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Solutions to Three-dimensional Second-order Diffraction
Problems by Means of Simple-source
Integral-equation Method

by Kiyoshi Shimada*, Member

Summary

Second-order diffraction problems for a three-dimensional body are solved by the use of

simple sources and eigen functions.

Numerical results of second-order velocity potentials are

available as well as second-order wave forces, which are usually computed from first-order
velocity potentials only, invoking Green’s theorem.

Numerical analyses are done for a vertical circular cylinder in deep water so as to verify

the validity of the method.

Agreement between the results by the present method and

existing results are satisfactory. It is also confirmed that the second-order velocity potentials
on the weather side penetrate the water much deeper than the first-order ones, i.e., the sec-
ond-order velocity potentials surpass the first-order ones in the depth.

1. Introduction

It is not difficult within the extent of linear
theories to compute wave forces on and resultant
motions of offshore structures;a lot of results
have been reported by the use of finite element
method, boundary element method and so on.

Linear theories, however, are not good enough
in the case of extreme waves or particular geom-
etries which should be dealt with on the nonlinear
basis. Nonlinear theories could be categorized into
two groups : partially nonlinear theories by the
perturbation method and fully nonlinear ones.
Fully nonlinear theories require lots of numerical
work, though satisfying nonlinear boundary condi-
tions exactly and completing water-wave problems.
On the other hand, partially nonlinear theories by
the perturbation method .are regarded as comple-
ments to linear theories and of wide application.
Hence, partially nonlinear theories will be consi-
dered here.

Higher-order analysis by the perturbation method
cannot be done with great ease for three-dimension-
al problems ; third or higher-order analyses have
not been reported. As far as the second order
analyses are concerned, Papanikolau and Nowacki?
and Kyozuka® dealt with two-dimensional prob-
lems. Many papers have been published for
three-dimensional problems, most of which are not
free from incompleteness regarding boundary con-
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ditions. Radiation condition for second-order prob-
Molin®,
whose method appears to be acceptable, computed
second-order wave forces on the vertically fixed
circular cylinder.

lems, in particular, is a controversy.

But second-order pressure is not
available in his paper because second-order forces
were computed without seeking second-order veloc-
ity potentials.
tailed results for second-order forces on vertical
Hunt and
Baddour® gave a second-order velocity potential
representation as well as second-order wave forces.

Taylor and Hung?® also gave de-

cylinders, modifying Molin’s method.

Their formulation seems appropriate and their re-
sults roughly agree with Taylor and Hung’s results
though their explanations for second-order radia-
tion condition, i.e., zero radial energy flux, cannot
be accepted from a physical viewpoint. Garrison®
attempted to solve second-order problems for three-
dimensional bodies of arbitrary shape by the use of
a second-order Green function, failing to satisfy
the second-order radiation condition.

As mentioned so far, second-order nonlinear anal-
yses for three-dimensional problems are almost
confined to circular cylinders and therefore more
versatile studies are needed. A method will be
shown, which can perform a second-order nonlinear
analysis for three-dimensional bodies and topogra-
phies of arbitrary shape by means of simple sources
on boundary elements and eigen functions, which
were applied by Yeung? for linear problems. In
this study, a vertically infinite circular cylinder is
analyzed to verify the validity of the present
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Fig.1 Coordinate system

method because detailed data are available in Hunt
and Baddour’s paper.

2. Formulation

2.1 Governing equations

A Cartesian coordinate system o-zyz with oz ver-
tically upward is employed as shown in Fig. 1.
We make the usual assumption of irrotational in-
compressible flow, which allows us to describe the
flow by a velocity potential. The velocity potential
@ must satisfy the equations:

r2:d=0 in fluid,
g—f:O on body,
020 o0 0 .
e T tr VP

+—2~V(D-I7(l7(]))2:0 on free surface,

Vg — 0 as z —» —oo
radiation condition in far field,

(1)

and wave elevation { is described by
0D
£=— {6’1‘ +L (V(D)} (2)

where g is acceleration of gravity.
Performing a perturbation expansion for @ and {

by the use of small parameter &, we obtain
Q=P () + DN () +4+vvee- , } (3)
E=EM(e)FED (D) remnen,

Furthermore, @ or its derivatives on the free sur-
face can be expanded in a Taylor series about
z=0:0, e.g, is

O(z, 9, 2,)=0(z, 7,0,
+maﬁgg<x, YD)t
V4
=@M (z,y,0,1)
+{(D(2)(x, y,0,8)+

Wk, Yy, D) e . (4)
(2) through (4) into Eq. (1)

PN (x, y,0,8)
0z

Substituting Egs.

and rearranging them in terms of the same order,
we obtain governing equations for first and second-
order problems as follows :

1 st-order
72 =0 in fluid,
ooMm
= on body,
020M oo
_—372_+g—a—z—_0 on z=0, . (5)
rot) — 0 as z —- —oo,
radiation condition in far field,
1 90w
Ve — = g
¢ 7 ot on z=0,
2 nd-order
r:p@=0 in fluid,
P
e on body,
0202 (L) 0 oD
X A (2))2
o7 t97%; 57 T+
8 /0P 1 92PN
x§< 5z g of ) on z=0,
roe — 0 as z — —oo,
radiation condition in far field,
1 (00® 1
= — = = (1))2
co=—L{ T Lo
m
+g@ C“} on z=0,
(6)

where 0/0n denotes the derivative in the direction
of the unit normal directed out of the fluid domain.

Under the assumption of harmonic motions such
that

P =petot,
DO =P eriot 4.2,
1) (D) piot 7)
& )_,_77( Jetwt,
4‘(2)27];)2)8210154_77(8‘2))
where subscripts o and s denote oscillatory and
steady component, respectively, governing equa-
tions (5) and (6) are described as follows :
1 st-order

Vip=0 in fluid,
B

n =0 on body,

aqs( )

— w2 =0

0PN+ g—F— on z=0, (8)
P — 0 as z —» —oo,
radiation condition in far field,
=22 pw on 2=0,

g

2 nd-order
Vzd)f,”’—quS‘"‘-—O in fluid,
0P _ 0P

P on body,
—dw*pP +g ;S" +ioW!)?

i 2PN @? FPp
2 Hm — 7=

¢ ( 522 q bz ) 0 on z O
ad)m w( q5<1) 02 ¢( )>
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w® /. o
—_— (N = I =
+ g <z¢ 52 > 0 on z=0,

7752): _%{zz‘wd)m_*_i_(pd)(l))z

w? 0¢( )
29 } on z2=0,
ngm:—l{—ww

on z2=0,

29 <a¢( ) ¢(1)>}

P, Fed® — 0
radiation condition

as z — —oo,
in far field,
(9>

where

¢A¢B=§¢A¢Bew+§c¢mw (10)

is used. (¢4, Pp) denotes an inner product of ¢y

and ¢B~
Once a velocity potential is obtained, pressure P
can be computed by

P ~p{gz+%~f+%(m)2} an

where p is the fluid density. In the same manner
as @, P is split into four parts :

P=pO(1) 4 ph(e)etot

+ {p&2)(52)eziwt+p§2)(62)},
p(O):_pgza
p=—iwogt, (12)
P =—2i0pdp— L7 M,
p§2’=—%|7¢<”|2.

As clearly shown in Egs. (9) and (12), the
second-order steady potential ¢{* has no contribu-
tion to steady wave elevation %{ or steady pres-
sure p{®. Itis, therefore, concluded that ¢ has
no meaning for the second-order problems.

Horizontal wave forces acting on a circular cyl-
inder, the radius of which is g,
of pressure integration :

2T <
Fo= f a6 f Pryda= fetot
0 — 00
+fEe¥ et + £,
2r 0
fg‘:—ipaa)f rdﬁf P, dz,
0 -
2T 4}
f2=—2ipaw f ao f PP,z
_ff_ d@f W p2dz (13

is given in terms

pcza)2 (N2
& fo (B nad,
p=-L ddf 7 D |2ngdz
paw® m
+i5 fo 0 ned,

where n, is £ component of the unit normal di-
rected out of the fluid domain.

2.2 Integral equatiens

If we take 1/r as a kernel function, Green’s
theorem is shown as
‘i’)_ 1 f(%l_
<0 Te2nJ\on ¥ ¢0n< >}ds
on boundary
(in outer domain> aH

where the integration area includes all the bound-
It is beneficial, however, to consider as a
boundary a fictitious cylinder, whose radius R, is
large enough, leading to three different bounda-
ries : the body surface boundary Sz, the free surface
boundary Sp and the fictitious cylinder boundary
Sgr. Note that Sz is no longer infinite and that
the velocity potential ¢ is 0 in the outer domain.

Substitutions of Eqs. (8) and (9) into Eq. (14)
give integral equations for the first and second-
order velocity potentials, respectively.

1st-order

Dividing the first-order potential ¢ into an
incident wave potential ¢’ and a diffraction poten-

aries.

tial @), let us seek integral equations with
respect to ¢33’ :
2x( f’>+f¢g’-(f—n<%>d53
D) B
v o0 5 (5) -5 e
=[P 1y, (15)
where the boundary condition
ag)f) +%:0 on body 18
is used. In addition, ¢ is given by
qJ)I(l):Z'__A_eKze—in’ an

where {4 is a wave amplitude and K is a wave
number. ¢4’ is represented on the fictitious
boundary in terms of eigen-function expansion
such that

G pW=ek? 2 AN HP (KR, cos mb, (18)
m=0

where we take the usual polar coordinate system,
0-R6z and A{’s are unknown coefficients of
Hankel function of the second kind, H$. There-
fore Eq. (15) is rewritten

(1) 1
_,,7< >+f¢,u) < >d5‘3
1\ K
+[ {5 (5) s
M-—1
+R, Aié’{H"”(KRo)f cos mfdo
m=0

0 ) DHD (KR
K PR L Sl S
Xf_ef z@R( )d 3R
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2T 0 1
Xf cos mﬂdﬁf eXz wdz}
0 e ¥
8 (1) l
:_f 67: 7 ’ (19

We discretize the body boundary and the free
surface boundary with N boundary elements.
Under the assumption that ¢{' is constant on
each element, Eq.(19) reduces to a set of simul-
taneous equations with N unknowns for ¢f' and
M unknowns for A M-boundary
condition points are necessary other than those on
each element. We impose M boundary conditions
on the free surface in the outer domain. Note
that the first term in Eq. (19) is 0 in this case.

2 nd-order

< ro)>+f¢{o) 611( )d B
ol (1))
o) e

== (V<p<1>)2 dSp (20)

Namely,

Note that one of the inhomogeneous terms in the
free surface condition Eq.(9) has no contribution
to the cylindrical body presently considered.

On the fictitious boundary, @ is composed of
a free wave
@ (see

the following two potentials, i.e,
potential ¢@ and a locked wave potential
Appendix) :

PP=gP -+
M-1
PR =etK2 SV AP HRP (4 KR,)cos mb

m=0
M-1 2m+1
et (D

2
¢(142):“K¢A FK‘F Z Am 4

1
X DV EF (6, m)eri&miz,
i=o

where

k.00, m)z\/K2(2+2cosﬁ) + <%>2

—(—l)lzK%sinﬁ,
-iKPo(l*cos 8) ° (22')
4Km {K(l-"COS 0)

+ (——1)‘-ﬂsin0} {cos mf—i(—1)!sin m0}.

Fl(ﬁ m)

Hence, we deduce the following from Egq.(20) :
2)
271.'( 0 >+f¢w) <1>dSB
@) 9 (1 4K}
+f¢°){8n< > 7 dSr
+R0§] AP {H® (4KRy) f cos mOdo f gtkz

(2)
86R< >d ——H—Mf cos m@dl

0 1 o)
sz L g 0 (el
Xf_me L da) gf(Vqs ) VdSF

M-

2x 0 1
x [ gonco,mw f cricamz 8R<7>dz

5 m,+1
+iK¢ g KR, 2 ApWet=—3 ©

T

KR
2% 0 elcz(o,m)z
xf ST (1cos O F, (0, mydo [ " dz.
0 =0 -~

¥
(23)
3. Numerical Results

In order to verify the validity of the present
method, conducted for the
second-order wave forces on a vertical circular
cylinder of infinite length, for which existing data
are available.

Fig. 2 shows a sample of element division on the
body and the free surface boundaries.

computations are

Elements in
a great depth, which are insignificant through a
sense of the first-order problem, cannot be neglect-
ed for the second-order problem. Second-order
potential penetrates the water much deeper than
the first-order potential ; Taylor and Hung investi-

Fig.2 Element division
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Fig.3 Oscillatory second-order wave force
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Fig.6 Variations in z direction of oscillatory
first-order and second-order potentials
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total wave force with time

gated that the second-order force on the cylinder
whose draft-radius ratio d/r is 10, is still as much
as 5 percent smaller than that on the infinitely
long cylinder. The element division is done here
so that r/d is more than 10.

Numerical results for oscillatory second-order
force are plotted in Fig.3 against nondimensional
incident-wave frequency, Ka, in comparison with
Hunt and Baddour’s and Taylor and Hung’s. They
are nondimensionalized by wave steepness, 2 {,/2,
where 2 is the incident wave length, and first-order
wave force amplitude f®. Fig.3 shows that the
oscillatory second-order forces computed by the
three different methods agree with one another
and importance of the oscillatory second-order force
increases for higher-frequency incident waves.

Maximum values of total wave forces including
oscillatory first-order force, oscillatory second-order
force and steady second-order force are shown in
Fig.4, where values by the present method is in
good agreement with those by Hunt and Baddour.
The solid line and the circles correspond to the
linear theory. On the other hand, the broken line
and the triangles are for wave steepness of 0.1.
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Fig.8 Variations in 2z direction of oscillatory
first-order and second-order potentials
on weather and lee sides (Ka=3.0)

Contributions of the second-order force are signif-
icant for higher-frequency waves; say, for more
than 2.0 of Ka, increase of the force from the
first-order one is over 30%.

Fig.5 obtained by the present method shows how
the total wave force changes with time. While
the first-order force changes sinusoidally, the total
force including the second-order forces changes
quite differently. It is possible to understand that
maximum wave force acts in the direction opposite
to the wave propagation.

Figs.6 through 8, obtained by the
method, give the idea how differently the oscilla-

present
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tory second-order potential varies in z direction
from the Ka=1.0, the
second-order potential decays more slowly in =z
direction than the first-order one but its contribu-
tion is still small. Contribution of the second-
order potential on the weather side is of great
importance for Ka=2.0, but the second-order po-
tential on the lee side decays faster in z direction
rather than the first-order one. It is interesting
to see in Fig.8 that the second-order potential does
not decay completely in =z direction up to the
depth several times deeper than the wave length.

first~order one. For

4. Conclusions

A numerical method has been developed in order
to obtain complete solutions to the second-order
velocity potentials for the three-dimensional dif-
fraction problem.
vertical circular cylinder in deep water so as to
verify the validity of the present method.

In comparison with existing results by other
methods, the present method is proved useful.
Moreover, it is reconfirmed that the second-order
potential on the weather side does not decay so
fast as the first-order one.

Although the vertical circular cylinder in deep
water is dealt with in this study, the present
method can be applied with small modifications to
three-dimensional bodies and topographies of arbi-
trary shape.

Computations are made for a

Acknowledgements

The author would like to express his gratitude
to Professor J.N.Newman of the Massachusetts
Institute of Technology for his discussions and
program code for simple source potential®, which
enabled the present study to become a reality.

References

1) Papanikolaou, A. and Nowacki, H.: Second-

- order Theory of Oscillating Cylinders in a
Regular Steep Wave, Proceedings of 13th
Symposium on Naval Hydrodynamics,
Tokyo, (1980).

2) Kyozuka, Y. : Non-Linear Hydrodynamic
Forces Acting on Two-Dimensional Bodies
(1st Report, Diffraction Problem), Journal
of the Society of Naval Architects of Japan,
Vol. 148, (1980).

3) Molin, B.: Second-order Diffraction Loads
upon Three-dimensional Bodies, Applied
Qcean Research, Vol.11, No.4, (1979).

4) Taylor, R.E. and Hung,S. M.: Second Order
Diffraction Forces on a Vertical Cylinder in
Regular Waves, Unpublished, (1986).

5) Hunt, ]J.N. and Baddour, R.E.: The Diffrac-
tion of Nonlinear Progressive Waves by a

Vertical Cylinder, Quarterly Journal of
Mechanics and Applied Mathematics, Vol. 33,
Part 3, (1980).

6) Garrison, C.J.: Nonlinear Wave Loads on
Large Structures, Proceedings of 3rd In-
ternational OMAE Symposium, Vol. 2, (1984).

7) Yeung, R.W.: A Singularity-distribution
Method for Free-surface Flow Problems with
an Oscillating Body, University of Califor-
nia, Berkeley, California College Engineer-
ing Report, NA 73-6.

8) Newman, J. N.: Distributions of Sources and
Normal Dipoles over a Quadrilateral Panel,
Journal of Engineering Mathematics 20,
(1986).

Appendix
Second-order Velocity Potential
in the Far Field

The second-order velocity potential in the far
field must satisfy Laplace equation and the free
surface boundary condition :

PR =0

in fluid, (A-1)

(2)
4K¢§2’—%L=%(V¢(1))2 on z=0. (A-2)

We assume that ¢ consists of a free wave
potential ¢ and a locked wave potential ¢

BP=R+ 2, a-3)
where ¢@, satisfying Eq. (A-1), is a general
solution to the homogeneous part of Eq. (A-2)

and can be described as a summation of Hankel
function of the second kind :

M-1
PR =etk7 ST AP HP (4K R)cos md. (A9
m=0

¢ W is given on the free surface intersecting the
fictitious cylinder by

Qb(l) eKZe~£KRocos€
M- _2m'+1
+\/——— eKZ A“’ 1(1“?0 4 x)cosmﬁ.
(A-5)
Derivatives of ¢ are as follows :
1
a¢( ) — —1KRocos
am+1
e ra-2EL,)
——zK\/ 2 Ae ( 4+ “/cos md,
KRO m=0
(1)
_.g)ﬁ_z—cAwRQSin 0e—iKRocoso
M-1 KR _277L+1 .
nI?R mAY e ( T ”)sm mo,
o m=0
o
=ZCA(D(3_"KR°°°50
0z
M-1 —i([(Ro—277L+1T[)
+K\/ SY Aille + “lcosmd.
/LKRO m= o !
(A-6)
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Note that KRy;»1 and hence,
side of Eq. (A-2) reduces to

the right-hand

i“l(y(ﬁ(l))z:M\/ 2 e~ K Ro(1+cos 8)
g

g KR,
M~1 2m+1 (.
X > Alllet 75 7 {zK(l—cosﬁ)cos m
m=Q
+~g~ sin @ sin m&} (A-7
0
where the m/KR, term is kept.
Look for ¢ in the form:
M=1
PP = 37 eP2emiKRe(1+eosb) (. cos m 4+ as sin mb)
m=0
M-1
+ 3V g¥7e K Rot1+cosd) (¢ cos mO+ 1 sin mb),
m=0
(A-8)

where a., a5, B8, 7. 7s and J are unknowns.
Substituting Eq. (A-8) to Eq. (A-2), we obtain

PP =—KC _2_512_}114[118127”4“2
L A ”KRO = m
1
X g‘,oFl (6, m)eriomrz, (A-9)

where

k.0, m)= \/K2(2+2cost9)

m\? . mo.
+<E> — (=1 ZKTosm@,

e—-iKEo(Hcos )

4K—k,00,m)
x {K(l—cosﬁ)+(—1)lﬂsin 0}
Ry

X {cos mb—i(—1)!sin mb}.

Py, my= A0

¢? is a particular solution to Eq. (A-2) and
can be determined in terms of ¢?. Hence, it is
concluded that the radiation condition for the
second-order problem should be imposed only to
the free wave potential ¢% and is the same as
the first-order one except that the wave number is
quadrupled. This implies that energy radiates
from the body to infinity even for the second-
order problem, which is different from Hunt and
Baddour’s explanation.
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