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A  Cell-Centered,
     Scheme with

Finite
Global

-Volume  Upwind
Conservation !

l

by YoshiakiKodama',Member

                                    Summary

 A finite-velume, conservative  upwind  scheme  has been  developed, based on  the flux-difference
splitting  method.  Pseudo-compressibility is introduced to the continuity  equation.  The  cell-centered  is

adepted,  i. e.,nodes  for flow variables  were  placed  at the center  of each  grid cell. With this combination
of the scheme  and  the node･cell  layout, the globa; conservation  property has been derived in a

straightforward  manner,

  The scheme  was  applied  to two  types  of  flows. First the fiow past a  circular  cylinder  was  computed

using  the O-grid at  the Reynolds number  Re=40. The  integrated momentum  and  mass  fiuxes at inner
and  outer  boundaries agreed  up  to more  than  9 signvacant  figures after  1,OOO time  steps. Thus the global
conservation  property was  confirmed.  The computed  drag coeMcient  value  agreed  well  with  other

computed  values.  The  same  fiow was  computed  using  the H-grid. The  drag  coeMcient  value  thus

obtained  differed very  little frem  the O-grid value.
  The fiow past a  flat plate with  a  point of  mapping  singularity  was  computed  at  an  attack  angle  of

30 degrees. It was  confirmed  that the global conservation  property of  the present  scheme  is not  affected

by the presence of  mapping  singularities.

1. Introduetion

  Researchers in CFD  (Computational Fluid Dynamics)
make  efforts  such  that their computer  codes  mimic  the

real  physical fiuid phenomena  as  accurately  as  possible.

CFD  starts  with  the discretization of the governing
equations  of  fluid motions,  i. e, the  conservation  laws  of

mass,  momenturn,  and  so on.  However, the discretiza-
tion inevitably causes  some  amount  of  loss of  informa-
tion in the original  equations.  sincet.Qiiflmost important

information to be  retained  is the coimservation  property,

one  naturally  chooses  to use  conservative  schemes,

  Accurate estimation  of  the drag of a  ship  progressing
steadily  in calm  water  is important for ship's powering
and  performance  predictions. Though  the  fiow has been
computed  by many  researchers  including the present
author[t],i2]-[3]'E`]'[5]'[6], it remains  as quite  a  challenging

task for CFD, because drag of a streamlined  body is
dithcult to compute  accurateJy  compared  with  ]ift. A

flaw in a  computational  scheme,  which  is negligible  for
lift, can  cause  significant  harm  on  drag,

  This paper  deals whth  an  effort  to give a  sound  basis
towarcl  accurate  cornputat'ion  of  the drag  of  a stiip, by
removing  the 

"fiaws"

 in computational  schemes.  Global
conservation  is pursued  here. The  word  

"global

 conser-

vation"  means  that the conservation  property is

'
 ShipResearchInstitute

satisfied  everywhere  in the computed  fiow domain, all

the way  down  te boundaries, If it is satisfied, the  drag

computed  by  the wake  survey  method  agrees  with  that

obtained  by integration on  the  body  surface,  for exam-

ple,

  This paper presents a scheme  possessing global con-

servation  property. The  discretized governing  equations

are  made  fully consistent  with  the way  the rnementum

fluxes are  integrated to compute  lift and  drag. An

upwind  flux-difference-splitting method  in the finite

volume  framework is used  for discretization. Pseudo-
compressibility  is introduced in the continuity  equation,

in order  to couple  the equation  with  those for the

momentum.  Global mass  conservation  is satisied  in the

steady-state  limit. Nodes for fiew variables  are  placed

at the center  of  each  grid cell. This allows  the use of

grid  cells as control  velumes,  from which  global conser-

vation  property is autornatically  derived, even  when

points of mapping  singularity  are  present in the domain.

2. ForTriulation

  2.1 Cell-centeredmethod

  This section  shows  how  the 
"fiaws"

 that exist  in

conventional  methods  and  prevent global  conservation

can  be removed  by  adopting  the cell-centered  method.

  Fig.1(a)  shows  layouts of  control  vQlumes  in the

present node  approach  and  the conventional  node

approach.  Conventionally, in the pseudo-compressibility
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method  adopted  by the authori6},  the nodes  for flow
variables  are  placed at  the  grid nodes.  There  the control

velume  used  for conservation  laws  is bordered  by edges

located at  half-way points between the nodes.  As its

consequence  the half grid-cell  area  adjacent  te bound-

aries  (solid wall,  e, g.) cannot  be covered  in a  straight-

forwarcl manner.  Global conservation  is vielated  there.

In the cell-centered  rnethod[7], fiow variable  nodes  are

placed at the center  of  each  grid cell, which  is used  as

a control  volume.  This  time  the  gap does not  occur,  and

global conservation  holds in a stralghtforward  rnanner,

  Fig.1(b)  shows  the situation  at a junction, which

typically occurs  with  grids of H  topology. If the flow

comes  from left with  non･zero  at  tack  angle  as  skown in
the  figure, a  large pressure difference occurs  near  the

leading edge  between  upperside  and  lowerside, With the
conventional  node  layout, the pressure value  is required
at  the  junction point. A  multi-valuedness  problem  ef  the

pressure there occurs,  since,  if it is extrapolated  from

lowerside, high pressure  will result,  and  if extrapolated
from  upperside,  low pressure  will  result.  Simply  taking

an  average  often  causes  pressure escillation, It should

be noted  that the drag ef  a  streamlined  body can  be
significantly  influenced by the pressure values  at  lead-

ing and  trailing edge  points. In the cell-centered  node

approach,  in contrast,  the multi-valuedness  problem

does not  occur,  because no  flow variable  node  is defined
multiply.  Global conservation  is automatically  satisfied

there, too,

  Fig, 1(c) shows  the situation  with  a point  of  map-

ping  singularity,  which  exists  in a  grid of  H-O  topology

around  a  ship  hull. The  transformed  governing  equa-

tions  become  singular  at the point, and  cannot  be

computed.  In the  conventional  node  approach,  the flow
values  there are  usually  obtained  by  interpolation using

neighboring  points, and  global conservation  is violated,

In the  cell-centered  method,  the point of mapping  singu-

larity is automatically  circurnvented,  and  global  conser"

vation  holds.
  2.2 Goyerningequations
  The  nondimensional  governing equations["i, i.e. the

conservation  of  momentum  and  mass  are  written  in
Cartesian coordinates  as

    get+0aF.+OaGy+0at.'+-OaGyv=o a)

where

    g==Ip
",l,

 F-[
"

lu,P], c-=[vi+V
.p]

    F} = n p. [ug2 +: 
'vxl

 ' c" ==  - k[ 
""

i :1
where  all the subscripts  x  and  y clenote partial  deriva-
tives. B is a  positive constant  for the  added  pseudo-
compressibility.  Coordinate transformations from  (x, y)
to (e, o) coordinates  are  then made.  Thus

   sOoqt+0oF4+aoCrpA+0oFAev+-aoSG;,.-==o
where

    F==(kn.)eF+(im.)tG

   (C=(lenx)VF+(kn.)VG '

   and  similarly  with  Fe and  Cv.
    fee= VIEIol-Ilye, (knt)e=yv, (leny)e:= Lxv

   (le"==VIJg4 Fi3ye, (knOO=-ye, (leny);==xe
w

(2)

 here S  is the  local area  or  Jacobian, The correspond-

ing semi-discrete  form is, by using  (i, 1') as  indices in (e,
q) directions,

   s.  
aoqt
 +fi,.,t-A･-t+c,.}-c.t

       +At.:,e-A,i.ut+G-v-]ttLCvJ-t,2zae･ (3)
 2. 3 Inyiscid terms

 The  flux-difference splitting  method['j-{Si,i9],[]O},tiii･[i2t is

used  to construct  the inviscicl terms, The  method  is

X  FIow  variable

.  Gridnodesnodes

Cell-centered

FlowO

(a)

Conventional

Control volume

(b)Junction

Fig. 1

          ,!, Mapping  singularity

  (c) Mapping  singularity

Node  layout in the  cell-centered  method.
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widely  used  in TVD  schemes  fer conservative,  non-

oscillatory  shock-capturing  purposes in compressible

flow cernputations.
 As a  building block to form representations  for the

fiux values  in eq.( 3 ) , a flux difference between  adjacent

points is first defined. Using  the Roe]s averaging['2], the

flux difference between the points at  (i) and  (i+1) is
defined as  (Fig. 2)

   swi+-i Ei  F{qi+i, Nl･+s) -  F(qi, M-+)i) =:Ai+  -i-6qi+t,

                                       (4)
where  N  stands  for the  metrics,  i. e., le, nx,  and  ny.  A  is

the Jacobian matrix  such  as

      r2kn.u+hnyv, knyu, lenxl

   A=L  fenxv, knxu+2fenyv, fenyl

      t knxB, lengB, OJ

where

   ii':
-

:
`/el",:"tZ:i'il2,2

.....g

and  aq,+t is defined as

   6qi+t=ai+i-qi.

All the metrics  in eq.(  4 ) are  evaluated  at

makes  possible the Jacobian representation
the rightmost  equality  of  the  same  equation.

(5)

(6)
i+1/2. This

  shown  in

  The fiext  thing to do is to split the fiux difference into

positive and  negative  parts by splitting the  Jacobian
matrix  A  into positive and  negative  parts  depending on
the  signs  of  the eigenvalues.  That  is,

   6E･.t -  6E ±
. -e +  aFll -l (7)

   aie)t.;-=<R,1±L)6q,･.t==A±aa,.} (8)

where

   R==[ri, h, ts]'

       ru-(U+c)nr, 
-2nu,

 u-(U-c)n.1

     
=Vv-(U+c)ny,

 2n.,                           v-(U-c)nyl(9)
                            

-c(U-c)
 ]       L c(u+c),  o,

i--[IA

     =,:,["[g,'+Ce::s,  
(u'la,-+CB).".Y,:

 ...lvn.1(ie)

                                  11         L (U+c)n., (U+c)n,,

J+1

.1j+ij,1JLijrl

x x X

x

si･i
x

xsw xssx

. 1
1-1  i--  i
      2

.1l+ -.
  2

Fig.2 Controlvolume.

i+1

   !L
± -[

A

g
'i

 AO
ot
 kt] where  A2-am

±

2iRmii

   (
A

iil?S3r#++-B

C.h'.h=kU'AS=fe(U+C)

 (n)

where  
`ici'

 is the speed  of sound  in this pseudo-

compressible  world.

  The metric  terms are  defined using  the finite-volume
approach  as  shown  in Fig. 2, Sii, the  area  of  the cell (i,
i), and  rnetrics  are  defined as

   s,,- ==: Sl( c,. -x., )(y,. - gy..)

       '(Ysw-YNE)(XsE-XNui)l (12)

   (:llll[i:::::-.x.sf. (:illllirr;:gf::,":. (i3)

  Using the flux difference in eq. ( 7 ) , the flux values  of

up  to 3td-order accuracy  are  constructed  with  upwind

differencing. The  approach  used  here is the post-

processing  type (non-MUSCL type)[Si'["]. They are
    --  - -
   n.1=F,(M･.e)+O,aFILi+O,6FS.,s

         +(1  
-

 ¢ ,) 6MS-  ¢ , on-. u;.

   A-s=-Fi(ivl･-t)+e,afi;Jg+(¢ ,-i)sptt  
(i4)

         
-

 o2 sEr-s- dii 6F,:.t

where  the values  of  di, and  ¢ 2 are  defined as

lst-ordeiupwindCentral2ndup-3rdup.

¢ 1 O o 112116

e2 o 112 o 113

and  the suMx  (i) in F  means  that q is given at (i).
Therefore

   E･.t-a.t-E･(IVI･.})-F,(N,-e)

              +Irr2afiie+lv}aF;･-i

              +  1-lr aFl# .} +  4N  }i -i

              +Il,  8FiJ+}+ rg 6Fi.g (14.a)

wherer+,"trttrtr:,rr

rl

-Ol1+el- ¢ 2 ¢ 2e21+Ol-fp2-el

Note that the  order  of  accuracy  shown  in the above

equations  is that in the computational  space,  and  the

accuracy  in the physical space  depends on  the grid

quality,

 The eq.(14)  is conservative  in the sense  that, by
deriving another  form for Fi+i,z by  substituting  i+1

into i in the second  equation  and  equating  that  with  the

first, the eqs.<4)  and  <7) are  derived. In other  words,

the  eqs.(4)  and  (7) are  suMcient  to make  the fiux

forms of  eq,(14)  conservative.  If TVD  flux limiters are

applied  to the flux differences in eq,(14),  TVD  schemes

can  be constructed.  However, since  no  shock  waves

occur  in the pseudocompressible  world,  and  following

the suggestion  in ref.  [11], TVD  limiters have  not

been applied.  Sirnilar flux forms  can  be clerived for G･
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 The  first two  terms  in the RHS  of eq.(14.a)  can  be

regarded  as flux-correction terms  that compensate  for

the  flux irnbalance eaused  by  adopting  the same  index

for the metrics  in eq, ( 4 ). Fortunately, if the metrics

are  defined in a  finite-volume manner  as  in eq.  (13),

these terms  exactly  cancel  out  with  the corresponding

terms in the j-direction when  they are  summed  up  to

forrn the  governing equation,  That  is

   A,,(N,.i)-A,,(N,-t)+C,.･(N}.")

     
-C;,,j(AC･rP=-O.

 (15)

The flux form in the i-(e-) direction finally becomes
   A - 2-.

   Iil･+t' E' -} ==  
.\L,namqi+nt

 (16)

whereM-z==-Il:LA･-g

2(ijJ i 
==
 lll}A ,+･ Tg

     
-(1-ttl-A++II:}A-),Li

Mb -(ll'-I  A+  +  igA-) ,-S
    

-(I'VA++ngA-),.t

fl,-(l'VA++rgA-),.t

    
-Il,Ai,}

th-I'g,A;.;
larly in the i( ny-) direction
- - 2--

          m ±±-!

Viscous  terms

(16,a)

          1

   
UxHnl=si+i/'[uEayE-uN6ztN-uw6gt-t+usays]

   u"i.]e=-sl..t[uEbeE-uNdrN-uwaxw+usdrs]

                                    (19)
where

   6ZIE=yNE-ysE, 6trN==yNE'yN-,, etC.

UE=Ui+1,j

UN={I'(Ui+1,j+1+Ui+1

ntwrui,j

US=='i'<Ui+1,j+Ui+1,i-

,J+Ui,i+1+Ui.i)

 and  eq.(12).  By
explicitly  picking out  terms  corresponding  te qi and  qi+i

in order  to prepare for IAF  procedures, Flet. ,l 
'is

 given as

   FLt. w!=  ( Onlq;1. ),.sqi+i +(  [l[q;.} ),.tai + FviJn (20)

where

1+Ui,j+UiJLi)

sirni

   Gj.re,i,-Gj.t (17)

2.4

 The  viscous  terms  are  derived in the same  way  as  in
ref.[9].  It is as  follows. AS shown  in eq. (2) the

viscous  flux at  i+-ll is given as

   fi.,.,,,==[(fen.)eFv+(hay)eGv]i+t

where

   A,.,,,=r ft.Iuy2+:
Xvx],.g

 G""i"== 
rk[

or"2+

oVYV'l,.t
The x-  and  y-derivatives  of u  in the above  equation

are  computed  by applylng  the Gauss integral theerem

shown  below

   .Cluxdudoi=YLedy, ffu.dude==-YL{du
to the  shaded  area  in Fig. 3, That is

Fig. 3

j+1

j

 j-1
    irl  l i+1

Velume  used  for viscous  term  
'

x x x

WNE

"tt/tttttl-,.tttttttttttttt/ttt'il･

x

i'1"Wi,i''i's･,,!IE2.I･II.

I/ttttttttl

swsSE

x x x

<18)

lntegratlon.

( IAq. )i+, 
"=

 
r
 ker2:

 Oak

 afl
             afl afl
             oo                        

･-;

( :i ),.i= s,i.t'[6yE 
rtopN+t6ys]

( Sft1 ),.tt= 
-
 s}.t [axE 

--l-axN
 +-t-ax,]

( acaii ),.i== sl.t [- ay ur -t6y.  +tays]

( ge ),.t=" si.t [r arvLtbeN  +t6)rs]

 contains  cross-derivative  corriponents.  Gv,.in is

   
-(

 
aaGq."

 ),.>qi.i+( 
aoGq-"

 ),.tqi + G-vt. E, (21)

     :.-ueo.a
'

,;

'

:,gb.zfi:,xlllo/;1ila`111':l
"

11Ti,:l
the area  used  for Gauss integration to compute

 ux,  uy,  etc.  is shifted  by t in the rp direction.

   the above  forms, the viscous  flux terms are

           2 - ..

o

oo

n  i+u:given

 similarly  as

   Gvt+it2

 The  form of  the viscous  flux at

substituting

viscous  flux

replacing  i with  i in the viscous  fiux form at i+-

timetemrs

 Usinggiven
 finally as

   Fvt-l`Fvi-t='.;J2Mvntai+m+Fvt+i-Fvi-b (22)
               2 A -

   Gv"e-Gv]-t==:.;.J21Vvmqj+m+Gta'.timGvd (23)

whereM,L2=Ond,.i--[(kn.)"

 
aoFqif

 +(kny)"  
aoGq.v

 ],.t
mb.b- -[(kn.)" 

0olq'b.
 +(kny)" 

0aCX.
 ],.}

    +[(lent)" 
0oFqi

 +(knyF  
OoGe.V

 ],.t
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   iRvi=[(kn.)e 
aaFa."

 +(kn.>" 
OoGq.v

 ],..,,
   [th.,=e
   FAv,.;=[<fenr)"A+(hay)eG-v]i±t       " -
and  similarly  with  M  and  GJv. In the  IAF  procedure,
Fv  and  Gvin  the above  equations  are  cornputed  using

the flow values  at  a previous  timestep.

  2.5 Approximate  facterization

  A  Pade  tjme  differencing form  is used  for time  inte-

gratien. That  is
    0 1 li
   Tt=At  1+on  where  Aq"=q"'t-an  (24>

where  the value  e is usually  taken as  1, i. e. the Euler
irnplicit. By  substituting  the  flux forms of  eqs. (16) , (17),
(22), and  (23) into eq.(3),  using  the Pade  time

differencing, and  applying  the approximate  factoriza-

tion, finaliy results  in
SrrsweeP
   Mr,Aer.,+M.,nqr･.itthnai

       +Minqi.,+uana,'･.2==RllS  (2s)
where

   M.=Jyaf(16e.(t M+mb.). (.=-± 1, ± 2)

      ..,J+.aegt(A  fl+th,). (.==o)

   RHS  ==  -  
nst

 [.2.n,( th +  mbv)mqi+m
            Z- -. -
         +  Z  (N+M)mqjtm
           m=-!

         +  iSvi,:tt - iiA; vi.t  +  G-"vj.]/s- o'Vvi-vt]n

         
-egt[Ajii).,.,.-nF';S,,.,,,+n.Gi.,.

         -d  G--v ,. ,m]""  (26)

za:S!!99P
   M-,nq,n･-,+M",ne,n-J,+Mhnq;
       +Mide."･+i+thtiq,"-+s=riq,'･ (27)
where  the  metrics  Mn  are  given similarly  as in eq.<26).

!UIpdg!ingdt
   q""==qn+Aa"  , (28)
  2.6 Boundarycenditions

  Fig. 4(a) chows  the topology  of  the O-grid  used  for

cemputing  flows past a  circular  cylinder,  and  Fig. 4( b)
shows  the  correspondlng  map  in the computational

space.

  At the left and  right  boundaries, the  periodic bound-

ary  condition  is used. At the bottom bottndary, located
at  iH-112, the  solid  wall  boundaTy condition  is used.  For
the inviscid flux G)･.,,2 at i--1, an  exact  form is used
instead of  that given in eq,(14).  Substituting u=  v;O

and  assuming  that the pressure  at i=1f2 is equal  to that

at  i=1 (zero extrapolation  by 1!2), it has the ferrn as

         r(imx)"1
    C.-t=::t(kny)el pj (]'-1), (2g)
         L O IJ-t
That  is

Infiowx

t

    JM

    JM-1

    JM.2

     j?eriodic

      1

Fig.4

   x

(a) Physical space.

    Inflow et  outfiovr

   xxxxxx

Cut Cut

x outfioW

Cut

x

Periodic

                     x

       1 i ZM.1

          Solid wall

  (b) Computationalspace.

Boundary conditions  for circular  cylinder.

                           fO O (kn.)e]
   

Gj.t==B..ttqj
 

where

 
Bwatt=[oO

 oO 
(haou)elj.t

                                     (29.a)

Th  flux at i+S- is given in a simlilar  manner  as  in eq.

(14). This time  the flux correction  terms do  not  cancel

out, and  therefore must  be taken  into account.  The
viscous  term  Cv,t,,, can  be computed  in the same  man-

ner  as  in the inner zone,  if the value  of  a at  i--O is
defined as

   qo=iwqi where  iro==[

fi

k -:t
 1] ,(3o)

Then  the  velocities  are  computed  as  exactly  zero  at

points on  the wall,  i, e.  at the E  and  PV points in Fig. 5,

Fig. 5

2

j=:1

    ox
      i-1

Volume  used

solid  wall.

s.'' '',' i
T t, T
;------.-e/-,,.--".t

    is

for viscous

  x

  i+1termt

t
lntegratlon  on
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 At  the  outer  boundary, two  types of  boundary cond-

tions are  used.  One is the infiow boundary condition,  and

the other  is the outflow  boundary condition.  The  infiow

condition  is given as  the  uniform  flow, i. e. ec =1,  v=O,

and  P= O. The  outflow  is given as  the combination  of

zero  extrapolation  for u  and  v,  and  the given uniform

flow value  for P (Le., P=O). In the both cases,  a

characteristic  form of G+ttz is used  as  the boundary

condition.  That  is, the flux form there is obtained  by

introducing an  approxirnation  of  the characteristic

nature  to the exact  form as shown  below.

   G+t==B."-+tqj+} (i--IM-2)

       ==(B*'+B")j+}aj･+t

       i-alzt}(-gq,--}qj-,)+B?r}(gqj+i--b-qi+2)

                                       (31)
where

   BXI}==(R*zL*'L')j.t  (31.a)

where  R", A" ±, and  L* are  defined similarly  as in eqs,
(9), (10), <11>.

  The approximatlon  in the last row  of  the eq.(31)  is

forrnally second-order  accurate.  The outer  boundary is

located at ;'+1/2  where  i=nv-2  for coding  conve-

niences.  JM  is the number  of  points in the 1'-direction.
The terms  in the eutside  region,  i. e., qJM-i and  qJM are

referenced  in the  computation.  They are given to be
consistent  with  either  infiow or outfiow  boundary condi-
tion. The  AqJM-i and  ziq- are  given similarly.

  In the  governing  equations  corresponding  to the con-

trol volumes  adjacent  to the  top  or  bottgm boundary,
the N  terms  neecl  to be modified.  That is

r+.--r:Lrtrl,rlr'

lmterCC-,n-sweeps)-el1+ei- ¢ 2elel1+el-e2-Ol

jre1tn-sweep)oele2o1-ea-el
jk]M-2(n-sweep}-epi1-ip2ee2 ¢ 1e

Further, terms  related  to flux-correction or wall  bound-
ary  need  to be added,

  Fig. 6( a  ), ( b) shows  the gricl topology  used  fora fiat

plate  computation.  The  left edge  of  the fiat plate is

shifted  by one  grid cell to the right,  in order  to place the

singularity  point inside the fiow. As  the result, a  gap

appears  at the  bottom boundary in the computational

space.  The  flux there  exactly  sums  to zero.  The  velocity

values  at  points edging  the gap  are  needed  to compute

the viscous  terms on  the solid wall  next  to the  gap.

Their  values  can  be corriputed  by averaging  as  in nor-
mal  points.
  2.7 Global censeryation

  The  forces acting  on  the  body  can  be obtained  by

integrating the flux along  the inner boundary,
                            JM-I  A ..

    [Inner integration] 
:=

 E]ettom= + )--, (GJ-ii +GvJ-in)i-i

                                       (32)
The  first component  of  FL,tt.. is equal  to 112 of Cv, the

drag  ceerncient,  The seeend  componenL  is equal  to Y2
of  CL,the lift coeficient.  The  third cornponent  is the net

Infiaw

    di

<a) Physical space,

     Inflovv or outfiow

cutXXX=XXcut

xxxxKx

xsxxxK

xxxxxK

Kxxxxx

Outflow

Cut

              xsxxxt

             Wall  Mapping  Wall

                   singu]aritv

          (b> Computational space.

Fig.6 Boundary conditions  ±or  a  flat plate with  map-

      ping singularity.

mass  flux, which  is zero  by definition. The  forces can
also  be obtained  by integrating, for example,  at the

euter  boundary.

   [Outer integration]
             IM-1  - -

     
==

 Ftop=-  ].., (Gj+t+ Gv,. "s)J-JM-2  <33)

The  lntegrated mass  flux at the outer  boundary  should

be zero  at  convergence,  It is assured,  by the form  of  the

discretized goveming  equations,  that the integrated
inner and  euter  flux values  agree  with  machine  accu-

racy  at  convergence.  That should a]so apply  to the

value  ebtained  by adopting  any  control  surface  that

surrounds  the body and  aligns  piecewisely with  the grid
lines.

            3. Computed  Results

 3.1 Circular cylinder
  The flow past  a  circular  cylinder  of unit  diameter was
cemputed.  The  grid is sihown in Fig. 7, The  parameters
used  in the computation  are

   Reynolds number  Re==40,

   Mimimum  grid spacing  zLntn ==O.O08

   Radius of outer  boundaryt40.0

   Grid points in i-direction iM  ==41

   Grid points in 1'-direction  ne;61
    e-1,O (Euler implieit)
   Pseudo-compressibility parameter  B ±1.0

   Upwind  differencing [=3rd-order

  The  outflow  boundary condition  was  imposed at
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Fig. 7 Grid around  a circular  cylinder
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Fig,8 Pressure contours.
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points in the downstream  zone  that forrns approximate-

ly 90 degrees angle  at the center.  At  the  time  t=O,  the

flow was  uniform  everywhere,  Cemputation was  first
made  for 10 timesteps with  dt=O,Ol, Then  At was

changed  to I.e. In case  B=1,O, t,he L2 norm  of  the

residuai  liq decreased to about  10'i  ̀ after 3000 times-
teps, Fig.8 shows  pressure centours,  The  nondimen-

sional  pressure p is equal  to 1!2 of  the pressure
coeMcient  Cp. Fig, 9 shows  the  surface  pressure distri-
bution. The  angle  e is zero  at the front stagnation  peint
and  180 at the  rear  stagriation  point. In the  fine grid
case, the number  of grid is doubled both  in 4-and rp-
directions, It is seen  that the difference is very  small.

Fornberg's computed  result[i6]  shows  slightly  lower
minimum  pressure. The measured  result  by  Grovei"] is

still  lower, The  author  suspects  that the wall  effect is

non-negligible  in Grove's result,  in which  the [wall dis-

05

P

o

O.5o
9oo e

Fig. 10 Velocity vectors  near  a  cylinder  surface.

tance!diameter] ratio  is 20. Fig.10 shows  velocity

vectors  near  a  cylinder,  The non-s]ip  boundary condi-
tion  is weil  satisfied.

 The  integrated fiux values  are

        rO.756739682241351 rO,756739682243031
  FU.,t..=L o,7218xloJ'3 1,E.p=t o.48o7× 10-'i l
        L O j L-O.376gxlo-Uj
                    '

where  the components  are,  from  top to bottom, drag,

lift, and  mass  fiow. It is evident  that the global conser･

vation  holds with  each  compenent.  The  computed  CD
values,  which  equal  twice the  nondimensional  drag
values.  at Re==40 are

CHseCDPresent(fi=10)]

 513Present
 t"=,4 O)I,S19Fine gtid (P=1 O)1499FolmbeTgtt)1-98DennLb[i41l491

lsoe

Fig,9 Surface pressure distribution on  a  cylinder,

As pointed eut  in ref.[11], coupling  occurs  between the
momentum  equations  and  the continuity  equatien  even

in the steady-state  limit, in the present upwind  pseudo-

compressibility  approach.  In order  to check  the degree
of  coupling,  coniputations  with  fi=2.0 and  4.0 were

made.  As shown  in the above  table. the obtained  results

dicl not  show  appreciable  difference from the case  B;=
1.0. In the fine grid case,  the  number  of grid points  were
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doubled both in 6-and rpL directions. The  fine grid value
agrees  well  with  other  computed  values.  The  measured

CD  values[tS]  areRe38.546.644.938.141.7

CD1,461.561.461.691.62

It is seen  that the  computed  value  is well  within  the

scatter  in the measured  values,

 The  dependence of  the computed  results  on  the value

of  B was  significantly  increased by using  zero  extrapola-

tion for pressure as well  as  velocities  as  the  outfiow

boundary condition.  That is the reason  why  the given
uniform  pressure value  has been adepted  as the outflow

boundary condition.  Thjs  suggests  there js room  for
improvement  in the outer  boundary conditions.  But
clearly  this dependence does not  come  from the ceuL

pling in the governing  equations,  and,  as  far as external

flows are  concerned,  the present form  of  the  boundary

conditions  is valid.

  In order  to check  the infiuence of  the grid topology,

the same  flow was  computed  using  H-grid as shown  in

Fig. 11. Actual computation  was  rnade  in the upper  half

zone  with  symrnetry  condition.  The distances to up-

stream,  downstream, and  top boundaries are  all  40. All
the parameters usecl in the  computatlon  were  the  same

Fig. 11 Grid around  a circular  cylinder  (H-grid),

as  the O-grid case.  Fig.12 shows  pressure contours.

Though  the distribution agrees  well  with  the O-grid
case,  slight kinks are  observed  in the zones  where  the

grid lines have kinks. The  CD value  was  1.511, which

differs by only  O.13 %  from  the O-grid value  of 1.5!3.

  3. 2 Flat plate with  mapping  singularity

  This case  is to test the validity  of the global conserva-

tion  of  the present scheme  under  the presence  of  rnap･

ping singularities,  The  parameters  used  are

   Reynolds number  Re=40

   Mimimurn  grid spacing  IL"in==O,O08

   Radius of outer  boundary t=10.e

   Grid points in iLdirection IM=21

   Grid points  in J'-directien .M4 =21

   e-:1.0 (Euler implicit)

   Upwind differencing=3rd-order

   Pseudo-compressibility B 
=`

 1.0

  Fig, 13 shows  the grid used.  The piate is fiat with  zero

thickness. The infiow was  set at 30 degrees to the flat

plate. Except for the modifications  needed  to handle the

gap, no  modifications  were  made  to the computer  code

used  for the cy]inder  computations.  The  numerica!

stability limit was  severer  in this case, and  at  was

limited to O.05. The  global conservation  was  again

confirmed,  Fig. 14 shows  the velocity  vectors,  and  Fig.

15 shows  the pressure  contours.  At the points next  to the

leading edge,  the pressure value  becomes maximum  on

i

;

o.t p;O,O  .O.I

'

/

'E

t!

Fig. 13
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Grid around  a fiat plate.
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Fig.12 Pressure centours  (H-grid). Fig.14 Velocity vectors  around  a flat plate.
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Fig, 15 Pressure contours  around  a  flat plate.

the face side  and  minimum  on  the back  side, and  the

ve}ocity  changes  rapidly  near  the leading edge.  In spite

of  this rapid  change,  oscillation  is not  observed  in the

pressure or velocity  distribution, The global conserva-

tion was  again  confirmed,  which  demonstrates  that the

present scheme  automatically  circumvents  the multi-

valuedness  br mapping  singularity  problem.

               4. Conclusions

  A  finite-velume, cell･centered  upwind  scheme  with

pseudo-compressibility has been presented. It has the

global conservation  property, which  means  that the

conservation  property is satisfied all the way  clown to
boundaries. With global  conservation,  the value  of  the

forces acting  on  a body  becomes  independent of the
integration path, whether  along  the body surface  or

along  the outer  boundary, and  the computatienal

scheme  is made  fully consistent  with  the way  the  forces
are  computed.  It uses  grid cells as control  volumes,  and

facilitates the implementation  of  the global conserva-

tion property in a  straightforward  manner.  Points of

mapping  singularity  are  automatically  circumvented,

and  the global  conservation  property is not  affected  by
the singularity  points. The scheme  is similar  to the

one[7]  for compressible  flows.

  Computations were  made  for the flow past a circular
cylinder  at  the Reynolds number  Re=4e,  using  O-grid.
The  integrated flux values,  i.e, lift, drag, and  mass,

agreed  up  to more  than  ll significant figures after  1,OOO

tirnesteps, when  they  were  integrated at  the  body and

the outer  boundary locations, The computed  drag
agreed  well  with  other  computed  or  measured  results.

The  same  fiow was  computed  using  H-grid. Though

slight kinks appeared  in the zones  where  kinks existed

in the grid, the  computed  drag  agreed  well  with  the

O-grid value,  which  seems  to suggest  that  the glebal
conservation  property helps to make  integrated force
values  independent of grids.

  The  fiow past a  flat plate with  mapping  singularity

was  computed  at  the  Reynolds number  Re=40  and  at

the  attack  angle  of 30 degrees, The  global conservation

property was  not  affected  by the presence  of  the map

ping singularity,  though  the numerical  stability limit

was  severer  in this case  than in the circular  cylinder

case,

  The  present scheme  has a  room  for improvement. It
has a  3rd-order accuracy  in the computational  space,

and  not  in the physical space,  This  causes  the  depen-

dency on  grids. Accuracy in the physical space  should

be pursued, taking into account  the non-uniform  spac-

ing(]gi or  kinksSZO] of  grids. The  degradation of  numeri-

cal  stability  due  to grid skewness  is another  problem.
Further study  is needed  including the application  of

TVD  limiters, related  with  it
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