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Computation of Ship’s Resistance Using an NS Solver

with Global Conservation

——Flat Plate and Series 60 (Cz=0.6) Hull/—

by Yoshiaki Kodama

Summary

A globally conservative NS solver for flow past a ship hull has been developed. It uses a 3rd-order
accurate upwind differencing of the preprocessing (MUSCL) type for inviscid terms, in which the non
-uniformity of grid spacing is taken into account. Using the solver, the drag of a flat plate at zero
incidence was computed in the Reynolds number range R.=4.0X10° to R.=4.0x10". The dependence
of the drag on the degree of clustering of grid points was checked. The computed drag agreed with the
Schoenherr value within 4%. An appropriate criterion for the minimum grid spacing Jmn adjacent to
solid wall with this particular scheme seems to be Jmin=0.005//Re.

Then the drag of the Series 60 (Cz=0.6) ship hull with the double model assumption was computed
in the same Reynolds number range using grids with various 4w and various degree of clustering
toward bow and stern. Although the computed drag values showed some scattering among different
grids, the results with the smallest Jmin agreed well with the measured values throughout the Reynolds

number range.

1. Introduction

Accurate estimation of ship’s drag (resistance) is
very important from the propulsive performance point
of view. Since ship’s drag is generated through viscous
and inviscid interactions, neither the powerful potential
theory nor the boundary-layer theory can estimate the
drag accurately by itself. NS solvers, i.e. CFD, which
contain the above two theories as subsets, seem to be
the only means that can achieve this goal.

CFD (Computation Fluid Dynamics) has been mak-
ing remarkable progress, and its field of application is
quite wide already. Since CFD can provide detailed
information of flowfields, it is particularly useful in
obtaining qualitative information such as flow struc-
tures. However, using CFD, to obtain macroscopic or
integrated information such as lift or drag acting on a
body in flow is difficult. Especially, accurate computa-
tion of the drag of a streamlined body like a ship hull is
difficult, partly because the pressure drag component
comes out as a small difference between the large two
at bow and stern.

One of the major sources of the difficulty is the
ambiguity in the way the drag is computed. A drag
value may depend on the integration path it takes, or on
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the way the surface shear stress is computed. In order to
remove this ambiguity, the author proposed an NS
solver with global conservation®®3#%  The word
“global conservation” means that the conservation
property is satisfied everywhere in the computed flow
domain, all the way down to boundaries. The global
conservation property automatically assures that
computed macroscopic forces such as lift and drag do
not depend on the integration path, i. e., the forces are
unique. In the globally conservative scheme, there is no
ambiguity in the way the surface stress terms are
estimated, since it is made fully consistent with the
solver itself.

Using the solver, the drag of a two-dimensional
circular cylinder was computed at the Reynolds number
R.=40, and the computed drag agreed well with other
well-established computed values®. The scheme was
extended to three dimensions, and the flow past a Series
60 (Cz=0.60) ship hull was computed®. In the Reynolds
number range R.=3.0X10% to 4.0x10°% the computed
drag agreed well with the measured values. However, in
computing the drag of the same ship in the range R.=4.0
X10° to 4.0X107, the computed drag tended to deviate
systematically toward higher values from the measure-
ments® at higher Reynolds number range.

The present work shows an effort to clarify the cause
of the deviation and to compute the drag more accurate-

ly. The drag of the same ship is computed using grids’

with various degree of clustering. The drag of a flat
plate is also computed, since the flow around it has
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much similarity with that of the Series 60 (Cz=0.60)
hull, which is very fine.

In the present work, the scheme is modified such that
the third-order accuracy in computing the inviscid
terms is maintained under non-uniform grid spacing,
while the previous scheme had third-order accuracy
only if the grid spacing is uniform. In contrast to the
postprocessing approach adopted in the previous works,
the present scheme adopts the preprocessing (MUSCL)
approach” in constructing the third-order accurate
upwind differencing, because the non-uniformity of the
grid spacing is much more easily taken into account
there.

In the computation, the free surface is treated as the
plane of symmetry, i. e. the double model flow assump-
tion.

2. Formulation

2.1 Discretization of Governing Equations

The nondimensionalized Navier-Stokes equations, i.
€. the conservation of x-, y-, z- momentum, and mass,
are Written in conservation form as

oF L 3G , 0H | dF, |, 3G, , 8H, _
at+ax+"‘+ 2 oz "oy TTaz —0(1)
where
U ul+p vu wu
RE _| wuw | | we
=t F= uw | G w | wi+p |
b Bu B Bw
Txx Téy Tz2
Fo=—y| 5| Go=—o| ™| H,=—y| ™| (2)
Txz Tyz Tzz
0 0 0
ER%-HA
=2Uz, Try=Uy+ Vs, Tez=1uz+ Wi,
22@, Tyz—Uz""Wy, (3)
fz/zzsz

In the equation for mass conservation, i. e. the fourth
component of eq. (1), pseudocompressibility is
introduced with a positive constant B8. v, is the
kinematic eddy viscosity.

As shown in Fig. 1, the cell-centered layout is adopt-
ed. Flow variable nodes are placed at the center of grid
cells, and the grid cells are used as control volumes. Fig.
1(a) shows the 2D case, and (b) shows the 3D case, i.
e., the present case.

The finite volume integration is used for discretiza-
tion. In order to derive the discretized equations for the
flow variables at (7, 7, k), the governing equations are
integrated at the grid cell including the point (3, j, &).

oF iQ aH dFy
f[/VIJk < —-+ T aZ 81'
an &Hv)
5 3 dV=( (4)
The first term of the above equation is approximated as
the volume of the cell times the 3¢/9¢ value at (3, , k),

B Y

control volume

Solid wall

(a) 2D case

1yl
(1+2,J+2,k+2)

i) i®

(l '_5.]'-3 "")

(b) 3D case
Fig.1 Cell-centered layout and control volume

the cell center. That is

S 5tV = Vir B ()

where the volume is computed as the sum of six
tetrahedra®.

In order to discretize the other terms, the Gauss
integral theorem is used

[, erad gav= [} én*as, (6)

where n*=(n%, n}, n¥) is a unit outward normal vector.
The above theorem is applied to eq. (4), and the sur-
face integration of the hexahedron is divided into six
quadrilateral surfaces as

[ SEav=[[ Futas

:{F( Snx)e} i+%j,h -{F(Snr)e}i——%,j,k
+{F(Sn:)”}i,j+—l— - {F(Sn.z)ﬂ} iq’——%— k
+{F(Snx)c};,] k+—-{F Sn.r) }zq k——

(7)
where (7, j, k) are the numbering in £&-, -, and ¢-direc-
tions. The negative signs in the last equality come from
the definition of the unit normal vector n, which is
always in the positive &-, 5, or ¢-direction. (Sn2)8s Lk

the area of the i+‘12~ surface projected in the r-axis

direction, is computed using the area formula for a
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quadrilateral shown below.
(Sn.r)zé'+%,j.k 2—%‘[@2 — vz~ z1)— (22— ze)(ys— )]
(8)

where
PxEPH%,j—%,k—%, Pzzpi-x»%.ﬁ%,k—%
{Pa =P +gittal, P Pi+%,j—%‘k +3
Note that, using the above formula, the projected area
of a closed body surface, which is divided into many
quadrilaterals, exactly sums to zero. This property should
be called “the conservation of projected areas”. This
automatically assures that the integrated pressure drag
component of a closed body is exactly zero if the
pressure is constant everywhere.
The other terms in eq. (4) are treated similary, and
the discretized governing equation shown below is
derived.

Vi ataq +(F+Fv)i+i“(ﬁ‘+ﬁv)i—%
ik

2
+(G+ Gv)j+%_(é+ Gv)j—%
H(H+Boaey—(H+H,)up=0 (9)
where, for example, ().} means ( )iskia and

]7“=(Snx)"F+(Sny)‘G+(Snz)9H
G=(Sn2)"F +(Sn,)"G+(Sn.)"H (10)
H=(Sn:)"F +(Sn,)5G +(Sn.)'H
and similarly with 7, G,, and ..
2.2 Inviscid terms
The value of the inviscid terms at each cell face is
computed using the third-order accurate upwind
differencing constructed within the flux-difference split-
ting framework. The third-order accuracy is attained in
the preprocessing (MUSCL) manner 7 in which the
nonuniformity of grid spacings is taken into account.
The reason that the preprocessing approach has been
adopted here, in contrast to the postprocessing
approach adopted in the previous reports, is that high-
order accuracy under the nonuniform grid spacing is
much more easily attained using the preprocessig
approach.
As a building block, a flux difference a the cell face 7

+—%— is defined as a function of ¢ at the left and right

side of the cell face, and the metric (i. e, projected area)
terms.
8Fi+%= F((]x}‘;—;—, Snf-;%-) - F( q:l-f-%, Snéi-)-%)

=AHL6qHL (11)
where
Ay =A(qtfy, Sniy)
U+unz, wun,, UNz, e
Alg, Sny=g| %= Utony, vn., n,
Wz, wny, U+wn., n.

ﬁnzy By, Bnz, 0
U=uns+vn,+wn,

LR

1
QH—;:”Z“(Qh%'F qﬁ%)

L

dqHfy=gRli—qh1 (12)

The flux difference is divided into positive and negative
components depending on the signs of the eigenvalues®
as

OF=0F*+0F" where oF*=A%sy. (13)

Then the inviscid flux at z'i‘% is defined as

E+%:F(01'L+é-, Snﬁ»%) + 5}?‘;%
{171_%:}7‘( g4, Snf-D)—oFty
Substituting /+1 into 7 in the lower half of the above
equation, and equating it with the upper half produces
eq. (13), which means that the present scheme is conser-
vative.

The ¢* and ¢® are determined in an upwind
differencing manner. It is explained using 1D case for
simplicity. In approximating a first derivative with a
constant coefficient ¢ as shown below

(14)

di+f—qi-%
666;]* =c +ZAE* 5, (15)
gi+5 is determined depending on the sign of c.
g+t=gti  (c>0)
+2 +5 (16)

=g} (e<0)

That is, when the signal propagates from left to right,
gi+ is used as ¢:+1 and vice versa.
1st-order accurate upwind differencing

As shown in Fig. 2, zero extrapolation is used for
defining ¢* and g%,

{ Qzﬁ%:(]i
C]f?+%=Qi+1

The substitution of the above equation into eq. (15)
produces the Ist-order accurate upwind differencing
about the point i.
2nd-order accurate upwind differencing with uniform
grid spacing

Assuming all 4; in Fig. 2 are constant, linear extrapo-
lation is used.

(17)

qf+%=%qi—%—qf-n
(18)
t]f-:-f:‘é‘q:ﬂ——z*mu
R
qi+1/2 b_J
Zero
L
Ys1 quadratic
linear
ZETro
A—l AO Al AQ

i-1 i, 12 i+l i+2

Fig.2 2¢%4 and ¢f for upwind differencing
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QUICK scheme with uniform | grid spacing
Assuming constant J; again, quadratic interpolation
is used.

q{‘+%=hg_qi+l+%QI 8 gi-1
N 19)
Qi+i-—8_0i+§'4i+l —g di+2.

The substitution of the above equation into eq. (15)
does not produce the 3rd-order but the 2nd-order accu-
rate upwind differencing. It is usually called the QUICK
scheme.
3rd-order accurate upwind differencing with uniform
grid spacing (U) .

Using the Taylor series expansion about the point 7,
the following interpolation formula which leads to the
3rd-order accurate upwind differencing is derived.

L

Qi+%=%q1'+1+'g—61i—‘(15*(1i-1
=g+ O 6q,'_%+ @z&]ﬁ%

2
51:2 ‘+§.. .__1_‘ <0
qi+5 6£]: 6(]z+1 6qz+2
=g: +(1 - $2><§\Qi+7"‘ &, 6Qi+%
where
@:—L @:—1— Ogi+l=qs1—qi (21)
1 6, 2 3 q:-i-—i qi+1 i,

This differencing will be called the upwind differencing
U (the letter for “uniform”).

3rd-order accurate upwind differencing with non-uni-
form grid spacing (NU)

Following Sawada®, in case the grid spacing is not
uniform, as shown in Fig. 2, ¢(£*), the value of g as a
function of the real length £* is assumed to be qua-
dratic.

g(EM) =¥+ pe*+ ¢ (22)
Since the location of each cell center is unknown in this
case, the curve fitting in the integrated sense is used in
the three consequtive intervals,

.
Sivm+dl

1 .
Com= g Jegons CEDEY (m==1,0,1) (23)
ity

+m

Then the value of gf.} is determined as g(&%1), and

similarly with ¢f.1.

qii=qi+ OL8gi- L+ OFSger) o)
{qf+%= g:+(1~ @5)5(]“—%— @1’?6(]”%
where
(i dodh
! (4-, +Ao+d1)(d—1 +4)
OF= I A1+ L)
LS F At 2) o+ 4
(DR= AOA]
T GF ¥ L) T+ &)
$R= AI(AI + 42)
‘ L+ a4+ ﬂz)(da +ZT

The above equations satisfy the requirement that when
the grid spacing is uniform, they reduce to egs. (20) and
(21). Sawada® gives a slightly different definition of
.1, which does not satisfy the requirement. It isinterest-

ing that, as in the above equation, the quadratic curve
fitting in the integrated sense produces the 3rd-order
accurate formula, but the curve fitting in the collocated
sense, i. e. QUICK, fails to do so. This differencing will
be called the upwind differencing NU (the letters for
“non-uniform”).

It is straightforward to extend this formula to the 3D
case, in which the grid spacing is computed by taking
the average of the four corner points at each cell face.
Fig. 3 shows an example of computed results, Fig.3(a)
shows a grid around a ship hull, in which the grid points
k=5 (k is the number in ¢ -direction, with £=1 being at
solid wall) is relocated by linear interpolation toward
the £=4 points with the new distance between £=4 and
k=5 being only 1% of the original value. The arrows in
the figure shows its location. Fig. 3(b) shows the pres-
sure contours obtained using the upwind differencing U,
Fig.3(c) shows a similar result using the upwind
differencing NU. Comparing the two figures, it is evi-
dent that the differencing NU produces a result better
than the differencing U when the grid spacing is not
uniform.

1t should be noted that the differencing NU does not

zf/’u, i
A A A
/T T I

Fig.3(a) Grid with sudden change in ¢-spacing at £
=5 (arrows).

Fig.3(b) Pressure contours by the
differencing U.
Re=10%, 4C,=0.02.

upwind

Fig.3(¢) Pressure contours by the upwind
differencing NU.
Re=10*, 4C,=0.02.
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remedy the adverse effect of grid singularities such as 2nd-order accuracy (linear extrapolation)
ux%'zé—ux%~§ux% (2.3.3)

On the solid wall surface, the flux value is computed
directly by substituting #=v=w=0 and pressure »
being made equal to that at the cell center, i.e., zero
extrapolation by half the grid cell length

2.3 Viscous terms '

The Gauss integral theorem eq. (6 ) is used in deter-
mining the first derivatives of velocity components. For

example, u. at the cell face (7,7, £+(1/2)) is deter-

mined by taking the volume of integration Vije+l

which is shown as Vir wih £=1 in Fig. 4.
teansn s =g (ue{Snabs— wn(Sn.hw
1'.j,lz+§
+ uN{S%x}N — us{Sﬂx}s
+ur{Sm}r—uB{Snz}a) (25)
where
UE = Ui j b+

Uw = Ui jk

1
un ='4—(ui+l,j,k+] + Uigenrt Uit et Uign)
1
B uS:'Z'(ui.j,k+l+ui—l,j,k+l+ Usjn+ Uio1,in)

1
Ur =Z‘(Z¢i,j+1.k+1 Fsigartt Uigere T Usin)

uﬂz"i—(ui,j,k+l+ui,j—l,k+1+ui.j,k+ui;i—l.k)
Note that the above equation is formally 2nd-order
accurate, i. e. 2nd-order accurate on uniform grids.

At the solid wall (k=%), using the two integration

volumes Vi and Vi shown in Fig. 4, #se=3« and #zx=32
are determined

AI UdV = Uzan /:m U@V = Uzap

Then the wu. at the solid wall is determined in the
following two ways.
1st-order accuracy (zero extrapolation)

1= 3
Ury=Uxzy

(2.3.2)

The scheme which uses this equation will be called V1,
i. e. the viscous terms with 1st-order accuracy.

172 NV Solid wall

Fig.4 Volume of Gauss integration for viscous terms
near solid wall.

This will be called V2.

2.4 Eddy viscosity v:

The Baldwin-Lomax zero equation turbulence model
is used. In most of the computation, smoothing is
applied by averaging with the four neighboring points
on the same % plane. The smoothing seems to increase
the numerical stability. The cases in which the smooth-
ing is applied will be called SM, and the cases without
it will be called NSM.

2.5 Time integration

The Padé time diffencing form?® is used for time inte-
gration with §=1.0, i. e. the Euler implicit. In the invis-
cid terms of the unsteady part, the lst-order upwind
differencing is used, by setting @, = @,=0. This does not
affect the steady-state part, that is, the converged invis-
cid part has 3rd-order accuracy. The IAF procedure is
adopted.

2.6 Boundary conditions

The bounday conditions are summarized in Table 1.
At the upstream boundary, zero extrapolation is used
for pressure. In case the uniform flow condition, i. e. =0,
is used, a slight pressure jump occurs at the boundary.
Therefore the zero extrapolation condition has been
adopted.

3. Flat plate with zero attack angle

The grids for flat plate computation were generated
analytically with H-grid topology. They are similar to
those used in ref. 9). Table 2 shows the parameters for
the grid generation. IM is the number of grid point in
the streamwise direction. Ire is the point number at the
leading edge, Iur is that at the trailing edge. KM is the

Table 1 ‘ Boundary conditions

Boundary u,v,w P
Upstream u=1, v=w=0 zero extrapolation
Downstream | zero extrapolation p=0
Left & Right symmetry symmetry
Top u=1, v=w=0 p=0
Bottom u=v=w=0 zero extrapolation

Table 2 Computed drag of a flat plate.
Part 1...minimum spacings.
Parameters: IM=81, KM =41, Irr=16, Jir=
60, Rouer=1.0,
xup=_“0.5, xdown=2.0, 7cl=0.3,
8=1.0, NU, V2, SM, 4¢=0.1.

R, 4 x 10° 4 x 108 4 x 107
Grid Apin Cr x 102 (5)

A 2x 107 | 05182 (0.0126) | 0.3379 (0.04) | 0.2428 (0.126)
B 1x10~® | 0.5174 (0.0063) | 0.3331 (0.02) | 0.2685 (0.0632)
C | 0.5x10"5 |0.5174 (0.0032) | 0.3325 (0.01) | 0.2528 (0.0316)
D | 025x10™° — 0.3307 (0.005) | 0.2391 (0.0158)
E 10.125x10°° — 0.3311 (0.0025) | 0.2346 (0.0079)

Schoenherr 0.5294 0.3423 0.2365

NI | -El ectronic Library Service




The Society of Naval Architects of Japan

152 ‘Journal of The Society of Naval Architects of Japan, Vol. 172

number of grid points in z-direction, i. e. the normal-to , ten times smaller than that in previous computations,
~wall direction. Xup and Xaows are the z-coordinates of ~ in order to compute the drag within 1% convergence
the upstream and downstream boundaries, while those  (with respect to grid resolution) error. The converged
of the leading and trailing edges being 0.0 and 1.0, respec- ~ Cr values are slightly smaller than the Schoenherr
tively. Jmn is the minimum grid spacing adjacent to the =~ vaues.

solid wall. Ruer is the distance in the z-direction Table 3 shows the cases R.=4.0X10° with various
between the plate and the top boundary. In ship flows  accuracy of the differencings. The NU and U
this parameter denotes the outer radius of the top differencings were used in the inviscid terms, and V1 and
boundary. 7« is the clustering ratio in the x(i)-direc- V2 were used in the viscous terms. Further, the effect of
tion. It is defined as the ratio of the x spacing (dz) at  the change in the clustering ratio yei was tested, since
FP or AP and the average spacing between FP and AP.  the wall shear stress changes very rapidly at both the

& is the parameter defined using the equation edges, as shown in refs. 2) and 9). The V1 and V2
L= k) produced the same Cr value, which seem to suggest that
" JRe the grid points are well within the viscous sublayer,

, a criterion frequently used to determine the minimum where the velocity has linear distribution. The fact that
grid spacing with ¢&=0.05 in the previous NU and U produced the same Cr value is supported by
computations?#4, the fact that there is only frictional (viscous) compo-
The table also shows the computed Cr (total drag)  nent in this drag.

value.s at various Reyno]ds numbers with various grids. 4 Series 60 (Cs=0.60) Hull

In this case there is no pressure drag component Cores,
and therefore Cr contains only the frictional component Computations were made for the Series 60 (Cs=0.60)
Cire. The grid expansion ratio in the z-direction is  hull in the Reynolds number range Re=4.0X10° to 4.0
approximately 1.3. The computations were continued
until the Cr value integrated on the plate agrees with
that integrated at outer boundaries with sufficient

accuracy, say up to four significant figures. The Cr "'
values tend to converge as Jmo decreases. The Cr w
values at R.=4.0x10" are plotted with Zin in the <> "

s
horizontal axis in Fig. 5. The values of the grids C, D, “"';/////////%’gg
and E converge linearly, which suggests that the viscous w.z" %ggg
term has 2nd-order accuracy. In the range of the & %ggééé//'/ -
Reynolds number listed, it seems that & should be about \%%%%%Zé%%%é
0.005 in the above equation, i. e., ——= %222@%:%%/%%%?
_0.005 = e
o= R = —
e i e
Z5
/ cecaE —
27%10°3 FrrreTrreTr e e =Z2Ee "'Iii"il-’i"’
= mlll' Il'l '-
; — ﬁiﬁ:lﬁinmlli“.lll 'l
2.6F B 3 il
E (a) Bow
- :
O 2.5 C ] <
) : = ===
24F 2D ; R e
% : \W&%
23kt bt T oSmoaNsmsea
00 02 04 06 08 10 “%‘:;5::,,:;&2::3;;" =
A2 x 1010 0* g 5%5
. e ZZ=
Fig.5 Total drag Cr of flatplate vs. Z&n. Re=4.0 X107 ///gg’%/g . ?%%
= S
== e
o .
Table 3 Computed drag of a flat plate. Part 2...compu- é%%f%; “
tation parameters. Re=4.0 X10°. Other param- ///_}{//f//// “
eters are common with Table 2. ///2/ “
Grid | 7y | Inviscid term | Viscous term | Cr x 107 4
B |03 NU V2 0.3331 ‘ “
ST T p 0.3331
nE NU Vi 0.3330
LB [0 2 V2 03330 Fig.6 Grid B of Series 60 hull.
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107,

The grid was generated using the implicit geometri-
cal method®. Fig.6(2), (b) show the grid near bow
and stern. The grid points are clustered toward bow and
stern. Table 4 shows the computation parameters. Ini-
tially the flow is uniform everywhere. Computations
were made using 4¢=0.01 in most cases except the first
40 or 50 steps, in which 4¢f was made much smaller.
With 4£=0.01 the nominal Courant number becomes
4,000 in the smallest dmin grid. Computations were carried
out up to the nondimensional time of approximately
ten. Then the drag integrated at the outer boundary
agrees well with that at the ship hull, although no strict
criterion for convergence was taken. In order to simu-
late the effect of studs (turbulence stimulators) used in
experiments, the flow was assumed laminar up to the
point 5% from the bow (x=0.05), and thereafter the
eddy viscosity was added.

Fig.8 shows the wake contours at AP (x=1.0),
compared with the measurements!?. Althoug the over-
all agreement is reasonable, the computed result fails to
predict the bulge of the boundary layer at the center.
But this bulge is partly due to the propeller hub on the
model ship, not present in the computed hull.

Fig. 8 shows the computed pressure contours at R.=
4.0<10° using the grid B (case 6). At the bow (Fig.$8
(a}), the presure suddenly rises, and this causes slight
oscillation in the streamwise direction. At the stern
(Fig.8(b)), there is pressure recovery. The. highest
presure point in the stern is located slightly aft of the
stern end.

The table 4 also shows the computed total drag
coefficient Cr as a function of the minimum spacing
L. Ciric is the frictional component, and Cores is the
pressure component. The same data is plotted in Fig. 10.

(b) Stern

Fig.8 Pressure contours. Case 6 (Re=4.()><1()é, Grid
B)

Table 4 Computed drag of Series 60 (Cz=0.60) ship
hull. Part 1... minimum spacings
Parameters: IM=81, IM =25, KM =41, Irp=

16, IAP=60, Router=l.0,

u_—O 9 Lup™ _0.5, xdownzz.o, )’(:1:0.3,
. BA=1.0, NU, V2, SM, 4¢{=0.01.
R.| 4x10® 1x10°| 4x10° 1% 107 4% 107
Grid | Apin No. No. No. No. No.
0.5995 Cr % 102 0.3869 0.2615
A 2% 107 | 1]0.5502 |- | Cex 10° |5{0.35a1 | - | — 112]0.2360
m 0.0493 Cpres X 107 0.0328 0.0246
Co puted 1.132 1+K 1.130 1.106
. 0.6049 0.4917 0.3786 0.3360 0.3037
o - Measured B 1x107 | 205566 {4 | 04522 |6[0.3473|11|0.3076 | 13 | 0.2771
0.0483 0.0395 0.0314 0.0285 0.0265
1.143 1115 1.106 1.145 1.284
0.6216 0.3837 | 0.2905
C | 0.5x107°{3]05739 |- —  fr7ioesss2] - | — |1a]o0.2659
0.0477 0.0305 0.0245
1.174 1121 1.228
0.5745
D Jeasxiwt|-| — |- - b= -] — s ]oose
; . 0.0222
Fig.7 Wake contours at Ap (x=1.0) section. 022
Case 6 (Re=4x10°% Grid B) Schoenherr x 102 0.5294 04409 | 03423 0.2934 0.2365
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They show clearly that Cr decreases as the Reynolds
number increases. At constant Reynolds number, in
contrast to the flat plate result, the dependence of Cr on
the minimum grid spacing Zdmm is not very clear,
although at R.=4.0x10" Cr tends to decrease as ZJmmn
decreases. This phenomenon is also observed in the
flat plate case. The same is true with the frictional
component Cic and the pressure component Cores. This
is perhaps due to the complex viscous and inviscid
interaction in fully 3D flow. One cannot see any clear
dependence of the form factor 1+ K on the Reynolds
number.

Table 5 shows the results using various differencing
formulas. In the case 8, the upwind differencing U was
used. Cie remained unchanged, but Cores increased by
20%. Since the change was only with the inviscid terms,
that should influence only the inviscid component, i. e.
Cores. The case 9 shows the influence of the smoothing
of the eddy viscosity v.. It turns out that the smoothing
of v: causes little influence. The case 9 was computed
with 4¢=0.01, which means that the non-smoothing did
not cause any degradation in numerical stability in this
case. The case 10 shows the influence of the clustering
ratio 7. toward bow and stern. Since, as shown in Fig.

Table 5 Computed drag of Series 60 (Cz=0.60) ship
hull. Part 2...computation parameters. K=
4.0 X10°. Other parameters are common with

Table 4.

No. | Grid | ro | Inviscid term | Smoothing of ¥, | Or x 10? | Ciic X 10% | Cpres X 10?
6 B {03 NU SM 0.3786 0.3473 0.0314
8 ” ” U ” 0.3849 0.3473 0.0376

” NU NSM 0.3784 0.3469 0.0315

10 B, 101 ” SM 0.3768 0.3477 0.0290

0.04 Cp=0.02

Computed (NU: case 6). Cppay=0.344
———— Computed (U: case 8). Cppa=0.341
(a) Bow

x=0.8 Cp=0 0.9

Computed (NU: case 6)
Computed (U: case 8)
Measured!!?)

(b) Stern

Fig.9 Comparison of measured and computed pressure
contours at stern. Cases 6 and 8.

8, there is a high and steep pressure peak at the bow,
different grid resolution may cause significant change in
Cores. Cerie may also change significantly, because most
of the contribution comes from the bow area, where the
boundary layer is very thin. But it turns out that the
change is very small. This is perhaps due to the global
conservation property which the present scheme poses-
ses.

Fig. 9 shows the pressure contours on the ship hull in
the cases 6 and 8. Throughout the hull surface, the
contours of the case 6 are located slightly upstream of
those of the case 8. Considering the fact that the
maximum pressure at the bow remains essentially the
same, it is clear that this seemingly very small
difference has caused the difference in Cpres by as much
as 209%. This shows how sensitive the integration of
Cores is. Fig. 9¢b) also shows the comparison with
measurements. The agreement with the computed val-
ues is good. The discrepancy at the stern end is due to
the propeler hub present with the experimental ship.

Assuming that the results with minimum Zmn are the
best ones, Cr and Cerc in the cases 3,4, 7,11, and 15 are
plotted in Fig. 11, together with the measured values®.
The measurements were made in towing tanks. In order
to avoid the wave effect, only the values at smaller
Froude numbers, say less than 0.23, were plotted. The
agreement of the computed values of Cr with ‘the
measurements are very good in all the Reynolds number
range computed. The Shoenherr line is also plotted. Cirie
is consistently slightly larger than the Schoenherr value.
This may suggest that the form factor comes not only
from the pressure component but also from the fric-
tional component. o

Having good agreement in Fig.1l, the validity of
CFD for computing the drag of a ship hull with
sufficient accuracy using a reasonable amount of grid
points, has thus been established.
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