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Computationof Ship's Resistance Using
with  Global Conservation
Flat Plate and  Series 60 (CB=O.6) Hull

an  NS  Solver

by YoshiakiKodama

tt..

                                       Summary

  A  globally conservative  NS  solver  for flew past a  ship  hull has been develeped. It uses  a  3rd-order
accurate  upwind  differencing of the preprocessing (MUSCL) type for inviscid terrns, in which  the non
-uniformity

 of grid spacing  is taken  into account.  Using  the  solver,  the clrag of  a  fiat plate  at  zero

incidence was  computed  in the Reynolds number  range  Re= 4,Ox105 to Re=4.0× 10', The dependence
of  the drag on  the degree of  clustering  of  grid points was  checked.  The  computed  drag agreed  with  the

Schoenherr value  within  4%.  An  apprQpriate  criterion  for the minimum  grid spacing  ZLntn adjacent  to

solid  wall  with  this particular scheme  seems  to be ztnin=O.O05/VRI,
  Then the drag of  the Series 60 (CB==O.6) ship  hull with  the double model  assumptien  was  computed

in the saine  Reynolds  number  range  using  grids with  various  Anin and  various  degree of clustering

toward  bow  and  stem.  Although the computed  drag values  showed  some  scattering  amorig  different
grids, the results  with  the srnallest  Anin agreed  well  with  the  measured  values  throughout  the Reynolds
number  range.

               1. Intreduction

  Accurate  estimation  of  ship's  drag (resistance) is
very  important from  the  propulsive performance  point
of  view.  Since ship's drag is generated through  viscous

and  inviscid interactions, neither  the powerful  potential

theory  nor  the boundary-layer  theory can  estimate  the

drag aceurately  by itself. NS  solvers,  i.e. CFD, which

contain  the above  two  theories as  subsets,  seem  to be
the only  means  that ean  achieve  this goal.
  CFD  (Computation Fluid Dynamics) has been  mak-

ing remarkable  pregress, and  its field of  application  is

quite wide  already.  Since CFD  can  provide detailed
information of flowfields, it is particularly useful  in

obtaining  qualitative information such  as  flow struc-

tures. However, using  CFD, to ebtain  macroscopic  or

integrated information such  as  lift or  drag acting  on  a

body in flow is dithcult. Especially, aceurate  computa-

tion  of  the drag of  a streamlinecl  body  like a ship  hull is
diMcult, partly beeause the  pressure drag component
comes  out  as a sTnall  difference between the large two
at  bow  and  stern.

  One  of  the  major  sources  of  the  diMculty is the
ambiguity  in the way  the drag is computed.  A  drag
value  may  depend on  the integratien path  it takes, or  on
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the way  the surface  shear stress is computed.  In order  to

remove  this ambiguity,  the author  

'proposed
 an  NS

solver  with  global  conservationi},2XS}･"), The word

"global
 conservation"  means  that the conservation

property is satisfied  everywhere  in the computed  fiow
diomain, all the  way  down  to boundaries, The  glebal
conservation  property automatically  assures  that

computed  macroscopic  forces such  as lift and  drag do
not  depend  on  the integration path, i. e.  the forces are
unique.  In the globally conservative  scheme,  there is no

ambiguity  in the way  the surface  stress terms  are

estimated,  since  it is made  fully consistent  with  the

solver  itself.

  Using the solver,  the  drag  of a  two-dimensional

circular  cylinder  was  computed  at the Reynolds number
Re=40, and  the computed  drag agreed  well  with  other

wel]-established  computed  valuesi).  The  scheme  was

extended  to three dimensions, and  the fltiw past a  Series
60 (Ce==O.60) ship  hull was  computed3'.  In the Reynolds
number  range  Re== 3,OXI06 to 4.0×106, the computed

drag agreed  well  with  the measured  values,  However, in
computing  the drag of the same  ship  in the range  Re=4.0
× 105 to 4.0× le', the computed  drag tended to deviate
systematically  toward  higher values  from  the  measure-

ments`}  at higher Reynolds  number  range.

  The  present  work  shows  an  effort  to clarify  the cause

of  the  deviation and  to compute  the dragmore  accurate-

ly. The  drag of the  same  ship  is cotnputed  using  grids'
with  various  degree of clustering. The drag  of  a flat.

plate is also  computed,  since  the flow areund  it has
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 much  similarity  with  that of  the Series 60 (CB=O,60)
 hull, which  is very  fine.

  In the present work,  the scheme  is rnodified  such  that
the  thircl-ordeT accuracy  in computing  the inviscid
terms is maintained  under  non-uniforrn  grid spacing,

while  the previous scheme  had thirdJorder accuracy

only  if the grid spacing  is uniform.  In contrast  to the

postprocessing approach  adopted  in the previous works,
the present scheme  adopts  the preprocessing (MUSCL)
approach')  in constructing  the third-order accurate

upwind  differencing, because the non-uniformity  of the

grid spacing  is much  more  easiiy taken  into account

there.

  In the computation,  the free surface  is treated as  the
plane of syrnmetry,  i. e. the double model  flQw assump-

tion.

              2, Forrtiulation

  2. 1 Discretization of  Geverning  Equations

  The nondimensionalized  Navier-Stokes equations,  i,
e, the conservation  of x-, y-, 2-  momentum,  and,  mass,

are  written  in conservation  form as
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  In the equation  for mass  conservation,  i. e. the fourth
component  of eq,<1),  pseudocompressibility  is
introduced with  a positive constant  B. ut-is  the
kinernatic eddy  viscosity.

  As shown  in Fig. 1, the cell--centered  layout is adopt-
ed. Flow variable  nodes  are p]aced at the center  of  grid
cells,  and  the grid cells are  useci as control  volumes.  Fig.
1(a) whows the 2D case,  and  {b) shows  the 3D case,  i.
e,, the present case.

  The  finite volume  integration is usecl  for discietiza-
tien. In order  to derive the discretized equations  for the
fiow variables  at (i, i, fe), the  governing  equations  are
integrated at  the grid ce.11 including the point (i, 1', k).

   .ffIII.,. ( ge, + g ]+ gG, +  
o,ll,

 + clf?

     +O £
v+

 \v )dv =.o (4)

The  first terrn of  the above  equation  is approximated  as
the volume  of the cell  times  the ealOt value  at  (i, i, k),

con

    

j 

(a) 2D case

k+t)

(e)

      
-S)

             (b) 3D case

Fig.1 Cell--centered Iayout and  control  volume

the cell eenter.  That  is

    ffXi,.. 
Ooat
 dv  or vl･,,,-glt-,.･., (s)

where  the volume  is computed  as  the sum  of  six

tetrahedra6).

  In order  to discretize the other  terms, the  Gauss
integral theorern is usecl

    ffX grad  ¢ dv=bg  ipn*cts, (6)

where  n"  =(ni  nV,  nf)  is a unit  outward  normal  vector,

The  above  theorem  is applied  to eq, (4), and  the sur-

face integration of  the hexaheclron is divided into six
quadrilateral surfaces  as

   ff11I 2.edv==1)g Fnfals

               
t{F(Sn.)e},.b,-{F(Sn.)e}il.i.,

               +{F(Snx>V}i.･+t.hL{F(Snx)"}iv･-3,k

               +{F(Snx)#}iJ,k+i-{F(Snx)`}iJ･,k-t

                                      (7)
where  (i, L k) are  the numbering  in 6-, rp-, and  g-direc-
tions. The  negative  signs  in the last equality  come  from
the definition of the unit  normal  vector  n, which  is
aEways  in the positive g--, o, or  g-ciirection. (Snx)f･+Sj,k,

the area  of  the i+'IY surface  projected in the  x-axis

direction, is computed  using  the area  formula for a
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          na

     X･J･･k ot,,,,. +(F+Fb),.t-(F+Fb),-t

       +(G-'+di.)j.s-(C+Cv)j-s

       
+(fi+1?v)h+t-(fi+fiv)lt-S==O  (9)

 
where,

 for example,<  )i+t means(  ),+tu･,h and  

'

     iSI-is}
"

:)i

"

:S:ll,Z.lii,gG:･1(2snl.l)i'Z.H (io)

 and  similarly  with  A, C,, hnd fi..
   2.2 Inviscid terms

   The value  of  the inviscid terms at  each  cell  face is

 
computed

 using  the third-order accurate  upwind

 
differencing

 constructed  within  the flux-difference split-

 ting framework. The thirdLorder  accuracy  is attained  in
 
the

 preprocessing (MUSCL) manner  ".  in which  the
nonuniforTnity

 of grid spacings  is taken into account,
The

 reasen  that the preprocessing approach  has been

 
adoptecl

 here, in contrast  to the postprocessing

 
approach

 adopted  in the previous  reports,  is that high-

 
order

 
accuracy

 under  the  nonuniform  grid spacing  is
much

 more  easily  attained  using  the preprocessig
approach.

  
As

 a building bloek, a  fiux difference a the cell face i
+-S' is definecl as a function of q at the left and  right

side
 
of

 the cell  face, and  the metric  (i, e. projected area)
terms.

   oli'+-,'-=F(4,i+i, SnS+t)-P(4,L･.t,Sn",.})

        
t-

 A  S.R.a 6qi`."t (ll)
where

 quadrilateral shown  below,

    (Snx)f･+lil',h==JS'[(y2-y"(z:-ai)-(z2-a)(y3-y])]

                                       (8)
 where

     R!P,t,,-t,,-t, ,P!-P}.t..t,,s

    {
     A!P,.t..t,..l, R,=-R.t,-S,k+}
Note that, using  the above  formula, the projected area
of  a  closed  body surface,  which  is divided inte many

quadrilaterals, exactly  sums  to zero,  This property Should
be called  

"the

 conservation  of  pro]'ected areas".  This
automatically

 assures  that the integrated pressure drag
component

 of  a closed  body is exactly  zere  jf the
pressure  is constant  everywhere.

  The  other  terms  in eq. (4) are treated simllary,  and
the discretized governing  equation  sihown below is
derived.
              t' -'

A,".it 
-A(qi

 i; , Sn f･+t)

A(q, Sn) --  SU+un=, ztnxt

 wnx,

 Bn.,
CJ==unx+vny+wnt

q,L+"i:=t(qiLt+qf+t)

6q,L･.Rs=a,R･+t-aS'+S

 uny,U+vny,

 wny,

 Sne,

  uni,  nr

  vng,  ny

U+zt;nt, na

 Bn., o

(12)

  As  shown  in Fig, 2, zero  extrapolation  is used  for
defining q`  and  4R.

    4f+t=qi

   {    ql.S==q,+i  (17)

The
 substitution  of  the above  equation  into eq. (l5)

produces  the lst-order accurate  upwind  differencing
about  the point  i.

2nd-erder accurate  u  wind  differencin with  unifonn

 
The

 flux differenee is divided into positive and  negative

 
components

 depending  on  the signs  of  the eigenvaluesi]
 as

     aF==aF++aF-  where  aF'± ==A ± 6a, (13)

 Then the  inviscid fiux at i±S is defined as
     A+i-=:fa(q,L+t, Snf+s)+aA  -l

    IA-}`= fr(a,!-b snf-i)-aats (i4)

 Substituting i+1  into iin the lower half of  the above     .
 equation,  and  equating  it with  the upper  half produces
 eq. (13) , which  means  that the present scheme  is conser-   -
 vatlve.

  The  eL and  qR are  determined in an  upwind

 differencing manner.  It is explained  using  ID  case  for
 simplicity, In approximating  a first derivative with  a
constant  coeMcient  c as  shown  below

     -!"IEL ei+t-qi-t

    
Cos*thMC

 di.fi' '                                       (15)
qi+t is deterrnined depending on  the sign  of c,

    qi+t 
=e,L-.i

 (c>o)
       ==qiR+s  (c<o) (16)

That
 
is,

 when  the signal  propagates  from  left to right,
q,L+s is used  as  ai+t and  vice  versa,

!1,g!p!gec-gg!gl:g!gLgpvelug-s!ii!glgpgiugstorderaccurateu  ddff

ggdtswgging

  Assuming all Ai in Fig, 2 are  constant

lation is used.

    qiL+t =!  gq, rr t4i-i
   lqS}='S-et+i--S-qi+2
                       R

 

, iinear extrape-

i-1

Fig.2 2ei+t

  .
  

1
 i+U2

and  ai+t  for

i+1 i+2

(l8)

e*

upwind  differencing
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!QsLy"tksgpg!pg-MdgL!!uitgggLg!id-gRQgiugUICKschemewithf  d

. 
Assuming

 constant  Ai again,  quadratic interpojation
is used,

    qs･.tt=gq,.,+ga,-eq,-i

     i36  1 (19)

    
qi-,i==Jg-4i+'g-qf+i-"g'ai+2.

The
 substitution  of  the above  equation  into eq, (15)

does not  produce  the  3rd-order but the  2nd-order accu-       J
rate

 
upwmd

 differencing, It is usually  called  the QUICK
scheme,

3rd-order accurate  u  wind  differencin with  
uniform

gt!id-fiR4gipgLC!lird  (U)

  
Using

 the Taylor series  expansion  about  the point i,
the  following interpolation formula which  leads to the
3rd'oTder accurate  upwind  differencing is clerived.

    es.･t-ga,.,+gq,-ea,-,

       
==qst-O]6qi-t+020ai+i

     .2s 1 (20)
    qi+S=-6"qf+-6-4i+i--6-qi+2

       
=gt+(1-02)bei+t-dii64t.g

where

   ¢ i==-}-,  e2=-g- ag,.t=:4,.-q,,･-･ (21)
This

 differencing will  be called  the upwind  differencing
U  (the letter for "uniform").

3rd-orcier accurate  u  wind  differencin with  nen-uni-

!fgiuLgil{I-sRaajg-QIU2.o  d (NU)

  Following SawadaS), in case  the grid spacing  is not

 
uniform,

 as shown  in Fig.2, q(6'), the value  of q as a

 
function

 of  the real  length g', is assurned  to be qua-
 dratic.

    q(4")=ev8*2+be"+c  (22)
 Since the location of  each  cell center  is unknown  in this
case,

 the curve  fitting in the integrated sense  is used  in
the three consequtive  intervals.

    ai+m"=iXji';:ltq(4')de'  (m=-i,e,o (23)
               2

Then
 the value  of qiL･+t is determined as  q(4,*-+t), and

simiiarly  with  4,R･+t,

    q,t-+t=qi+diiL64i-t+¢ 2`6ai+i

   {    qi"+t=a!+(i- ¢ £ aq,.e-di,R64,.£ 
(24>

where

 
ing

 that, as  in the above  equation,  the quadratic curve

 
fitting

 in the jntegrated sense  produces  the 3rd-order

 accurate
 formula, but the curve  fitting jn the collocated

 
sense,

 i. e, QUICK, fails to do so, This  differencing will

 
be

 called  the upwind  differencing NU  (the letters for
 

"non-uniform").

  It is straightfotward  to extend  this formula to the 3D

 case,  
in

 
which

 the grid spacing  is cornputed  by taking

 the average  of tlie four corner  points at  each  cell  face,

 
Fig. 3 sliows an  exarnple  of computed  results, Fig, 3( a )
shows  a  grid around  a  ship  hull, in which  the grid  points
h=5  (le is the number  in g-direction, with  k==1 being at
solid

 
walJ)

 is relecated  by  linear interpolation toward
the

 k ==4  points witli the new  distance between k=4  and
k=5  being only  1%  of the original  value.  The  arrows  in
the

 figure shows  its location, Fig. 3(b)  shows  the pres-
sure

 
contours

 obtained  using  the upwind  differencing U,
Fl'g.3(c)

 shows  a  similar  result  using  the upwind

differencing NU.  Comparing  the two  figures, it is evi-
dent that the differencing NU  produces a  result  better
than

 the differencing U  when  the grid spacing  is not

uniform.

 It
 should  be noted  that the differencing NU  does not

    of... Zit,A,

         A"zi5+ti,)(zJ-,+4

    ¢ s--(.-,.`",(,A.'hi`.k)..,

      RT  dhti;
    ¢ i 

-
        (A,+A, +ZZ,>  d, +`{Z])

    ¢ ,R-L
 Ai(Ai+th)

         zlh+Zli+z(E!)(A)+tit

The
 above  equatjons  satisfy the requirement  that  when

the
 grid spacing  is unifomi,  they reduce  to eqs. {20) and

(21). SawadaS) gives a  slightly different definition of
q f'+t, which  does not  satisfy  the requirement.It  is interest-

l'

'r

.

).
1

Fjg.3(a)Grid
 with  sudden  change  in g-spacing at le

=5  (arrows),

IZ;
IY:--p'

g7

Fig.3(b)Pressure
 contours  by the tipwind

differencing U.
Re==10`, dCp==o.o2.

Fig.3(c)Pressure
 contours  by the upwind

differencing NU.
Re==104, nCp=o.02,
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remedy  the adverse  effect of grid singularities  such  as

kinks and  skewness.

  On  the solid  wall  surface,  the flux value  is computed
directly by substituting  u==v=w=O  and  pressure P
being made  equal  to th,at at the  cell center,  i.e,, zero

extrapolation  by  haif the grid cell length

  2.3 Viscous terms
  The  Gauss integral theorem  eq. (6) is used  in deter-
mining  the first derivatives of velocity  components.  For,

example,  ux  at  the cell  face (i,i, le+(1/2)) is deter-
mined  by taking the volume  of  integration V}J,kte

which  is shown  as Mi wih  fe--1 in Fig.4.
             1

   
Ux-･-･l,=

 v}.J,k.t (UE{Snr}Eruw{Snx}w

                 +uN{Snx}N=us{Snx}s

where

+uT{Sn=}T-uB{Sn=}B)

UE  
==

 Ui",h-1

Uur--Ut";A

uN=I(ut.1";k+1+uiilt+!+ui+w,k+uw,h)

ecS=t(Ui"lh+1+Ui-1,j,ft+i+UiJ,k-+'Ui-1"･,lt)

Ur=='t'(UW+I,k+J+oriJ.h+1+UiJ+1,k+UW,h)

uB=-1-(ui,xh+1+ui,j..1.k+1-t-ui,J;h+ulJ.1.lt>

that the above  equation  is formally
   i, e, 2nd-order accurate  on

     lid wal!  (le==S), using  the two  
'

(25)

Note 2nd-order
accurate,  uniform  grids.

  At the so  integration

volumes  and  uJk=:3i2

are  deterrnined

   XI UxdV-  Ux314 XII UxdV--}  u.3J2

Then  the ui  at the solid  wall  is determined ln the
fellowing two  ways,

lst-･order accurac  (zero extra  olation)

   uxSE=uxe  (2.3,2)
The scheme  which  uses  this equation  wil]  be called  Vl,
i. e. the viscous  terms with  lst-order aecuracy.

23

Fig.4 Volume  of Gauss integration for viscous  terms

      near  solid  wall,

an  NS  Solver with  Global Conservation

2nd-order aecurac  (linear extra  olatjon)

151

       .4 1
    uxt:==-o-uxe--li-uxg  <2.3.3)

This  will  be called  V2.

  2. 4 Eddy yiscosity  vt

  The Baldwin-Lomax zero  equation  turbulence moclel
is used,  In most  of the computation,  smoothing  is
applied  by  averaging  with  the four neighboring  points
on  the same  fe plane. The  smoothing  seems  to increase

the numer'ical  stability. The cases  in which  the smooth-

ing is applied  will be called  SM, and  the cases  without

it will  be called  NSM.

  2.5 Tivaeintegratien

  The  Pade time diffencing form3' is used  for tirne inte-
gration with  e=1.0, i. e. the Euler implicit. In the invis-
cid terms  of  the unsteady  part, the lst-order upwind
differencing is used, by setting  Oi =  ¢ 2 ==  O, This does not
affect the steady-state  part, that is, the converged  invis-
cid part has 3rd-order accuracy.  The IAF  procedure  is
adopted.

  2.6 Boundary conditiens

  The bounday conditions  are surnmarized  in Table 1.
At  the upstream  boundary, zero  extrapolation  is used
for pressure. In case  the uniform  flow condition,  L e. P=O,
is used,  a  slight  pressure jump occurs  at the boundary,
Therefore the zero  extrapolation  eondition  has been
adopted,

     3. Mat  plate with  zero  attack  angle

  The grids for flat plate  computation  were  generated
analytically  with  H-gricl topology,  They are  similar  to
those used  in ref.  9). Table 2 shows  the parameters  for
the grid generation. IM  is the number  of  grid point in
the streamwise  clirection. Jbp is the point number  at  the
leading edge,  IAp is that  at the trailing edge,  KM  is the

Table 1 Boundary conditions

BoundaTy llIV,VF p
Upstreanui=1,v=!w=:Ozeroextlapolation

Dewmstreamueroe)ctrapolaiion p"g

Leftkllightsymmet.ry Symlneiry

Top ti=liv=w=O p±o
Bettom u=vtw=OEeroextiapolation

Table 2 Computed drag ef a fiat plate.
        Part 1...minimum spacings,

       Parameters: IM=81,  KM=!41,  1}rp=:16, hp=
                  60, Reute:==1.e,

                  Xup=-O,5,  Xtiown=2･O,  Tei=O.3,

                  B=1.0, NU, V2, SM, At-O.1.

GridReAni.
4xleSCTxloa(fi)4xloe 4xloT

A2xlo-sO.5182(O.Olee)O,3379(O.M}e.242S(D.126)
B1xlo-SO.5174(a.O063)O.3331(O.02)026S5(O.0632)

Ca.5xlo-sO,5174(e,oo32)O.3325CO.Ol)e.252S(O.0316)

DO,25x10-S- o.33a7(o.oos)O.as91(O.O158)

Ee.12sxle-s- O.3311(O.O025)O.2346(e,O079}
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number  of  grid points in z-direction,  i. e, the  normal-to

-'wall direction. XLp and  Xliown are  the x-coordinates  of

the  upstream  and  downstrearn boundaries, while  those

of the leading and  trailing  edges  being O.O and  1.0, respec-

tively. Iinin is the minimurn  grid spacing  adjacent  to the

solid  wall,  Router is the distance in the 2--direction

between the plate and  the top boundary. In ship  flows

this parameter  denotes the outer  radius  of the top

boundary.  7ci is the clustering  ratio  in the x(i)-direc-

tion. It is defined as  the ratio  of the x  spacing  (Ax) at

FP  or  AP  and  the average  spacing  between FP  and  AP.
                                    ,
a is the parameter  defined using  the equation

   Ztnin== 
6

         sLi?5

,
 a  criterion  frequently used  to determine the minimum

grid spacing  with  6==O.e5 in the previous

COMPutations2L3],4),9).

  The  table  alsQ  shows  the computed  Cr Ctotal drag)

values  at various  Reynolds numbers  with  various  grids.

In this case  there is no  pressure  drag cornponent  Cpres,

and  therefore CT contains  only  the frictional component.

Cfrtc. The  ghd expansion  ratio  in the z-direction  is

approximately  1.3. The  computations  were  continued

until the CT value  integrated on  the plate agrees  with

that integrated at outer  boundaries with  suMcient

accuracy,  say  up  to four significant  figures. The Cr
values  tend to converge  as  Zlmin decreases. The CT

values  at R.==4.0× le' are  plotted  with  A:in in the

horizontal axis  in Fig, 5. The  values  ef the grids C, D,

and  E converge  linearly, which  suggests  that the viseous

term  has 2nd-order accuracy.  In the range  of  the

Reynelds number  listed, it seerns that 6 should  be about

O.O05 in the above  equation,  i. e,,

         o.oes
    4dn=
         nt

     .32,7xlO

B

,
 ten times srnailer  than that in preyious computations,

in order  to compute  the drag within  1%  convergence

(with respect  to grid resolution)  errer,  The  converged

Cr values  are  slightly  smailer  than the  Schoenherr

vaues,

  Table 3 shows  the cases  Re==4,OXIe6  with  various

accuracy  of  the differenclngs. The  NU  and  U

differencings were  used  in the inviscid terrns, and  Vl and

V2 were  used  in the viscous  terms. Further, the effect of

the change  in the clustering  rario  7ci was  tested, since

the wall  chear stress  changes  very  rapid!y  at  both the

edges,  as  sihown in refs, 2) and  9), The Vl and  V2

produced  the same  CT value,  which  seem  to suggest  that

the grid points are  well  within  the viscous  sublayer,

where  the velocity  has linear distribution, The  fact that

NU  and  U  produced  the same  CT  value  is supported  by

the fact that there is only  frictienal (viscous) compo-

nent  in this drag,

          4. Series 60 (CB==e.6e) Hul1

  Computations were  made  for the Series 6e (CB=O.6e)
hull in the Reynolds  number  range  Rg=4.0 ×  105 to 4,O×

NU

2.6

2.5

2.4

2.3ED

C

o,oO.2  O.4 O.6

     Aft,i. ×  ioio

CT of  flatplate vs,  AZin

O.81.0

Fig.5 Total drag ,Re==4.oxlo7

Table 3 Computed drag of a fiat plate. Part 2...compu-

        tation parameters. Re ==4.e × 106. 0ther param-
        eters  are  common  with  Table 2.

GridrdIuviseidterrnVivcousterMarx10i
Ba.3NU V2e.333}

ttltU v 0,3331

"vNV VlO,333D

B2O.1- V2O.3330

(a) Bow

        (b) Stern
Fig. 6 Grid B of Series 60 hull.
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lo7.

  The  grid was  generated using  the implicit geometri-
ca]  methodS'.  Fig.6(a), (b) show the grid near  bow
and  stern,  The  grid points are  clustered  toward  bow  and

stern. Table 4 shews  the computation  pararneters, Ini-

tially the fiow is uniform  everywhere.  Computations
were  made  using  At=O,Ol  in most  cases  except  the first
40 or 50 steps, in which  tit was  made  much  smaller,

With tit==O,Ol the  nominal  Courant number  becornes

4,OOO in the srnallest Zinn,n grid. Computations were  carried

out  up  to the nondimensional  time of approximately

ten. Then  the drag  integrated at the outer  boundary

agrees  well  with  that at the ship  hull, although  no  strict

crjterion  for convergence  was  taken. In order  to simu･

late the effect  of  studs  (turbulence stimulators)  used  in
experiments,  the flow was  assumed  laminar up  to the
point 5%  from the bow  (x=e,05), and  thereafter the

eddy  viscosity  was  added.

  Fig,8 shows  the wake  contours  at  AP  (xtt1.0),
compared  with  the measurementsiO).  Althoug the over-

all  agreement  is reasonable,  the computed  result  iails to
predict the bulge of  the boundary layer at  the center,

But this bulge is partly due to the propeller hub  on  the
model  ship,  not  present in the computed  hull.
  Fig. 8 Shows  the compttted  pressure  contours  at Re=

4.0x106 using  the grid B  (case 6), At  the bow  (Fig.8
(a>), the presure suddenly  rises, and  this causes  slight

oscillation  in the streamwise  direction. At the stern

(Fig,S(b)), there is pressure recovery.  The.highest

presure point  in the  stern  is located slightly  aft  of the
stern  end,

  The  table  4 also shows  the computed  total drag

coeMcient  CT as  a  function of  the minimum  spacing

Amin. Ciric is the frietional component,  and  Cpre$ is the
pressure component.  The  same  data is plotted in Fig. 10.
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Tabie 4Computed  drag of  Series 60 (CB=O.60) ship
hull. Part l.., minimum  spacings

Parameters: IM=81,  JM= 25, KM=41,  IFp=

           16, IAp=60, R6uter= 1,O,

          Xup;-O･5,  xdewn"2.0,  7'ei==O.3,
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/

"4x10blx]ee4xldiTxlot4xloT
aridAthiuNo,Na. No,Ne.No.

O.59g5CTxlole.3s6g O.2615

A2xia-h1o,ssa2'Cl,l,x10:5D.3S41'-12O.2369

' n.on93Cpt.,K10)O.032B O.02d6

11,1321+KLI30
1.106

O.se49OA!l7O,3786e.336oO.3ee7

B1xle.S2O.55664O.452!fiO.3-7S11e.3o7613b.2771

O.04S3O,D3S5O.o314o,o2asO.02es

IJ431.1151.106IJ4S],284

O.6216 O.3S3T O.2905

c0.Sx10-S3e,sTsg'-7O.3532'-!4O.2659

O.04T7 o.ases O.0245

1,IT4 1.12r l.228O.2745

DO.25xlo-S'''-'-'L15O.2S2de.02221.160

SchoenheirxlOiB,Jr294e,"egO,3t23O.2934O.236S



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  ofNaval  Architects  of  Japan

154 Journal of  The  Societof  Naval Architects of  Jaan, Vol. 172

They show  clearly  that Cr decreases as  the Reynolds

number  increases, At  constant  Reynolds number,  in

contrast  to the flat plate result,  the dependence of CT on

the minimum  grid spacing  Lntn is not  very  clear,

although  at  R.==4,OxlO' Cr tends to decrease as  Amin

decreases. This phenomenon is also  observed  in the

fiat plate case,  The same  is true with  the frictional

component  Ctric and  the pressure component  Cpres. This

is perhaps  due to the  complex  viscous  and  inviscid

interaction in fully 3D fiow. One cannot  see  any  clear

dependence of  the  form  factor 1+K  on  the Reynolds

number,

  Table 5 shows  the results  using  various  differencing
formulas. In the  case  8, the upwind  differencing U  was

used.  Cntc remained  unchanged,  but Cpres increased by

20%,  Since the change  was  only  with  the inviscid terms,

that  should  infiuence only  the inviscid component,  i, e.

Cpres. The  case  9 shows  the influence of the smoething

of the eddy  viscosity  ut. It turns out  that the smoothing

of y! causes  little infiuence, The  case  9 was  computed

with  At ==  O.Ol, which  means  that the non-smoothing  did

not  cause  any  degradation in numerical  stability ln this

case.  The  case  le shows  the infiuence of the clustering

ratio  rci toward bow  and  stern.  Since, as shown  in Fig.

Table  5 Cornputed drag of  Series 60 (CB==O,60) chip

        hull. Part 2...computation pararneters, Re==

        4.0 ×10G, Other parameters  are  common  with

        Table 4.

CM.x10iCp.xlo2No.G[idrc)IivistidtetmSnloothilgefvtCTxlo2

6Be.3NU SMD.37S6O.3473O.0314

shrvU pO.3849O.3473O.0376

g--NV NSMg.37S4O.3469O.0315

10B)D.1" SMO.316SO.3A7To,o29D

O,04 .Cp=O,02

o,o

   Computed (NU: case  6). Cp..=O.344
--- Computed  (U: case  8). Cp..  =O.341

        (a) Bow

8, there is a  high and  steep  pressure peak  at the bow,

different grid resolution  may  cause  significant  change  in

Cpres. Cfric may  also  change  significantly,  because most

of  the contributien  comes  from the bow  area, where  the

boundary layer is very  thin. But it turns out  that the

change  is very  small.  This is perhaps due to the g]obal
conservation  prQperty which  the present scheme  poses-

ses.

  Fig. 9 shows  the pressure contours  on  the ship  hull in

the cases  6 and  8. Throughout the hull surfaee,  the

contours  of  the ¢ ase  6 are  located slightly  upstream  of

those of the  case  8. Considering the 'fact
 that the

maximum  pressure at  the bow  remains  essentially  the

same,  it is clear  that this seemingly  very  srnall

difference has  caused  the difference in Cp.es by as much

as  20%.  This shows  how  sensitive  the integration of

Cpres is. Fig. 9(b) also  shows  the comparison  with

rneasurements,  The agreement  with  the cemputed  val-

ues  is good. The  discrepancy at the  stern  end  is 
'due

 to

the propeler hub  present  with  the experimental  ship,

  Assuming that the results  with  rnanimum  timin are  the

best enes,  CT and  Cfr"c in the cases  3, 4, 7, 11, and  15 are

plotted in Fig, ll, together with  the measured  values:i],

The  measurements  were  made  in towing  tanks. In order

to avoid  the  wave  effect, only  the values  at srnaller

Froude numbers,  say  iess than O,23, were  plotted, The

agreement  of the computed  values  of CT with  
'the

measurements  are  very  good  in all  the  Reynolds number

range  eomputed,  The  Shoenherr line is also  plotted. Cfric

is consistently  slightly  larger than  the Schoenherr  value,

This  may  suggest  that the  form  factor comes  not  only

from  the  pressure component  but also  fForn the fric+

tional component.

  Having good  agreement  in Fig.11, the "alidity of

CFD  foT cemputing  the drag of  a  ship  hull with

suMcient  accuracy  using  a  reasonable  amount  of grid

points, has thus been established,
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