  It is also  confirmed  that  the  second-order  velocity  potentials
on  the  weather  side  penetrate  the  water  much  deeper than  the  first-order ones,  Le.  the  sec-

ond-order  velocity  potentials  surpass  the  first-order ones  in the depth.

             1. Introduction

  It is not  diMcult within  the  extent  of  linear

theories  to compute  wave  ferces on  and  resuitant

motions  of  offshore  structures;a  lot of  results

have  been  reperted  by  the  use  ef  finite element

method,  boundary element  method  and  so  on.

  Linear theories,  however, are  not  good  enough

in the  case  of  extreme  waves  or  particular  geem-
etries  which  should  be dealt with  on  the  nonlinear

basis, Nonlinear theories  could  be categorized  into
two  groups;partially  nonllnear  theories  by the

perturbation method  and  fully nont{near  ones,

Fully nonlinear  theorles  require  lets of  numerical

work,  though  satisfying  nonlinear  boundary condi-
tions  exactly  and  completing  water-wave  problerns.

On  the  other  hand, partially  nonlinear  theorles  by
the  perturbation  method･are  regarded  as  comple-

ments  to Iinear theories  and  of  wide  application.

Hence, partially  nonlinear  theories  will  be consi-

dered here.

  Higher-order analysis  by the  perturbation method

cannot  be done with  great ease  for three-dimension-
al problems;third  or  higher-order  analyses  have
not  been reported.  As far as  the  seeond  order

analyses  are  concerned,  Papanikolau  and  Noxvackii)
and  KyozukaM  dealt with  two-dimensional  preb-

lems, Many  papers  have  been published for
three-dimensional  problems,  mest  of  which  are  not

free from ineompleteness  regarding  boundary  con-
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clitions. Radiation conditlon  for second-order  prob-

Iems, in particular,  is a  controversy.  Molin3),
whose  method  appears  to be acceptable,  computed

second-order  wave  forces on  the  vertically  fixed

circular  cylinder.  But  second-order  pressu:e  is not

available  in his paper  because second-erder  forces

were  computed  without  seeking  second-order  veloc-

ity potentials. Taylor  and  Hung4)  also  gave  de-
tailed results  for second-order  forces on  vertical

cylinders,  modifying  Molin's method,  Hunt  and

Baddour5} gave  a  second-order  velocity  potential
representation  as  well  as  second-order  wave  forces.
Their  formulation seems  appropriate  and  their  re-

sults  roughly  agree  with  Taylor  and  Hung's  results

though  their  explanations  for second-order  radia-

tion  condition,  i. e.  zero  Tadial  energy  flux, cannot

be accepted  from a  physical  viewpoint,  Garrison6)

attempted  to solve  second-order  problems  for three-
dimensional  bodies ef  arbitrary  shape  by the  use  of

a  secend-order  Green  function, falling to satisfy

the  second-order  radiation  condition.

  As  mentionecl  so  far, seeoncl-order  nonlinear  anal-

yses  for three-dimensional  problerns aTe  almost

confined  to circu!ar  cylinders  and  therefore  more

versatile  studies  are  needed.  A  method  will  be
shown,  which  can  perform  a second-order  nonlinear

analysis  for three-dimensional  badies and  topogra-

phies  of  arbitrary  shape  by  means  of  simple  sources

on  boundnry  elernents  andi  eigen  flinctions, which

were  appliEd  by YeungT} for linear problems. In

this study,  a  vertically  infinite c{rcular  cylinder  is

analyzed  to verify  the  validity  of  the  present
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           Fig.1 Ceordinate  system

method  because detailed data are  available  in Hunt

and  Baddoui's paper.

             2. Formulation

 2.1 Goyerning  equations

  A  Cartesian eoerdinate  system  o-xyx  with  oa ver-

tically upward  is employed  as  shown  in Fig,1.

We  make  the  usual  assumption  of  irrotational in-

compressible  flow, which  allows  us  to describe the

flow by a velocity  petential. The  velec{ty  petential

¢  must  satisfy  the  equations  :

  720:=O in fiuid,

  odi
     =O  on  body,
  On
  o2e  o¢  a
                (ffdi)2      +g            +
         0a              ot  Otz

      +-!7 ¢ ･V(7pt)2=:O on  free suriace,
        2

  7 ¢  -O  as  z-  -co

  radiation  condlt{Qn  in far field,

                                     (1)
and  wave  elevation  C is described by

          c=--li( 
aodit
 +Svdi)2},  (2)

where  g  is acceleration  of  graTity.
Performing  a  perturbation expansion  for e  and  C
by the use  of  small  paTameter  E,  we  obtain
                                   '

         9.-.L,¢

,li}(,g).',9X',gs,i).+.::J::t.･ } (3)

Furthermore, ¢  or  its derivatives on  the  free sur-

face can  be expanded  in a  Taylor  serie$  about

x=O  : e, e. g,, is

  di(x, y, z,  t) ==  ¢ (x, y, o, t)

        Oep(X,Y,O,t)
                   g(x, y, t)+---      +
            Ox

    =OCi)(x,  y, o, t)

                      OO(i)(x, y, o, t)

      +{         eC2)(x, y, O, t)+  o',

      ･gCi}(x,
 y, t)+---.  (4)

  Substltuting Eqs. (2) through  (4) inte  Eq, (1)

and  rearranging  them  in terms  of  the  same

we  obtain  governing  equations  for first and

order  problems  as  fo]Iows:

 1 st-order

  7zocu=o  in fluicl,
  OdiCi]
       ==O  on  bocly,
   On
  02¢ {i)          O¢ (i)
               =O  OII :. i=O,       +g
   Ot2           ez
  7 ¢ {]] .O  as  z.  -oo
                                  ,

  radiation  conditien  in far fielcl,

  c,i,.,,h-}. 
O3ii]

                        O]1 Z=O,

  2 nd-order

  v2di{2)=e in fluid,

  0epC2)
       =O  on  body,
   On

  oee<2) o¢ (v                   o                              aoo}
   ot2 +g  oz 

=-ot(F ¢ (2})Z+
 ot

       × oO.(O$;i) +e  
02odit;`')

 on  :=e,

 order,second-

(5)

 7 ¢ CZ) -O  asz--  -co,

 radiation  condition  in far field,

  4c!)== 
--li{

 
Ogli"

 + 
.}
 (i7op{i))2

      +3:95il cci]] on  z-  o,

                                      (6)

where  Oten clenotes the  derlvative in the  direction

of  the  unit  normal  directed eut  of  t'ne flul,d domain.

  Under  the  assumption  of  harmonic  motions  such

that

            ¢ Ci):= g5Ci)etwt,

            ¢ c2}=,g5L2)eatot+Ok!:,

            g(1)..v(1)etwt,
            c(2]=,rpS2]e2tlde+vk2],

where  subscripts  o  and  s denote
steady  component,  respectively,

tions  (5) and  (6) are  described as

  1st-order

  v2di(i)=O in fiuid,

  aoci)
      =O  on  body,
   On
           Odi(i]
  
-o2oci}+g

 oz 
=e

 
'

                        on  z=O,

  70(i) -O  as  z-

  radiation  condition  in far

  ?cl);r  
:O

 ¢ (1) on  z=O,
        g

  2 nd-order

  F2di52)=72g5k!'=O in

  o¢ sm 
,.

 O¢ k2] 
=o

 
on

          On   On
             oOE!)
                 +ito(P7¢ (J))2
  

-4to2¢ t2'+g oz

  -  
i2tu
 dim(O;9i')rto-g2 

asthz{J))=o
 on

  , 
o,di.;m

 -fl(i ¢ (i), 
OSeg")

 oscillatory

govermng
follows :

 
-oo)field,

fluid,bedy,

:･ =o,

(7)

  and

 equa-

(8)

1
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  2.2 IRtegral equations

  If we  take  ltr as  a  kernel function, Green's

theorem  is shown  as

     (e) ==  iK 
OoO.
 ;To eO. (;)}ds

                  (:..",b.O,",i;dg:Y..i.): Ci`'

where  the  integration area  includes all  the  bound-
aries,  It is beneficial, however, to  consider  as  a

boundary a  fictitious cylinder,  whose  radius  Re  is

large enough,  leading to thTee  different bounda-
rles:the  body surface  boundary SB, the  free surface

boundary SF and  the  fictitious cylinder  boundaTy
SR, Note  that  SF  is no  longer infinite and  that

the  velocity  potential  e is O in the  outer  domain.

  Substitutions of  Eqs, (8) and  (9) into Eq, (14)
give integral equations  for the  first and  second-

order  velocity  potentlals, respectively,

  1 st-order

  Dividing the  first-order potential ipCiJ into an

incident wave  potential ip tiU and  a  diffraction poten-
tial eSi), let us  seek  integral equations  with

respect  to  OS]:

   2za( 
¢tf] )+f Ob" oO. (÷. )dSB

       +f  dirv ( oa. (}) 
-
℃
2

 ")dsF
       +.Il[¢S] oan (})- 

0oOnb"
 "}dsR

     =-f  
Oadiii'

 "dss, (is)

where  the  boundary  cendition

         oOb',                Odi}i,
          On 

+
 on 

=O
 

On
 
body                                      (16)

is used.  In addition,  e(ii' is given by

            ¢ J{i)=i  
4]lliW

 effte"tKcr,  (17)

where  CA is a wave  amplitude  and  K  is a  wave

number.  ipbi) is represented  on  the  fictitious

boundary  in terms  of  eigen-function  expansion

such  that

            nf-1

    diD(i}=eift Z  A$L'Hg.2'(KRo)cosme, (18)
            m=.o

where  we  tal{e the  usual  polar  coordinate  system,

O-Rek  and  Ain/)'s are  unknown  coeMcients  of

Hankel  fumction of  the  second  kind, HS2,}. There-

fore Eq. (15) is rewritten

 2re(ip/"')+fOb"  oO. (")dSB
     +f ¢b']{ oa. (})-5. )dsF
     +Ro  lil.i,i Afh] (ffh2t (KR,) f]2fi cos  mede

     X .f:).. 
effE  oaR (")dau 

OHfn2S(RKRo)

Diffraction Problems

        + 2toi (iOo}, 
Oa¢ii})=o en  z=o,  ,

  vsm=-t{2idi ¢ 6z)+.1.(7¢ o))2

       + 2tog2 
Oo¢i 

i]

 ¢ ( 
1)]

                             on  z=O,

  ifk2)i=-elt17ip(i]l2

       
-
 2tui ( Oo¢i 

l)

 , ¢ ( 
1))
 )                             en  z=O,

  7 ¢S2', 70k2i -O  as  z-  -oo,

  radiation  condition  in far field                                      ,

                                     (9)
where

       ¢ AeB=Sg5A ¢ Be2iw`+-S-( ¢ A,g5B)  (lo)

is used,  (g5A,g5B) denotes an  inner procluct of  gbA
and  g6E.

  Once  a  velocity  potentia] is Qbtained,  pressure  P
can  be computed  by

         P::: 
-p(gz+

 
OoOt
 +t(7 ¢ )2} (11)

where  p 1,s the  fluid density. In the  same  manner

as  O, P  is split  into four parts:

       P=PCD)(1)+PCi)(e)etut

          +{p52,(e2)e2tWC+pk2,(e2)},

       P(O)=-pgz,
       p<i)=-idipOCi),

       p62)=-2iwpOS2i-C-(l7g5(i))2,

       Pk2)=-,:.17¢ (i)[2.

  As  clearly  shown  in Eqs. (9) and

second-erder  steady  potential ¢ k2} has

tion  to steacly  wave  elevation  uk2] or

sure  pk2), It is, therefore,

no  meaning  for the  second-order

  Horizontal wave  forces acting  on  a

inder, the radius  of  which  is a,  is 
'

of  pressure integration :

      F.= aJ]2"  deLe.. pnxdg  J:  fy )e twt

         +f82x'e2t"t+fk2x',

      f}n=-ipatoLZXdeJll".ip(i)nxdg,

      f6!.''=-2ipatoL2ndeXIO..¢ s2'n.dz

           
-
 
P4a
 A2rdeJlr.. (7o(i))zdz

           
.
 
P4agto2

 L2rc (di(`})2 
.=,nxdO,

      fk".'! =  -  
P4"
 A2 

"'

 dof..  v ¢ <i)l2n.dz

           +  
P4agtu2

 J]2r' oa) i.onxde,
where  nx  is x  component  of  the  unit

rected  out  of  the  fluid domain.

(12)

          (12), the

        no  contribu-

         steady  pres-
concluded  that  dik2' has

     problerns.

        clrcular  cyl-

      gwen  ln  terms

(13)

normal  dl-
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     ×L2"cosmodoJle..eKt;da}
   ==-f  

0a¢
.Vi)
 "dSB' (19)

 We  diseretize the  body  boundary and  the  free

surface  boundary with  N  boundary  elements.

Under  the  assumption  that  ebi] is constant  en

each  element,  Eq.C19)  reduces  to  a  set  of  simul-

taneous  equations  with  N  unknowns  for Obi) and

M  unknowns  for A;lt). Namely,  M-boundary

condition  points are  necessary  other  than  these  on

each  element.  We  impese  M  bounclary condiitions

on  the  free surface  in the  outer  domain. Note

that  the  first term  in Eq, (19) is O in this case.

  2nd--order

   2.(g66o2))+fos2i  oO,, (})dSB
       +fOS"O]{ aO. (") 

rr
 
4.K

 }dSF
       +f  (oE2) oan (})- 

as¢
.S2'
 "ldsR

     ..  rm 
igtuf(7

¢ (i))2-li. dS. (20)

Note  that  one  of  the lnhomogeneous  terms  in the

free surface  conditlgn  Eq. (9) has no  contributiDn

te the  cylindrical  body  presently  considered,

  On  the  fictitlous boundary,  ¢ SZ) ls cDmposed  of

the  following two  potentials,  Le.  a  free wave

potential g5>2i and  a  locked wave  potential  g6L2'(see

Appendix)  :

ip

¢

T2]et2tF

¢ L2,

-OF,]+Ot,!)

     M-1
=e4Kt  z  AJ.2pHAg)(4KR,)cosme
     "L=O

=-K4AV}flKJ2-RXS.jAlanet2Mi'r･

  i

× Z  Ft (e, m)emi(e,m)t,
 t=o

whererci(e,

 m)  ==  Vi 12(2+2coso)+(RM,)2
                           7n .

                 
-(-1)t2K

 R, 
sm

 
e,

Fi(o, m)=  iit:Pi(t'ii,O'vaei (K(i-coso)
  +(-  1)t ;l: sine}  {cos mo-i(-1)isin  me},

Hence, we  deduce the  folrowing from

 2za(06o2')+fos2'  oan }
  +fabb2'('oO.(}  

`,K

      M-1

  +R,  Z  AS2,,{HS3)
      m=O

  X  oOR (÷. )d," 
OHin2]o(4RKR,)

  xr.  e4K:  -; d2}=-  
igdi
 

Z-li-

 dSF

i
  (21)

i

(22)

Eq, (20) :

    ( )dSB
)- }dSF
 (4KRo)J]2recesmodeJllO..e4Kt
           2rc

          A             cos  medO

 +KC  AV'lli9-R-i  Ro 
.Mz.'j

 2`L ,.oet2M,'  
`

 
T

 ×A2fl tl.eFi(o, m)doJle..ee(e,nt)i  oOR (-li-)dz
 +iKC"Vii/E'R": KRo 

."z,i
 A.c i}et 

2Mi

 
'

 
r

  xJl2"'  tl.oci+cos e)Fi(e, m)deJle..  
eSi(er'M)Z

 dz,

                                     (23)

          3. Numerical  Results

 In order  to verify  the  yalidity  of  the  present

rnethod,  computations  are  conducted  for the

second-order  wave  forees on  a  vertical  circular

cylinder  of  infinite length, for which  existing  data

are  avai]able.

  Fig.2 shows  a  sample  of  element  division on  the

body  and  the  free surface  boundaries, Elements  in

a great depth, which  are  ins{gnifieant through  a

sense  Qf  the  first--order problem, cannot  be neglect-
ed  for the  second-order  problem, Second-order

potential  penetrates the  water  much  deeper than

the  first-order potential  ; Taylor and  Hung  investi-

A2C,

to.o

7,5f.fto

s,o

z,S

o

/

t'b

Fig.2 Element  division

ePRESENTMETHODHUNT8BADDOUR!;

TAYLeR6HuNG7b

7ff77T7

o7

 77

11//

o/f1///!1

     O 10  20
                       Ka

Fig.3 OscMatery  second-orderl,owave

  4Dforce
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Fig.4 Maximum  total wave  force

 F,-  
O'50r

silii l
F{d),F{2:azst

pgghs  

S'
 ...  --            H-

     o

fl'SxxxNLt

f!

4.0

--

         N f

 r f!
 1

    N/
 

XK
 /'      xi
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force with  time

:
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first-oTder andi
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1ll1tt

-025

   
'O.SSL

Fig.5 Variations
      total wave

o

WAVEQ302o.]

O,2
1'

direction of  oscillatory

second-order  potentials

lee sldes  (Ka=2, O)

gated that  the  second-order  force on  the  cy]inder

whose  draft-radius ratio  dfr is 10, is stM  as  much

as  5 percent  smaller  than  that  on  the  lnfinltely

long cylinder.  The  element  division is done  here
so  that  rld  is more  than  10,

 Numerical results  for oscillatory  second-order

force are  p]otted  in Fig,3 against  nondimensional

incident--wave frequency, Ka, in comparison  with

Hunt  and  Baddeur's  and  Taylor  and  Hung's.  They

are  nondimensionalized  by wave  steepness,  2 CAtR,
where  2 is the  incident wave  length, and  first-order
wave  force amplttude  fU). Fig.3 shows  that  the

oscilZatory  second-order  iorces computed  by the

three  different methods  agree  with  one  another

and  importance of  the  oseMatory  second-order  force

increases for higher-frequency incident waves,

 Maximum  values  ef  total  wave  forces inciuding

escillatory  first-order ferce, escillatory  seconcl-order

force and  steady  second-erder  force are  shown  in

Fig.4, where  values  by the present  method  is in

good  agreement  with  those  by Hunt  and  Baddour.

The  solid  Iine aiid  the  circles  correspend  to  the

linear theorv.  On  the  other  hand. the  broken  Iine
and  the  trinngles  are  for wave  steepness  of  e. 1,

v

Fig.8Variations in x

first-order and

on  weather  and

hsNsLL:,1

'

oo.t

direction of  oscillatory

seconcl-order  potentials
Iee sides  (Ka=3. e)

Contributions of  the  second-･order  force are  signif-

icant for higher-frequency  waves  ; say,  for more

than 2.e of  Ka, increase of  the  force from the

first-order one  is over  30%.

  Fig, S obtained  by the  present method  shows  how
the  total wave  force changes  with  tlme.  While
the first-order foice changes  sinusoidally,  the  total

force inrluding the second-order  forces changes

quite differentry. It is possible  to  understand  that

maximum  wave  ferce acts  in the  directien opposite

to  the  wave  propagation,

  Figs.6 through  8, obtained  by the  present
method,  give the  iclea how  differently the  oscilla-
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tory  secend-order

fr p. m  the

second-order

directien than  the

tion  is still small.

order  potential  on

importanee  for

tential  on  the  lee
rather  than  the

to see  in Fig.8 that

not  decay

depth several  times

             4.

  A  numerical

to obtain  complete

velocity  potentials
fraction problem.
vertical  circular

verify  the  validity

  In compaTison

methods,  the

Moreover,  it is

potential on  the

fast as  the

  Although the

water  is dealt
method  can  be
th:ee-dimensional

trary  shape.

  The author

to  Professor

Institute of

program  code  fer
 enabled  the

  1)
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      Regular

      SYJTIPOSiUM

      Tokyo,

  2) Kyozuka,  Y.
      Forces
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      Diffraction

      Regular

   5) Hunt,J･N,
      tion  of

of  Japan
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          potential  varies  in krv direction

    first-order one.  For Ka=LO,  the

     potential  decays more  slowly  in x

          first-order one  but lts contribu-

            Contribution  of  the  second-

           the  weather  side  is of  great

       Ka==2.  0, but the  seconcl-order  po-

         side  decays faster in E  direction

        first-order one.  It is interesting

           the seeond-erder  potential  does

    eompletely  in z  directien up  to the

           deeper than  the  wave  length.

           Conclusions

       method  has been developed in order

           solutions  to the  second-order

           for the  three-dimensional  dlf-

           Computations are  made  for a

         cylinder  in deep water  so  as  to

          of  the  present method.

         with  exlsting  results  by othe:

       present  method  is preved  useful.

        reconfirmed  that  the  second-order

         weather  side  does not  decay so

    first--order one.

         vertical  eircular  cylinder  in deep

        wlth  in this  study,  the  present

       app!ied  with  small  modificatiens  to

          bodies and  topographies  of  arbi-
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                Appendix
･ Second-order Veloeity Potential
     in the Far  Field

  The second-order  velocity  potential  in the  far

field must  satisfy  Laplace equation  and  the  free

surface  boundary condition  :

  72 ¢ 62'=O in fiuid, (A-1)

  4KOS2)' 
0oO.62'

 =  
igtu
 (7di(i})2 on  z=O･  (A-2)

  Wc  assume  that  ipS2] consists  of  a  free wave

potential iptF2) and  a  locked wave  potential  ipic"-' :

              ¢ E2)=c6F2'+¢ f2', (A-3)

where  ipfo2), satisfying  Eq. (A-1), is a  general

solution  to the  homogeneous part of  Eq. (A-2)
and  can  be described as  a summation  of  Hanke]

function of the  seeond  kind:
           M-1

   ¢ s2)=e,Kz Z  Ah9,HSZi (4 KR,) cos  me.  (A-4)
           m=o

  ¢
[i} is given on  the  free surface  intersecting the

fictitious cylinder  by

  g5(1)=i 
Cf}to

 eKee-tKRocese

    + V'ii/2R, eKe  :S. 
ei
 Ah' ]e-i(K  

RD-2M4'
 
i

 
r)cos

 me.

                                     (A-5)

Derivatives of  ¢
ti)

 are  as  foilows :

 
aaCbR{i)

 =cAtocosee-tKRDeose

  -iKVriiT?R, S.,i Awe-L("Ro-2Miir,),.sme,

 
OaOe(i}

 =-cAtoResin  ee-tKRocose

  -VilTERoililljmAh/ieUL(KRo-2Miin)sinine,

 
OoOii}

 ==ieAtoe-tKRocose

   +KV  
nK2'R','

 IS. 
,Z
 AgV e-  

i(K

 
RO-2M4"

 
'

 
")ces

 me.

                                     (A-6)
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 Note  that  KRo>l  and  hence, the  right-hand

side  of  Eq. (A-2) reduces  to

  
igto
 (7dio))z= 

2igtiito2
 N/ti'lt/. .ie-iKnocHcase]

     ×

,l;l.i,iA"vet2meii"(iKa-cose)cosmo

     +･ [ 
nt

 sinesin  me)  (A-7)

where  the mfKRo  term  is kept.

 Look  for ip L2t in the  form:
     M-1

 q3L2)= Z  eSte-tKRo(i"eoS  
e)(accos

 Tne+  afssin  mO)
     711tO

       M-1

      +  z  eeie-tKRo(i+cose)(rccos  me+rssin  me),
       ere=o

                                  (A-8)
where  a,, a,, P, re, r, andi  6 are  unknowns,

Substitutlng Eq. (A-8) to Eq. (A-･2), we  obtain

   gb L2)=-KcAV 
trK2-Ro

 
.M,z:oi

 Aini]et2M4+i 
r

          i

        xZ  Ft (0, m)erciCe,m)x, (A-g)
         t=e

where

mt(O,  m)  =VK2(2+2cose)

      +(Iii'li)2-(-ot2Klil'tsine,
         e-tKRe(1+cose)  (A-10)Ft(e, m)  =

        4K-rcl(e,,n)

      × {K(1-cese)+(-1)t RM, 
sin  0}

      × {cosme-i(-1)isinmO}.

 eL2) is a  particular solution  te Eq. (A-2) and

can  be determined  in terms  of  O{i). Hence, it is
concluded  that  the  radiation  condition  for the

secend-order  problem  shou}d  be imposed  only  to

the  free wave  potential dS2) and  is the  same  as

the  first-order one  except  that  the  wave  number  is

quadrupled. This  implies that  energy  radiates

from  the  body te infinity eyen  for the  second-

order  problem,  which  is different from Hunt  and

Baddeur's explanation.
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