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A Cell-Centered, Finite-Volume Upwind
Scheme with Global Conservation

by Yoshiaki Kodama*, Member

Summary

A finite-volume, conservative upwind scheme has been developed, based on the flux-difference
splitting method. Pseudo-compressibility is introduced to the continuity equation. The cell-centered is
adopted, i. e., nodes for flow variables were placed at the center of each grid cell. With this combination
of the scheme and the node-cell layout, the global conservation property has been derived in a
straightforward manner.

The scheme was applied to two types of flows. First the flow past a circular cylinder was computed
using the O-grid at the Reynolds number R.=40. The integrated momentum and mass fluxes at inner
and outer boundaries agreed up to more than 9 significant figures after 1,000 time steps. Thus the global
conservation property was confirmed. The computed drag coefficient value agreed well with other
computed values. The same flow was computed using the H-grid. The drag coefficient value thus
obtained differed very little from the O-grid value.

The flow past a flat plate with a point of mapping singularity was computed at an attack angle of
30 degrees. It was confirmed that the global conservation property of the present scheme is not affected

by the presence of mapping singularities.

1. Introduction

Researchers in CFD (Computational Fluid Dynamics)
make efforts such that their computer codes mimic the
real physical fluid phenomena as accurately as possible.
CFD starts with the discretization of the governing
equations of fluid motions, i. e. the conservation laws of
mass, momentum, and so on. However, the discretiza-
tion inevitably causes some amount of loss of informa-
tion in the original equations. Since thé most important
information to be retained is the conservation property,
one naturally chooses to use conservative schemes.

Accurate estimation of the drag of a ship progressing
steadily in calm water is important for ship’s powering
and performance predictions. Though the flow has been
computed by many researchers including the present
author!!"2-BLILELEl it remains as quite a challenging
task for CFD, because drag of a streamlined body is
difficult to compute accurately compared with lift. A
flaw in a computational scheme, which is negligible for
lift, can cause significant harm on drag.

This paper deals whth an effort to give a sound basis
toward accurate computation of the drag of a ship, by
removing the “flaws” in computational schemes. Global
conservation is pursued here. The word “global conser-
vation” means that the conservation property is
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satisfied everywhere in the computed flow domain, all
the way down to boundaries. If it is satisfied, the drag
computed by the wake survey method agrees with that
obtained by integration on the body surface, for exam-
ple.

This paper presents a scheme possessing global con-
servation property. The discretized governing equations
are made fully consistent with the way the momentum
fluxes are integrated to compute lift and drag. An
upwind flux-difference-splitting method in the finite
volume framework is used for discretization. Pseudo-
compressibility is introduced in the continuity equation,
in order to couple the equation with those for the
momentum. Global mass conservation is satisfied in the
steady-state limit. Nodes for flow variables are placed
at the center of each grid cell. This allows the use of
grid cells as control volumes, from which global conser-
vation property is automatically derived, even when
points of mapping singularity are present in the domain.

2. Formulation

2.1 Cell-centered method

This section shows how the “flaws“ that exist in
conventional methods and prevent global conservation
can be removed by adopting the cell-centered method.

Fig.1(a) shows layouts of control volumes in the
present node approach and the conventional node
approach. Conventionally, in the pseudo-compressibility
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method adopted by the author'®, the nodes for flow
variables are placed at the grid nodes. There the control
volume used for conservation laws is bordered by edges
located at half-way points between the nodes. As its
consequence the half grid-cell area adjacent to bound-
aries (solid wall, e. g.) cannot be covered in a straight-
forward manner. Global conservation is violated there.
In the cell-centered method”, flow variable nodes are
placed at the center of each grid cell, which is used as
a control volume. This time the gap does not occur, and
global conservation holds in a straightforward manner.

Fig. 1(b) shows the situation at a junction, which
typically occurs with grids of H topology. If the flow
comes from left with non-zero at tack angle as shown in
the figure, a large pressure difference occurs near the
leading edge between upperside and lowerside. With the
conventional node layout, the pressure value is required
at the junction point. A multi-valuedness problem of the
pressure there occurs, since, if it is extrapolated from
lowerside, high pressure will result, and if extrapolated
from upperside, low pressure will result. Simply taking
an average often causes pressure oscillation. It should
be noted that the drag of a streamlined body can be
significantly influenced by the pressure values at lead-
ing and trailing edge points. In the cell-centered node
approach, in contrast, the multi-valuedness problem
does not occur, because no flow variable node is defined
multiply. Global conservation is automatically satisfied
there, too.

Fig. 1(c) shows the situation with a point of map-
ping singularity, which exists in a grid of H-O topology
around a ship hull. The transformed governing equa-
tions become singular at the point, and cannot be
computed. In the conventional node approach, the flow
values there are usually obtained by interpolation using
neighboring points, and global conservation is violated.
In the cell-centered method, the point of mapping singu-
larity is automatically circumvented, and global conser-
vation holds.

2.2 Governing equations

The nondimensional governing equations'®, i.e. the
conservation of momentum and mass are written in
Cartesian coordinates as

ﬂ+_@f‘_+_@G_+QEzJ_+ .a_.G_U..

ot Tar oy Tax Ty 0 (1)
where
u ut+p uv
g=|v|, F=| wv |, G=|v*+p
b Bu Bv
2ux Uy+ Vs
Fv=—7%: Uyt V], Gv=—72: 20y
0 0

where all the subscripts x and y denote partial deriva-
tives. B is a positive constant for the added pseudo-
compressibility. Coordinate transformations from (z, ¥)
to (&, 7) coordinates are then made. Thus

doq , oF | 3G | dF,
7?+a—5+%“+ 3
where
{F=(knx)eF+(kny)$G
G=(kns)"F+(kny)"G "’
and similarly with F, and G..
{k"=~/13+y%, (kns)=yn, (kny)'=—z,
k'=Vxi+yi (kn)"=—y., (kny) =x.
where S is the local area or Jacobian. The correspond-
ing semi-discrete form is, by using (7, /) as indices in (€,
7) directions,
Siu%%“*‘ ﬁz’-r%——' Fi—%—‘l‘ G’\j+%— GAJ;%
+ Fvnuz - er-nz'*' évhnt"‘ GU}—!/ZZO- ( 3 )
2.3 Inviscid terms
The flux-difference splitting method!EhPRUOLIILAZL jo

3Gy
a7

+ =0 (2)

“used to construct the inviscid terms. The method is

X Flow variable nodes

¢ Grid nodes

Solid wall

Cell-centered Conventional

(a) Control volume

Flow . x

(b) Junction

® Mapping singularity

(¢) Mapping singularity
Fig.1 Node layout in the cell-centered method.
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widely used in TVD schemes for conservative, non-
oscillatory shock-capturing purposes in compressible

flow computations.

As a building block to form representations for the
flux values in eq.( 3 ), a flux difference between adjacent
points is first defined. Using the Roe’s averaging''”, the
flux difference between the points at (Z) and (i +1) is

defined as (Fig. 2)

8F£+%EF(C]1‘+I, Ni+—12—) —F(qi, Nz’+%)=Ai+%6q:‘+%,

(4)

where N stands for the metrics, i. e., £, %z, and #y. A is
the Jacobian matrix such as

2kniu+knyv,
knzv,
kn-l'ﬁ)

A:

where
w0 =(2s + a1}/ 2
v=(vi+vis1)/2

knyu,
kn;l{ + anyv,

knx
kny

kn!/Bv 0

kE=Fk% ne=ni ny=nj

and dg:+4 is defined as
5(1:4%:(7:41 —qi.

(5)

(6)

All the metrics in eq.(4 ) are evaluated at 7+1/2. This
makes possible the Jacobian representation shown in
the rightmost equality of the same equation.

The next thing to do is to split the flux difference into

A0 0
0 A 0
0 0 A4
A=kU=c), k=kU, =k(U+c)
U=un:+ovny
c=JU*+8
where “c” is the speed of
compressible world.
The metric terms are defined using the finite-volume
approach as shown in Fig. 2. Sy, the area of the cell (i,
7), and metrics are defined as

=i+

Ar=

+
where Az=AnZldnl _2M"'l

(1D

sound in this pseudo-

S,-j=%l(l‘sw —xne yse — yww)

—(Z/sw—yNE)(xSE“.Z‘NW)I (12)
{.’L‘mmz:l‘lvz — Tse {xe,,.,,=xns—xsz (13)
X nir2 ™= INW — TSw Xginp=TSE — TSW.

Using the flux difference in eq.( 7), the flux values of
up to 3rd-order accuracy are constructed with upwind
differencing. The approach used here is the post-
processing type (non-MUSCL type) ®. They are

Fiit=F{Nw})+ Oi8F i1+ O20F 1
+(1— @) 0F 71— 0:0F 73
Fioy=FAN:-)+ G:0F 3 +( 0~ 1)6F L
- @23}‘1‘1‘——%— ¢16Fi_+%
where the values of @ and @: are defined as

(14)

positive and negative parts by splitting the Jacobian
matrix A into positive and negative parts depending on
the signs of the eigenvalues. That is,

1st-order upwind | Central | 2nd up. | 3rd up.
3, 0 0 1/2 | 1/6
, 0 1/2 0 1/3

OF 1= 0F 1+ 0FnL (1)
8?:‘&—;—:(RAiL)(()\QH—i—:AiaQH% ( 8)
where »
R=[_r1, 12, rs]
u—{(U+c)ne, —2ny, u—(U—c)n:
=l o—(U+)ny, 2n:, v—(U—c)ny|(9)
L C(U+C), 0, —-c(U——C)
o
L: lzr
i)
1 [ (U'_C)nx, (U—C)ny, 1
=50 —(Uv+ Bny), Uu+ Bnx, uny = vns (10)
(U+c)ne, (U+c)ny, 1
j+1 X x b
o1 NW NE
It3
-1
2 SW SE
j-1 x X X
i-1 i-1 i+i—7 ir1

Fig.2 Control volume.

and the suffix (7) in F means that ¢ is given at (i).
Therefore ~ ~
Fi+7—Fi—%:Fi(Ni+%)~Fi(Ni—%)

+30F 3+ Iy oF
+[¥6F£%+F—%6Fi__%
+ It OF 1+ T¥ 6Fi3 (14.a)
where
rl, I, L Rt Ty Iy
0 1 14+3, -0 | P | B |14+~ | Dy

Note that the order of accuracy shown in the above
equations is that in the computational space, and the
accuracy in the physical space depends on the grid
quality.

The eq.(14) is conservative in the sense that, by
deriving another form for Fiiz by substituting 7-+1
into 7 in the second equation and equating that with the
first, the eqs.(4) and (7) are derived. In other words,
the egs.(4) and (7) are sufficient to make the flux
forms of eq.(14) conservative. If TVD flux limiters are
applied to the flux differences in eq.(14), TVD schemes
can be constructed. However, since no shock waves
occur in the pseudocompressible world, and following
the suggestion in ref. [1 1], TVD limiters have not
been applied. Similar flux forms can be derived for G.
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The first two terms in the RHS of eq.(14.a) can be
regarded as flux-correction terms that compensate for
the flux imbalance caused by adopting the same index
for the metrics in eq. (4 ). Fortunately, if the metrics
are defined in a finite-volume manner as in eq. (13),
these terms exactly cancel out with the corresponding
terms in the j-direction when they are summed up to
form the governing equation. That is

Fi,j(Ni+%) - Fi,j(Niﬁ%) + Gi,j(Nj-#——;—)

= Gis(N;-1)=0. (15)
The flux form in the ;-(&—) direction finally becomes
an—ﬁi—%: mzé_zﬂmq;w»m (16)
where
(M_y=—T" A3
M.=T _7A?—%

(I A+ I A )L
=(I"1A*+ LA )i-4
—(I‘gAUngA )isk

My=(TtA*+TTA )il

| —TyAn
(Mo=I3Ars

Similarly in the j-(7—) direction

(16.a)

o~ A 2
Gj+—é~_ J— 22_ mgj+m. (17)
2.4 Viscous terms

The viscous terms are derived in the same way as in

ref.[ 9]. It is as follows. As shown in eq. (2) the
viscous flux at i—l—% is given as

Fvnuz = [(knx)EFv + (kny)écv]u%

where
1 2ux Uy+ vz
Fv.'u:z: —E uy+ Ux ) Gvifll2: —"I—?; Zl)y
0 o1 o1
ity ity

The z- and y-derivatives of # in the above equation
are computed by applying the Gauss integral theorem
shown below

[fusdzdy= fudy, |} fuydm’y:— ude  (18)
to the shaded area in Fig. 3. That is

x X 1
J w 1+
2
SwW S SE
j-1 % x x
i—-1 i i+1

Fig.3 Volume used for viscous term integration.

1
Uzinn= "‘f‘I‘[ up8ys — undyn— uwlyw + usdys]

Uyirn ™ S [UE5.1‘5 UNOLN — UwOTw + u55.1‘s]
(19)
where
OYye=Yne—yse, OYn=ywne—Ynw, etc.
UE=Ui+1,j

1
uN:T(ui+l,j+l + it tisot i)
Uw = Ui,;
1
us——4—(um,j+ Uirt, j1t Ui+ uid‘—l)

and the area S.:12 is computed using eq.(12). By
explicitly picking out terms corresponding to ¢: and ¢;+1
in order to prepare for IAF procedures, Fu.. | is given as

Fouie (aF”> q,+1+<aF”) g +F‘_‘vu::2 (20)

861+ 9q +3
where
3fx
o ) 27, 00
(aqt)»%:”lee L 2
0 0 0]

2

_g}ff)ﬁf Siel [8””' 8"’”‘}5“]

(

( gﬁ );-%: - S,l+2 [6“
(%)

(

N»—

L sen +%—8xs}

1 [_ _1 1 ]
o H%— Si+% Syw n Syn + 4&1/5
3fy> ___1 [M —
H%— Si+% Oxw
Fou.e contains cross-derivative components. G, is
given similarly as

Gv1.1r2:< %2:’ )H%CHH"'( %gv ) ,qz+Gv. (21)

7}-61»; + %51‘5]

The form of the viscous flux at z'—% is obtaiiled by
substituting 7—1 into 7 in the flux form at ¢ +—2—. The
viscous flux in the n-direction at j +—%— is obtailned by
replacing 7 with j in the viscous flux form at : +7. This
time the area used for Gauss integration to compute
temrs w:, uy, etc. is shifted by % in the 7 direction.

Using the above forms, the viscous flux terms are
given finally as

~ - 2 = =
Fvi.é —‘Fu;,% m=2— Monqismt+ Fvné—_ Fv.'_% (22)
~ ~ 2 = =
ija-%—GUj-% ; Nvm4j+m+ ijuz— G vj.; (23)
Where~
Mv-2=0
Hoca=— [(kn) 92+ (kom0 90|
q- li-3

M=~ [(knr)e Lo (ke L ] g

3 aFU 3 GGU ]
e G G e |
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le_[(knr)e 3Fu +(k y)g an]
Mo2=0
FU:.I —[(knx)eFu+(kny) Gv]

and sxmnlarly with N, and Gv In the IAF procedure,
F ., and G, in the above equations are computed using
the flow values at a previous timestep.
2.5 Approximate factorization
A Padé tjme differencing form is used for time inte-
gration. That is
9. _1_ 4
ot 4t 1+64
where the value 6 is usually taken as 1, i.e. the Euler
implicit. By substituting the flux forms of eqgs.(16), (17),
(22), and (23) into eq.(3), using the Padé time
differencing, and applying the approximate factoriza-
tion, finally results in
E-sweep
Mfqu?k—z‘*‘quq?‘-l"*'MoAQf

+M1AQ?+1+M2[](I?+2=RHS (25)

1
i+3

where dq"=q"*"'—q" (24)

where
Mn= o4t ZEAM A+ Mo)m

S
~1+—M—t(M+MU)m

(m==x1, +2)
(m=0)
RHS= —~[ 3 (H+ M) ngion
+M=Z_Z(N+ No)n@ism
+ Foun= Fod + Goun— G, z]

gdt [AF Visuz AFU:—M +A_G Visuz
—4 G u,-.,,]" ! (26)
7-sweep
M—zd(]}'—z"‘ M—-ldq;’—l + Modq;l
+Mdqla+ Mqu}'+z=dq}" 27
where the metrics Mn» are given similarly as in eq.(26).
Updating
qn+l=qn +Aqn (28)

2.6 Boundary conditions

Fig. 4(a) shows the topology of the O-grid used for
computing flows past a circular cylinder, and Fig. 4(b)
shows the corresponding map in the computational
space.

At the left and right boundaries, the periodic bound-
ary condition is used. At the bottom boundary, located
at j=1/2, the solid wall boundary condition is used. For
the inviscid flux G,z at j=1, an exact form is used
instead of that given in eq.(14). Substituting «=v=0
and assuming that the pressure at ;=1/2 is equal to that
at ;=1 (zero extrapolation by 1/2), it has the form as

(kn.r)
Git={(kny)"| b5
0 |-

(j=1). (29)

That is

* Outflow

Cut

(a) Physical space.

Inflow or outfiow
JM C“ X X X x x X

J
Periodic Periodic

Solid wall

{b) Computational space.

Fig. 4 Boundary conditions for circular cylinder.

00 (kng)’
éj—%‘_’Bwaltq;' where Bua=|0 0 (kn,)"
00 0 (-4
(29.a)

Th flux at ; +—%— is given in a simlilar manner as in eq.

(14). This time the flux correction terms do not cancel

out, and therefore must be taken into account. The

viscous term G,,_,, can be computed in the same man-

ner as in the inner zone, if the value of ¢ at j=0 is
defined as

-1

where I,=| 0

0

Then the velocities are computed as exactly zero at

points on the wall, i. e. at the E and W points in Fig. 5.

00
go=Tlwq -1 0 (30)
01

%2,
x

j=1 %

0 x | e .«..*..,....-m...-- x
i-1 i S i+1

Fig.5 Volume used for viscous term integration on
solid wall.
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At the outer boundary, two types of boundary cond-
tions are used. One is the inflow boundary condition, and
the other is the outflow boundary condition. The inflow
condition is given as the uniform flow, i.e. =1, v=0,
and p=0. The outflow is given as the combination of
zero extrapolation for # and v, and the given uniform
flow value for » (i.e., p=0). In the both cases, a
characteristic form of G112 is used as the boundary
condition. That is, the flux form there is obtained by
introducing an approximation of the characteristic
nature to the exact form as shown below.

GAJ‘*"%‘:B;F*‘%'qf‘P% (j=IM-2)
=(B*" +B*7),+1d5+}

= Bﬁ}(—g’% —%q,-q) + B?‘%(%Qfﬂ —%qﬂz)
(3D)

where
Bia=(R*A*L*);.} (31.a)

where R*, A** and L* are defined similarly as in egs.
(9), (10), (1D).

The approximation in the last row of the eq.(31) is
formally second-order accurate. The outer boundary is
located at 7+1/2 where j=JM—2 for coding conve-
niences. JM is the number of points in the j-direction.
The terms in the outside region, i.e., gm-1 and g are
referenced in the computation. They are given to be
consistent with either inflow or outflow boundary condi-
tion. The dgm-1 and dgu are given similarly.

In the governing equations corresponding to the con-
trol volumes adjacent to the top or bottom boundary,
the N terms need to be modified. That is

Ity Tt I [T, Ty r;
inner (£—,n—sweeps) | ~®, | 1+®1 Py | ®> | &, |1+ P, —d, | —B
j = 1 {n—sweep) 0 P, d,1 0 1-&, —-%,
j = IM-2 (n—sweep) | -, 1—®, 0§ & ®, 1]

Further, terms related to flux-correction or wall bound-
ary need to be added.

Fig.6(a), (b) shows the grid topology used for a flat
plate computation. The left edge of the flat plate is
shifted by one grid cell to the right, in order to place the
singularity point inside the flow. As the result, a gap
appears at the bottom boundary in the computational
space. The flux there exactly sums to zero. The velocity
values at points edging the gap are needed to compute
the viscous terms on the solid wall next to the gap.
Their values can be computed by averaging as in nor-
mal points.

2.7 Global conservation

The forces acting on the body can be obtained by
integrating the flux along the inner boundary.

-1 -
[Inner integration] = Foottom= — ; (Gj—-%+ GUi<l/2)j:1

(32)
The first component of Fyoom is equal to 1/2 of Cp, the
drag coefficient. The second component is equal to 1/2
of Cy, the lift coefficient. The third component is the net

Outflow

Inflow

(a) Physical space.

Inflow or outflow

x X x x x x

Cut : Cut
X ‘ x x X x X
X x x X x x
x X x x x X
x X X x X X
St
x X x X X X

Wall Mapping Wall
singularity

(b) Computational space.

Fig.6 Boundary conditions for a flat plate with map-
ping singularity. ’

mass flux, which is zero by definition. The forces can
also be obtained by integrating, for example, at the
outer boundary.

[Outer integration]

M1 P
thap= - E (Gj+%+Gu;¢uz)j=]M—2 (33)

The integrated mass flux at the outer boundary should
be zero at convergence. It is assured, by the form of the
discretized governing equations, that the integrated
inner and outer flux values agree with machine accu-
racy at convergence. That should also apply to the
value obtained by adopting any control surface that
surrounds the body and aligns piecewisely with the grid
lines.

3. Computed Results

3.1 Circular cylinder
The flow past a circular cylinder of unit diameter was
computed. The grid is shown in Fig. 7. The parameters
used in the computation are
Reynolds number R.=40.
Mimimum grid spacing Zmin=0.008
Radius of outer boundary=40.0
Grid points in z-direction IM =41
Grid points in j-direction JM =61
0=1.0 (Euler implicit)
Pseudo-compressibility parameter 8=1.0
Upwind differencing=3rd-order
The outflow boundary condition was imposed at
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/ \

Fig. 7 Grid around a circular cylinder

points in the downstream zone that forms approximate-
ly 90 degrees angle at the center. At the time ¢=0, the
flow was uniform everywhere. Computation was first
made for 10 timesteps with 4¢=0.01. Then 4¢ was
changed to 10. In case =10, the L2 norm of the
residual dg decreased to about 107** after 3000 times-
teps. Fig.8 shows pressure contours. The nondimen-
sional pressure p is equal to 1/2 of the pressure
coefficient C,. Fig.9 shows the surface pressure distri-
bution. The angle @ is zero at the front stagnation point
and 180 at the rear stagnation point. In the fine grid
case, the number of grid is doubled both in &-and 7-
directions. It is seen that the difference is very small.
Fornberg’s computed result"® shows slightly lower
minimum pressure. The measured result by Grove” is  Fjg 10 Velocity vectors near a cylinder surface.
still lower. The author suspects that the wall effect is :

non-negligible in Grove’s result, in which the [wall dis-

tance/diameter] ratio is 20. Fig. 10 shows velocity
T T T T T vectors near a cylinder. The non-slip boundary condi-
tion is well satisfied.
The integrated flux values are
»  Present computation | 0.75673968224135 0.75673968224 303
Foorom=| 0.7218 X107 | Fip=| 0.4807x107"

0 . —0.3769 107"
where the components are, from top to bottom, drag,
P L O  Grove (Exp.) i lift, and mass flow. It is evident that the global conser-
vation holds with each component. The computed Co
values, which equal twice the nondimensional drag
values, at R.=40 are

0.5
— » (Fine grid)

---- Fornberg (Comp.)

T

[(Case | Present {#=1.0) | Present (=4.0) | Fine grid (3=10) | Fornbergh®l | Dennis™ |
L Co | 1513 | 1519 | 1.499 {1498 | 1494 |

As pointed out in ref.[11], coupling occurs between the
momentum equations and the continuity equation even
in the steady-state limit, in the present upwind pseudo-
compressibility approach. In order to check the degree
of coupling, computations with 8=2.0 and 4.0 were
0.5 0 90° 0 180° made. As shown in the above table, the obtained results
did not show appreciable difference from the case £=

Fig.9 Surface pressure distribution on a cylinder. 1.0. In the fine grid case, the number of grid points were
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doubled both in £-and 7- directions. The fine grid value
agrees well with other computed values. The measured
Cp values™ are

R. |38.5)|46.6 | 44.9 ] 38.1 | 41.7
Cp |1.4611.56(1.46 | 1.69] 162

It is seen that the computed value is well within the
scatter in the measured values.

The dependence of the computed results on the value
of B was significantly increased by using zero extrapola-
tion for pressure as well as velocities as the outflow
boundary condition. That is the reason why the given
uniform pressure value has been adopted as the outflow
boundary condition. This suggests there is room for
improvement in the outer boundary conditions. But
clearly this dependence does not come from the cou-
pling in the governing equations, and, as far as external
flows are concerned, the present form of the boundary
conditions is valid.

In order to check the influence of the grid topology,
the same flow was computed using H-grid as shown in
Fig. 11. Actual computation was made in the upper half
zone with symmetry condition. The distances to up-
stream, downstream, and top boundaries are all 40. All
the parameters used in the computation were the same

0
\W!

R
NSO

AR
SCLTTHE

Fig.11 Grid around a circular cylinder (H-grid).

0.1 p=0.0 0.1

Fig. 12 Pressure contours (H-grid).

as the O-grid case. Fig.12 shows pressure contours.
Though the distribution agrees well with the O-grid
case, slight kinks are observed in the zones where the
grid lines have kinks. The Cp value was 1.511, which
differs by only 0.13 % from the O-grid value of 1.513.
3.2 Flat plate with mapping singularity
This case is to test the validity of the global conserva-
tion of the present scheme under the presence of map-
ping singularities. The parameters used are
Reynolds number K.=40
Mimimum grid spacing dmin=0.008
Radius of outer boundary=10.0
Grid points in 7-direction IM =21
Grid points in j-direction JM =21
6=1.0 (Euler implicit)
Upwind differencing = 3rd-order
Pseudo-compressibility §=1.0
Fig. 13 shows the grid used. The plate is flat with zero
thickness. The inflow was set at 30 degrees to the flat
plate. Except for the modifications needed to handle the
gap, no modifications were made to the computer code
used for the cylinder computations. The numerical
stability limit was severer in this case, and 4¢ was
limited to 0.05. The global conservation was again
confirmed. Fig. 14 shows the velocity vectors, and Fig.
15 shows the pressure contours. At the points next to the
leading edge, the pressure value becomes maximum on

Fig. 14 Velocity vectors around a flat plate.
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p=-0.1

Fig. 15 Pressure contours around a flat plate.

the face side and minimum on the back side, and the
velocity changes rapidly near the leading edge. In spite
of this rapid change, oscillation is not observed in the
pressure or velocity distribution. The global conserva-
tion was again confirmed, which demonstrates that the
present scheme automatically circumvents the multi-
valuedness or mapping singularity problem.

4. Conclusions

A finite-volume, cell-centered upwind scheme with
pseudo-compressibility has been presented. It has the
global conservation property, which means that the
conservation property is satisfied all the way down to
boundaries. With global conservation, the value of the
forces acting on a body becomes independent of the
integration path, whether along the body surface or
along the outer boundary, and the computational
scheme is made fully consistent with the way the forces
are computed. It uses grid cells as control volumes, and
facilitates the implementation of the global conserva-
tion property in a straightforward manner. Points of
mapping singularity are automatically circumvented,
and the global conservation property is not affected by
the singularity points. The scheme is similar to the
one!” for compressible flows.

Computations were made for the flow past a circular
cylinder at the Reynolds number R.=40, using O-grid.
The integrated flux values, i.e. lift, drag, and mass,
agreed up to more than 11 significant figures after 1,000
timesteps, when they were integrated at the body and
the outer boundary locations. The computed drag
agreed well with other computed or measured results.
The same flow was computed using H-grid. Though
slight kinks appeared in the zones where kinks existed
in the grid, the computed drag agreed well with the
O-grid value, which seems to suggest that the global
conservation property helps to make integrated force
values independent of grids.

The flow past a flat plate with mapping singularity
was computed at the Reynolds number R.=40 and at

the attack angle of 30 degrees. The global conservation
property was not affected by the presence of the map-
ping singularity, though the numerical stability limit
was severer in this case than in the circular cylinder
case.

The present scheme has a room for improvement. It
has a 3rd-order accuracy in the computational space,
and not in the physical space. This causes the depen-
dency on grids. Accuracy in the physical space should
be pursued, taking into account the non-uniform spac-
ing"® or kinks™® of grids. The degradation of numeri-
cal stability due to grid skewness is another problem.
Further study is needed including the application of
TVD limiters, related with it.
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