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Summary

Two numerical wave making techniques are examined with respect to the degree of accuracy. One
technique is for the finite-volume method in the curvilinear, boundary-fitted coordinate system and the
other is for the finite-difference method in a rectangular coordinate system. The free-surface treatments
of the latter are for a two-layer flow and can cope with 3D wave breaking. The wave making techniques
are explained and the accuracy and improvement of the techniques are described by the comparison

with the records of physically generated waves.

1. Introduction

Since a remarkable part of fluid flow is under the
presence of free-surface, the numerical simulation of
free-surface motions is of significant importance for
both scientific and engineering purposes. Following the
original MAC method some numerical techniques for
the solution of the Navier-Stokes equation have been
developed in the framework of an inflexible, rectangu-
lar grid system at the authors’ laboratory since 1979.
They are called Tokyo University Modified Marker-
And-Cell (TUMMAC) method. Almost all versions,
both 2D and 3D, are for the flows with free-surfaces.
The TUMMAC-IV method for ship waves? and the
TUMMAC-V method for 2D breaking waves? are
typical examples among numerous versions. '

The free-surface conditions in those works are com-
mon to the original MAC method and its modification.
The viscous stresses and surface tension are ignored
and then the dynamic condition is fulfilled by the pres-
sure condition on the free-surface while the kinematic
condition is by the Lagrangian movement of markers or
segments. The accuracy of these techniques has been
well demonstrated for the problems of gravitational
waves.

In this paper two other numerical simulation tech-
niques are dealt with and their properties in the simula-
tion of the free-surface motions are examined. Since the
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numerical wave making technique plays an important
role for the establishment of a numerical basin, the
stress is not only on the free-surface treatments but also
on the wave making treatments at the inflow boundary.

The aim of this paper is to develop two techniques,
one is a finite-volume method called WISDAM-V
which employs a curvilinear coordinate system fitted
both to the body surface and to the free-surface®®. A
quite similar approach was previously pursued by a
finite-difference method®*? and some successful results
were obtained at relatively low Reynolds numbers. The
robustness is improved by the employment of the finite-
volume discretization in the WISDAM-V method.

The second is a finite-difference method for a two-
layer flow in the framework of a rectangular coordinate
system. It is called TUMMAC-VI method which has
first succeeded in 3D breaking wave simulation?. Con-
trary to other TUMMAC methods the very special
treatments are devised in this study, however, its accu-
racy in the wave formation is not yet fully verified.

In this paper regular periodic waves are generated by
these two numerical techniques and the accuracy of the
generated waves are compared with the rocords of
physically generated waves by a flap-type wave genera-
tor. The viscous stresses on the free-surface are very
grossly treated or ignored and the surface tension is not
considered since their effect are almost negligible in the
problems described herewith.

2. WISDAM-V Finite-Volume Method

2.1 Computational procedure

The computational procedure is similar to the previ-
ous studies®® with the incorporation of the effect of
moving coordinate system into the governing equations.
The velocities and pressure points are defined in a
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staggered manner in the curvilinear coordinate system.
The Cartesian coordinates are chosen as the basic
coordinate system of the physical region, and the gov-
erning equations are formulated by a so-called “partial
transformation” technique. Suppose that the position
vector of the coordinate system is

r=r(z', x% z%), (1)
where x', % x* are longitudinal, lateral and vertical
coordinates, respectively, then the transformation of
coordinate system between the physical region and the
transformed region is

grad £"= (aérl, g_;, gga) . (2)
Hence the determination of the above matrix, or the
so-called Jacobian, which corresponds to the local vol-
ume about its definition point, becomes,

J=det(grad £7). (3)
Then the element of the inverse transformation matrix

of Eq. (2) is
oE! :_ZL[ dx® dx* ox' ixi} (4)
61'” ] asm asn asm aén )
with (£, m, #) and (p, s, ¢) in a cyclic order. In the pres-
ent study, in order to employ a finite-volume approach
for formulating the governing equation, the so-called
“area vector” is adopted instead of Eq. (4).

a dx® ox* odx' dx*

St=1 Gr—| S S o ) (5
where the superscript of the area vector expresses its
respective contravariant direction, while the subscript
means its Cartesian components, i. e., an area vector is
defined for the respective contravariant direction, and
its value is the area of the surface (of the local volume)
normal to its direction. Thus the vector form for S™ in
the Cartesian coordinates is,

S"=(S{, S§, SP). (6)
Thus, the Jacobian J and the area vector 8™ are defined
as the geometric coefficients in the present study.

For the incompressible viscous flow, the Navier-
Stokes equation can be written into the following con-
servative form in a moving coordinate system.

13(Ju)
e L tdiv T=F, (7)

here, F' is the external force,
stress tensor T is defined as
T=pI +(u—v)u—v def u, (8)
where T is the unit tensor, v is the moving velocity of
grid point, v is the kinematic molecular viscosity of the
fluid, p is the pressure divided by the fluid density and
the fluid deformation is defined as,
def u=grad u+(grad u)”. (9)
Therefore the stress tensor 7' in Eq. ( 8 ) is composed of
the normal stress of pressure, nonlinear stress, viscous
stresses.
Assuming that the external force is the gravitational
force, Eq. (7) becomes,

} a(({t") —grad H+f, (10)

and

u is the velocity, and the

f=div T, (11)
then,

f=—(u—v)utvdef u, (12)

H=p+gx? (13)

where g is gravitational acceleration. Therefore in the
present study, H is solved instead of the pressure 2.

The continuity equation for the incompressible flow is
as follows.

div(u)=0. (14)

The MAC-type algorithm is used for the solution
procedure. The velocity is updated by an explicit time-
marching method in the present study. Suppose that the
flow field is determined in the (#)-th time step, the free
surface boundary is deformed according to its
kinematic condition which will be described in the
following section. Then the grid is regenerated so as to
fit the deformed free-surface boundary. The pressure is
solved in the new free-surface-fitted coordinate system.
The details of the solution procedure is described in Ref.
[5106] and they are abbreviated here.

2.2 Free-surface condition

Suppose that the deformed free-surface is given as &°
=const. in the curvilinear boundary-fitted coordinate
system. In the present study, the nonlinear kinematic
condition and the inviscid dynamic condition are
imposed on this surface. The nonlinear kinematic condi-
tion is written as follows.

oF ; oF
3 —+ 1’ ot =), (15)

where F' is a function to represent the free-surface.
Therefore, the nonlinear kinematic condition is used to
be employed for the determination of free-surface
position in the numerical calculation. In the previous
studies for the ship wave problems®9®, F is defined by
the wave height function so that the nonlinear
kinematic condition can be written as,

s .
an; +ul gil +u2 giz —u3=0, (16)

when x? is the Cartesian coordinate to present thé free-
surface. However, as shown in the works by
Yamazaki'® and Hinatsu'?, in the curvilinear coordi-
nate system it will be more reasonable to employ &=
const as F. Therefore, Eq. (15) becomes,

tu 71%— 0. (17)

Therefore the nonlinear kinematic condition used in the

present study is the inverse form of the above equation

as follows. '
3x

]Ua-ws.g 7=0, (18)
where Ua is the contravariant velocity at the free-
surface. This equation means that the free-surface is
deformed so as to preserve the mass at the free-surface.
In the present study, only the wave height x° is updated
in an Euler manner by using Eq. (18)'2.
Since the viscous stress is ignored in this study, the
dynamic condition on the free-surface is
H=gx®. (19)
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2.3 Wave making condition

The computational region is a three-dimensional
rectangular region with a numerical wave maker set at
the inflow boundary. The wave is generated in a manner
based on the linear wave theory. As shown in Fig. 1, the
inflow velocities are given as follows.

3
u'=ac cos:,li(:ligfg):v ) sin(ot—x-r)
atx'=0,1, (20 a)
u?=0.0 at £'=0, 1, (20b)
. 3
wl= acr——‘smls‘i(rfl{lag—&jr )] cos(ot—x-r)
at x'=0,1, 2, (20 ¢)

where a is the half wave height, o is the angular fre-
quency, x is the wave number and D is the depth of the
region. r is the position vector of the definition points
and x* is their coordinate in the x*direction when the
still water surface is set at x*=0.0. The wave height at
the inflow boundary is set as follows.

x*=asin(ot —x-r), at £'=0, 1. (21)

2.4 Boundary conditions

A cyclic boundary condition is imposed at the lateral
boundary of the three-dimensional computational
region. At the bottom boundary, the velocity is given to
have no normal gradient and the pressure is set at the
hydrostatic value since the bottom boundary is located
deep enough in comparison with the wave length consid-
ered.

In the free-surface wave problem, the open boundary
condition is important. There are several methods such
as the Sommerfeld-Orlanski condition, its modifica-
tions'®'®, the added dissipation zone method'® and its
combination with the artificial damping scheme!"*é?,
In the present study, the added dissipation zone method
with the artificial damping scheme is employed as the
wave absorbing condition. An artificial damping scheme
in the dissipation zone is added to the right-hand-side of
Eq. (10) as follows.

a=<0,0, 0.0, —0.5( £ —&a )z( £~ & ))-u

Ealte_sclls E}s_égt
Eis< &' < Ele, £ <E < ER, (22)
where &', £ are the transformed coordinates, and the
O O 3 O
A Y3,k 91k %3k
U1 N u1
&),k O1,],1( o
0,3,k P15k
X3

(inflow boundary)

1
X

Fig.1 Definition sketch for the wave making condition
(case A).

subscripts ds and de denote the coordinates of the start
and end points of the added dissipation zone in the
E'-direction. bf denotes the bottom and fs the free-
surface position of the zone in the &*-direction.

3. Simulated Waves by WISDAM-V Method

3.1 Condition of computation

Regular waves with small amplitude are generated
and the degree of accuracy is examined with the physi-
cally measured wave records at the experimental tank.
The condition of computation is listed in Table 1. The
conditions of the two methods, i. e., WISDAM-V (case
A) and TUMMAC-VI (case B), were kept the same as
far as possible.

Three wave periods of 0.9, 1.2 and 1.5 second are
chosen with the constant wave height of 0.06 m. Since
the wave length is greater than 21 times of wave height,
the nonlinearity of waves is supposed to be very small.

The grids are attracted in the vicinity of the free-
surface as shown in Fig. 2 so that satisfactory resolution
can be obtained with a limited number of grid points.
The horizontal spacing is set at 4 percent of wave
length. Therefore the computational domain is stret-
ched due to the elongation of the wave length. For the
added dissipation zone of wave absorption 20 horizontal
grid points are allotted and the horizontal spacing is
stretched exponentially as shown in Fig. 2.

Tablel Condition of compuation.

Case A Case B

Simulation Code WISDAM-V TUMMAC-VI
Computational domain

length (m) 4 3

width (m) 0.5 _

depth (m) 3.0 2.5
Number of grid points

horizontal 101 171

vertical 31 145

lateral 5 -
Grid spacing

horizontal (m) 0.041 0.024

vertical (m) 5% 10 4 (min) 3 * 10 3 (min)

lateral (m) 0.1 -
kinematic viscosity (m?%s) 1.0107 * 10 © (fresh water)
Wave

period T (sec) 09,1.2,1.5

fength A (m) 1.260, 2.246 ,3.51

height 2a () 0.06

Fig.2 Boundary-fitted grid system.
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The physically measured wave records were present-
ed from the Seakeeping Tank of the University of
Tokyo which is 45m long, 5m wide and 35m deep.
Regular waves were generated by a flap-type wave
generator and their profiles were recorded by a wave
probe of capacitance type. The wave records were
instantaneously digitized and stored in a personal com-
puter. In order to compare with the computation, a
low-pass filter is employed to eliminate the mechanical
noise at high frequencies (higher than 500 frequency) in
the wave profile records. The difference of the wave
profile due to the change of the stroke of wave maker is
shown in Fig. 3. It is very hard to have wave height with
exact accordance with the predetermined value. The
error of experiment is noted in this figure.

3.2 Results

An example of velocity vector field is shown in Fig. 4.
It is noted that the damping of velocity field by the
added dissipation zone is well performed.

Comparison of wave profiles in time and space is
made in Figs. 5 and 6, and that of wave spectra in Figs.
7 and 8. In these figures X denotes longitudinal coordi-
nate in meter, 7" is the wave period and the frequency
is defined as

frequency = 2% (23)

It is obviously noted that the time-variation of wave
profile is small, which implies that the contamination by
the numerical error is negligibly small. Considering that
some errors are also inevitable in the measurement as
shown in Fig. 3, the agreement between numerical simu-
lation and experiment is good. It is realized in the
simulation that the slope of the wave profile is gentle on
the trough, while it is steeper on the crests, especially

T=0.9(sec) , exp

wave elevation (#7)

e STRONESZT

P STROKE:T1

time (sec)

Fig.3 Variation of physically generated wave profile
due to the difference of the stroke of wavema-
ker

|
| R

Fig.4 Velocity vector field of the case A.

when the wave height to length ratio is larger.

T=0.9(sec)

T AANA NN
—‘ / \/ | \\/ - :::::\\11

wave elevation ()

e 0T

T

S 1
0 1 2 1 H &

3
X (m)
T=1. Z(Sec)

N /
- \ /\ //\ J/\\/ \

wave elevation (n)

ook —— ot ur
----- = 1o

[ Y| S S e T
] 7 3 H

X (m)

T=1 5(sec)

na(r, ot e ey

_\ /\ /\ /'

wave elevation (m)

X (m)

wave elevation (m)

\/ S O T 0.9 SEC

——— EXP T= 0.9 SEC

wave elevation ()

ERNUVR SRR !
—— X T2 1.2 SEC ~i

-~ 0L LS sEC
—— AP Tr 1§ SEC

wave elevation ()
S & 4 e = o
e 2 88 B
— T T
)
i
[ i

- B —— T E R W
1.5 [X] 85 a0 9.5 0.0 10.5 1o

time (sec)

Fig.6 Comparison of wave profile with measured
records (case A).
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Fig.7 Comparison of logarithmic wave spectrum
(case A).
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Fig.8 Comparison of wave spectrum (case A).

4. TUMMAC-VI Finite-Difference Method

4.1 Computational procedure

The TUMMAC-VI method” which first succeeded in
the simulations of 3D wave breaking and water-sand
flow is used here.

Assuming that the fluid flows in the two-layer with
the specific density are incompressible and continuous,
the governing equations for the two-layer flow are the
following continuity and Navier-Stokes equations for
the two fluids, respectively.

o (V-u)=0, (24 a)

<> (V- u)=0), (24 b)

%ﬁf—+(u-V)u=—#Vp+a<‘>, (25a)

Dy (- V)u=— p32> Vp+a<?, (25b)
where,

a=vVu+f, (26)

here, the superscripts <1> and <2> denote the fluid
below and above the interface, respectively, in the
present study < 1> correspond to the water region below
and < 2> the air region on it, V is the gradient operator,
u, p, t and v are the velocity, the pressure, the time and
the kinematic viscosity, respectively, and f is the exter-
nal force including the gravitational acceleration.

The substantial concept and computational procedure
of the TUMMAC-VI are described in Ref. [ 7 ], and they
are only very briefly described here.

The fluid region is assumed to be divided into the
upper and lower layers and the solution of the above
governing equations is performed quite separately at
each time step of time-marching. The configuration of
the interface is determined by the free-surface condition
described in the subsequent section and both the veloc-
ity and the pressure are assumed to be continuous at the
interface. The surface tension is not considered here,

The solution algorithm for each layer is similar to the
previous TUMMAC method"?® in which the velocity
and pressure points are defined in a staggered manner in
a rectangular coordinate system.

4.2 Free-surface condition

Since the viscous stresses are ignored at the free-
surface the following dynamic and kinematic conditions
are considered.

p<l>_p<2>’ (27)
gj; Fua£+vaf+waf (28)

Here, f denotes the free-surface location, and «, v, w
the velocities in the respective x, y, z directions, con-
trary to the case A, the x, ¥, 2z represent the longitudi-
nal, lateral and vertical coordinates. Eq. (28) means
that the particle on the free-surface stays there by the
free-surface movement, and does not seem to be appro-
priate for the strongly interacting free-surface motions
which include overturning and breaking behaviors.

For the movement of fluid interface the following
equation of the marker-density is introduced.
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oM, oM, M, M,
o Tu gy TV, Wy,

Here, the marker-density M, is assumed to take the
value between o<'> and p<* all over the computational
domain and this scalar value has the meaning of poros-

=0. (29)

ity in each cell. In the case that an air-water flow is
considered the value of M, means the volume fraction
of water in a cell.

Eq. (29) is calculated at each time step and the free-
surface location is determined to be a point where the
marker-density takes the mean value of p*> and p*%
as

(p<l>+p<2>)

Mp:Mp': (30)

After determining the free-surface location the two
fluid regions are treated separately and the Navier-
Sokes equation is integrated with the respective density
0%"” and p*>. The free-surface location and pressure on
this surface are used as boundary conditions in this
process.

The dynamic free-surface condition of Eq. (27) is
implemented by the so-called “irregular star” tech-
nique'® in the solution process of the Poisson equation
for the pressure. The length of leg in the irregular star
technique is calculated using the marker-density as for
the positive x-direction.

- Mpz Mp Mp . 4
”_Mpa' Moin1 4, (D

where, 4 is the spacing and the subscript 7 is used for
the x location.

In the present problem, it is very important to
extrapolate the physical values into the other layer,
since the fluid motion at the interface is determined by
the interaction between the fluids of two-layers. There-
fore, the pressure at the interface is determined by
extrapolating the pressure of the fluid <(2> to the
interface location. The pressure is extrapolated with
zero gradient in the horizontal and lateral direction
while the static pressure difference due to the gravita-
tion is considered in the vertical direction.

At the interface the velocities are extrapolated with
approximately no normal gradient from the fluid <1>
to the fluid <2>. The velocities are horizontally
extrapolated when the interface slope is greater than 45°
or vertically otherwise. This treatment very grossly
corresponds with the viscous tangential condition at
the free-surface.

4.3 Difference equation for the marker-density

For the finite-difference approximation of the
marker-density equation (29), the Adams-Bashforth
method is used for time-differencing as follows.

7(n) __ ggin-1)
M‘gn+l):Méﬂ)_dt[%_2_M—]’ (32)
where,
~ M, oM, , M,
M=u F +uv E® Fw—a (33)

The preliminary test computations proved that the use
of the Adams-Bashforth method is very effective for the

prevention of the excessive diffusion of the marker-
density.

For the space differencing terms of Eq. (29), a variety
of scheme are tested. The scheme representation is as
follows for the first term for simplicity.

(1) the 1st-order upwind differencing

P T T
=1 %le—%(lf o< 0), (34)
where,
uo=—-——~u"7”2; vz, (35)
(2) the 2nd-order centered differencing
M= o Moo= Moz, (36)

(3) the 2nd-order centered differencing +filter
Here, the filter is used only in the vertical direction as
follows.
'_ Mm‘+2 —

4Mpi+] + 10Mp1+ 4Mpi-) _ Mpi—z
16 )

(37)
(4) the 2nd-order compact scheme
The compact differencing method by Hirsh'® is used
here as ~
(Mini+4 M+ M)
6

—us (M"”‘Zz,f”“‘“) NG

The differential coefficient #: is simultaneously cal-
culated along a coordinate line by the numerical solu-
tion of the triagonal linear system. However, for the
computational efficiency the initial value of M;: is
predicted by the centered differencing as

=y M= Mot (39)
and then an iterative calculation is made to raise the
accuracy up to the fourth-order through the following
equations derived from Eq. (38)2%.

M§m+l)=1ﬁ§m)+@{— (Mi+l+4Mi+Mi—l)

6
(Mpﬂ-l pz l) }(m)
24;

(40)

where the relaxation factor @ is set at 0.6.
(5) the 2nd-order compact differencing+ filter
(6) the 3rd-order upwind differencing
It is attained in the upwind differencing manner as
follows

Mopi—vi2

7. _Mpi+112_ i—
Mi=uo a4 (41)
where,
Mpi+ll2: Mp’?“/z(if Uitz = 0)

:Mlﬁ'-ﬂlz(if uz+uz<0)- (42)
In the case of the variable mesh system, the value of
Mz and MZ..2 are determined following Ref. [21]
[22], as

ME 2= Mo+ Aie( Mo — Mipi-1) + Arol Moisr — M),
(43 a)
M/§+1/2:Mpi + (1 “Am)(MpiH - Mpi)
_ARZ(MPI'+2_MPi+l)y (43 b)

where,
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A AAH—I
(d v +di+ dio )(dim i+ 45)

A(dia+d)
(A at+d; +A,+1)(A +Az+1)
A Al+l(dl+l+dl+2)
(Zl + i+ divo)(4; +div1),
Aidlir
(A +A;+I+Ax+2)(dz+l+dx+2)

Since the value of the marker-density is numerically
diffused across the interface in the course of the compu-
tation of Eq. (29) at each time step, the present method
obscures the interface location and the accuracy is

inferior to the other methods unless an appropriate
scheme is employed and very fine grid spacing and time
increment are used.

4.4 Wave making condition

In this problem of numerical wave making, we sup-
pose the layer <1> and <2> to be water and air,
respectively.

The computational region is a two-dimensional rectan-
gular region with a numerical wave maker set at the
inflow boundary of the region <1 . Since the wave in
the region (1> is generated in a manner based on the
linear theory of a finite-amplitude wave, the inflow
velocities in the region <1> defined in Fig. 9 are given
as follows.

i

U1=ao—— cossl:l{]xT(({}?l%)} sin (ot — xx), (44 a)
U= ao cossl:r{‘;l:l((gg)z)} sin{ot —x(x—dx)}, (44b)
sinh{x(D Yzt —425)} "
w=ao sinh(xD) cos{at—x(r——z—)},
(44 ¢)
P 1k+1
Vi1 O YV %2541 k+1
O 1k+1
W k+l
N

R free surface

VYu#ix O \VAZY" k

[ =
Fig.9 Definition sketch for the wave making condition
(case B).

where « is the half wave height, ¢ is the angular fre-
quency, x is the wave number and D is the depth of the
region, and (x, z) is the position of the velocity when
the origin of the coordinate system is set at the first cell
in the x-direction and the still water surface set at z=
0.0. On the other hand, the inflow velocities in the region
(2> are set at zero. The pressure in the cell is calcu-
lated by the Navier-Stokes equation as

p1=pl%(uz~ bz2)+ ps, (44)

where br: is the sum of the right-hand-side of the
z-directional Navier-Stokes equation except the pres-
sure term.

The values of the marker-density are extrapolated
with no-gradient in the horizontal direction.

4.5 Boundary conditions

At the top and bottom boundaries, the free-slip bound-
ary condition is imposed on the velocity and the hydros-
tatic pressure is given since the vertical distances from
the interface are sufficiently large in comparison with
the wave height of interest. The absorbing outflow
boundary condition is same with the case A, employing
the added dissipation zone with the artificial damping

scheme.
5. Simulated Waves by TUMMAC-VI Method

5.1 Condition of computation

The condition of computation is listed in Table 1.
Except for the substantial difference it is set as same as
the case A by the WISDAM-V method.

The grid spacing is variable in the vertical direction
and the grids are clustered in the vicinity of the free-
surface as shown in Fig. 10.

Being completely different from the case A, both the
air region and the water region are computed simultane-
ously and the velocity vector field becomes as shown in
Fig. 11. However, since the density of air is relatively
very small, the action of air is not supposed to give
influence on the water wave motion.

5.2 Effect of differencing scheme and time incre-

ment

The choice of the space-differencing scheme for the
marker-density equation (29) is of significant impor-

k=85 [
k = 61 "R

T
i=1562

Fig.10 Rectangular grid system.
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T=0.9(sec)

Fig.11 Velocity vector field of the case B.

T=1.5(sec)
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Fig.12 Comparison of vertical variation of density.at
(=1T.

tance.

For the accuracy of free-surface motion because
the numerical error may dissipate it. The schemes.
described in section 4.3 are compared for one wave
period of the case of T=1.5sec, and the results are
shown for the vertical variation of the marker-density
in Fig. 12. It is obviously noted that the scheme which
contains the error of the form of second derivative of
velocity makes the marker-density diffused in the verti-
cal direction, while others give rather steep variation of
the marker-density. However, the compact scheme is
lacking with robustness and has some difficulties in
continuing wave generation for a number of wave
period. '

Three schemes are tested for ten wave periods and
the results are shown in Fig. 13 in the same form and in
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Fig. 13 Comparison of vertical variation of density at
t=10T.
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Fig. 14 Comparison of wave profiles at t=10T by
three differencing schemes.

Fig. 14 in the form of wave profiles. Since the interface
moves up and down due to the wave: motion, the
marker-density is diffused by the elapse of time. It is
hard to choose one from the three in Fig. 13, but from
the standpoint of stability the third-order upwind
scheme is used for the advanced examination.

It is noted that the value of time increment is a
significant parameter on the degree of accuracy. As
shown in Fig.15 the discontinuous variation of the
marker-density disappears and very steep slope is
obtained when the time increment is set half of the
previous case with the third-order upwind differencing
scheme. Therefore, this scheme order upwind
differencing scheme. Therefore, this scheme is employed
with At =1x107%sec hereafter.

5.3 Results

The simulated waves for the three cases are presented
in Figs. 16 to 18 in the same way with the case A. Since
the wave profile used for comparison is one of the three
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in Fig. 3 and it is different from the case A, the compari-
son shows some different features. However, the agree-
ment is excellent considering the complicated treat-
ments of the marker-density and related procedures. It
is demonstrated that at least ten waves are generated
with sufficient degree of accuracy and the error due to
the numerical modeling is of the same order of magni-
tude with the physical experiment.

6. Conclusions

It is demonstrated that two numerical simulation
methods can generate waves with sufficient degree of
accuracy. This means that the numerical experiments
can be performed with the numerical wave making
apparatus with satisfactory accuracy. The hydrodyna-
mic properties of ships and other floating structures
will be tested both in the calm sea condition and in the
heading wave condition by the same numerical method.
Two methods have respective advantages and disadvan-
tages. The WISDAM-V method can simulate delicate
viscous motions on the body surface of gentle curvature,
whereas the TUMMAC-VI method can simulate strongly
interacting free-surface flow, such as 3D wave breaking.
Both seem to be useful for a variety of problems.

Acknowledgment

The wave records of physical experiment were
presented by Mr. S. Eguchi at the Prof. Fujino’s labora-
tory which is highly appreciated. This research is partly
supported by the Grant-in-Aid for Scientific Research of
the Ministry of Education, Science and Culture.

References

1) Miyata, H., Nishimura, S. and Masuko, A.:
Finite Difference Simulation of Nonlinear Waves
Generated by Ships of Arbitrary Three-
Dimensional Configuration, J. Computational
Physics 60-3, 391-436 (1985).

2) Miyata, H.: Finite-Difference Simulation of
Breaking Waves, J. Computational Physics 65-1,
179-214 (1986).

3) Sato, T., Miyata, H., Baba, N. and Kajitani, H.:
Finite-Difference Simulation Method for Waves
and Viscous Flows About a Ship, J. Soc. Nav.
Archit. Jpn. 160, 14-20 (1986) (in Japanese).

4) Miyata, H., Sato, T. and Baba, N.: Difference
Solution of a Viscous Flow with Free-Surface
Wave About an Advancing Ship, J.
Computational Physics 72-2, 393-421 (1987).

5) Watanabe, O., Zhu, M. and Miyata, H.: Numeri-
cal Simulation of a Viscous Flow with Free-
Surface Wave About a Ship by a Finite-Volume
Method, J. Soc. Nav. Archit. Jpn. 171, 507-519
(1992).

6) Miyata, H., Zhu, M. and Watanabe, O.: Numeri-
cal Study on a Viscous Flow with Free-Surface
Waves About a Ship in Steady Straight Course
by a Finite-Volume Method, J. Ship Research,
Vol. 36, No. 4, 332-345 (1992).

7) Miyata, H., Katsumata, M., Lee, Y.G. and Ka-

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

jitani, H.: A Finite-Difference Simulation
Method for Strongly Interacting Two-Layer
Flow, J. Soc. Nav. Archit. Jpn. 163, 1-16 (1988).
Park, J.C, Miyata, H., Tsuchiya, Y. and Kanai,

M. : Wave-Wake Interactions About a Body of
Revolution Advancing Beneath the Free Surface,
Proc. 19th Symposium on Naval Hydrodynamics,
Seoul, IV 1-18 (1992). .

Rosenfeld, M. and Kwak, D.: Time-Dependent
Solutions of Viscous Incompressible Flows in
Moving Co-ordinates, Int. J. Num. Method in
Fluid, Vol. 13, 1311-1328 (1991).

Yamazaki, R. : Expression of the Navier-Stokes
Equations in General Coordinate Systems, J.
West Japan Soc. of Nav. Archit.,, Vol. 75, 20-35
(1988) (in Japanese).

Hinatsu, M. : Numerical Simulation of Unsteady
Viscous Nonlinear Waves Using Moving Grid
System Fitted on a Free Surface, J. Kansai Soc.
Nav. Archit. Jpn., No. 217, 1-12 (1992).

Inoue, M., Baba, N., Kitagawa, K. and Nakag-
awa, T.: Computation of Nonlinear Water
Waves by Finite-Volume Method Using Free-
Surface Fitted Coordinate System, J. Kansai Soc.
Nav. Archit. Jpn., No. 217, 13-20 (1992).
Oranski, I.: A Simple Boundary Condition for
Unbounded Hyperbolic Flows, J. Computational
Physics 21, 251-269 (1976).

Wu, D-M. and Wu, T.Y.: Three-Dimensional
Nonlinear Long Waves Due to Moving Surface

Pressure, Proc. 14th Symposium on Naval
Hydrodynamics, Washington D.C., 103-129
(1982).

Chiba, S. and Kuwahara, K.: Numerical Analy-
sis for Free Surface Flow around a Vertical
Circular Cylinder, 3rd Symposium on
Computational Fluid Dynamics, Tokyo, 295-298
(1989) (in Japanese).

Baker, G.R., Merion, D.1. and Orszag, S.A.:
Applications of a Generalized Vortex Method to
Nonlinear Free Surface Flows, 3rd International
Conference on Ship Hydrodynamics, Paris, 179-
192 (1981). oo
Romate, J.E.: Absorbing Boundary Conditions
for Free Surface Waves, J. Computational
Physics 99, 135-145 (1992).

Chan, R.K.C. and Street, R.L.: A Computer
Study of Finite Amplitude Water Waves, J.
Computational Physics 6, 68-94 (1970).

Hirsh, R.S.: Higher Order Accurate Difference
Solutions of Fluid Mechanics Problems by a
Compact Differencing Technique, J.
Computational Physics 19, 90-109 (1975).

Baba, N. and Miyata: H., Higher-Order Accu-
rate Difference Solutions of Vortex Generation
from a Circular Cylinder in an Oscillatory Flow,
J. Computational Physics 69-2, 362-396 (1987).
Sawada, K. and Takanashi S.: A Numerical
Investigation on Wing/Nacelle Interference of
USB Configuration, AIAA Paper 87-0455 (1987).
Kodama, Y.: Computation of Ship’s Resistance
Using an NS Solver with Global Conservation, J.
Soc. Nav. Archit. Jpn. 172, 147-155 (1992).

NI | -El ectronic Library Service



