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                                    Summary

  Two  numerical  wave  mal<ing  techniques are  examined  with  respect  to the degree of accuracy,  One
technique is for the finite-volume method  in the curvilinear,  boundary-fitted coordinate  system  and  the
other  is for the  finite-difference method  in a  rectangular  coordinate  systern.  The  free-surface treatrnents
of  the latter are  for a  two-layer flow and  can  cope  with  3D wave  breaking. The wave  making  techniques
are  explained  and  the  accuracy  and  improvement  of  the  techniques are  described by  the  comparison

with  the records  of physically generated waves,

               1. Introduction

  Since a  remarlcable  part of fluid flow is under  the

presence of  free-surface, the numerical  sirnulation  of

free-surface motions  is of  significant  importance  for
both scientific  and  engineering  purposes.  Following the
original  MAC  method  some  numerical  techniques for
the solution  of the Navier-Stokes equation  have  been

developed in the framework of  an  inflexible, rectangu-

lar grid system  at the authors'  laboratoiy since  1979.

They  are  called  Tokyo  University Modified Marker-
And-Cell  (TUMMAC)  method,  Almost all  versions,

both  2D  and  3D, are  for the flows with  free-surfaces,
The  TUMMAC-IV  method  for ship  wavesi}  and  the

TUMMAC-V  method  for 2D  breaking waves2},are

typical  examples  among  numerous  versions,

  The  free-surface conditions  in those works  are  com-

mon  to the original  MAC  method  and  its modification.
The  viscous  stresses  and  surface  tension are  ignored
and  then the dynamic condition  is fulfi11ed by the pres-
sure  condition  en  the  free-surface while  the kinematic
condition  is by the Lagrangian movement  of markers  or

segments.  The accuracy  of  these techniques  has been
well  demonstrated for the prob]ems  of gravitational
waves,

  In this paper two  other  numerical  sirnulatlon  tech-
niques  are  dealt with  and  their properties in the simula-

tion of  the free-surface motions  are  examined.  Since the
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numerical  wave  making  technique plays  an  important

role  for the establishment  of  a  numerical  basin, the
stress is not  only  on  the free-surface treatments but also
on  the wave  making  treatments at the  inflow boundary.

  The  aim  of  this paper is to develop  two  techniques,

one  is a  finite-volume method  called  WISDAM-V

which  empleys  a  curvilinear  coordinate  system  fitted

both to the body  surface  and  to the  free-surfaceS)S). A

quite similar  approach  was  previously pursued by a

finite-difference method3)`)  and  some  successful  results

were  obtained  at relatively  low Reynolds numbers.  The
robustness  is improved by the employment  of  the finite-
volume  discretization in the WISDAM-V  meth6d.

  The second  is a  finite-difference method  for a  twop

layer flow in the frarnework of  a  rectangular  coordinate

systern. It is called  TUMMAC-VI  method  which  has

first succeeded  in 3D  breaking wave  simulation7}.  Con-

trary to other  TUMMAC  methods  the very  special

treatments are  devised in this study,  however,  its accu-

racy  in the  wave  forrnation is not  yet fully verified.

  In this paper regular  periodic waves  are  generated by
these two  numerical  techniques  and  the  accuracy  of  the

generated waves  are  compared  with  the rocords  of

physically generated waves  by a flap-type wave  genera-
tor. The  viscous  stresses  on  the free-surface are  very

grossly treated or ignoTed and  the surface  tension is not
considered  since  their effect  are  almost  negligible  in the

problems  described herewith.

    2. WISDAM-V  Finite-VolumeMethod

 2,1 Computationalprocedure

 The  computational  procedure  is similar  to  the previ-

ous  studiesS)e) with  the incorporation of the effect of

moving  coordinate  systern  into the governing  equations.

The  velocities  and  pressure points  are  defined in a
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 staggered  manner  in the curvilinear  coordinate  system.

 The Cartesian coordinates  are  chosen  as  the basic

 coordinate  system  of the physicul region,  and  the  gov-   .
 ern]ng  equations  are  formulated by a  so-called  

"partial

 transformation" technique. Suppose that the position
 vector  of  the coordinate  system  is

    r=  r(xi, x2,  xS),  (1)
where  x',x2,x3  are longitudinal, lateral and  vertical

 coordinates,  respectively,  then the  transformation of

coordinate  systein  between the physical region  and  the
transformed  region  is

    grad  6'-(  ,Oe'r, ir,-,-,O-,"-,)'. (2)

Hence  the determination of  the above  matrix,  or  the

so-called  Jacobian, which  corresponds  to the local voi-
ume  about  its definition point, becomes,
    J=det(grad6'). (3)
Then  the  element  of  the inverse transformation  matrix

of  Eq. (2) is
    ost-1fexs  axt axc aasl
    ax'Mli'La4m  aen-oem  oEnJi (4)

with  (t, m,  n)  and  (P, s, t) in a  cyclic  order.  In the pres-
ent  study,  in order  to employ  a  finite-volume approach

for formulating the governing  equation,  the so-called
"area

 vector'i  is adopted  instead of Eq. (4).

    ss-J-g,e,,,-` 
[:=[,a,x;

 
-I
 :-.` 

-
 g,x2 ge,:], (s)

where  the superscript  of  the  area  vector  expresses  its
respective  contravariant  direction, while  the subscript

means  its Cartesian components,  i, e., an  area  veetor  is
defined for the respective  contravariant  direction, and

its value  is the area  of  the surface  (of the local volume)
normal  to  its direction. Thus the vector  form  for SM  in
the  Cartesian coordinates  is,

    sm-(s,",  si  s,m). (6)
Thus, the Jacobian J and  the area  vector  SM  are  defined

as  the  geometric  coeMcients  in the present study.

  For the incompressib]e viscous  flow, the Navier-
Stokes equation  can  be written  into the  following con-
servative  form  in a  moving  coordinate  system,

   li)(tb!l!Z/+divT=F, (7)

here, F  is the extenial  force, u is the velocity.  and  the

stress  tensor T  is defined as

    T==PI +(u-v)u-vdef  u, (8)
where  l is the unit  tensor, v  is the moving  velocity  of

grid point, y  is the  kinematic  molecular  yiscosity  of the
fluid, P is the pressure divided by  the fluid density and
the  fluid deformation is defined as,
   def u=grad  u+(grad  u)'.  (g)
Therefore  the  stress  tensor T  in Eq. (8) is composed  of

the normal  stress of  pressure,  non!inear  stress, viscous

stresses.

  Assuming  that the external  force is the  gravitational
force, Eq. (7) becomes,
   ± Taglia
    1 ot 

;-grad

 
ll+f,

 (le)

and

    f=div  i, (11)
 then,

     i=-(u-v)u+v  def u, (12)
    "==p+gx･S,  (13)
 where  g is gravitational acceleration.  Therefore  in the
 present study,  e  is solved  instead of the pressure P.
  The  continuity  equation  for the incomp[essib}e flow is
 as  follows.

    div(u) ='  O. (14)
  The  MAC-type  algorithm  is used  for the solution

 procedure. The  velecity  is updated  by an  explicit  time-
marching  method  in the present  study.  Suppose  that  the
flow field is determined in the (n)-th time  step, the free
surface  boundary  is deformed  according  to its
lcinematic condition  which  wil]  be described in the
following section,  Then the gricl is regenerateci  so as to
fit the deformed  free-surface boundary. The  pressure is
solved  in the  new  free-surface-fitted coordinate  system.

The details of  the solution  procedure  is described in Ref.
[5][6] and  tl)ey are  abbreviated  here.

  2.2 Free-surface condition

  Suppose that  the deformed free-surface is given as ee
='const,

 in the  curvilinear  boundary-fitted coordinate

system,  In the  presemt study, the nonlinear  kinematic
condition  and  the  inviscid dynamic condition  are

imposed on  this surface.  The  nonlinear  kinematic  condi-

tion is written  as  follows,

    
io{-II-+ttiaa,F,,--o,

 as)

where  F  is a  function to represent  the free-surface.
Therefore, the nonlinear  kinematic condition  is used  to
be employed  for the determination of  free-surface

position  in the numerical  calculation.  In the previous
studies  for the  ship  wave  problemsS)D5)6), F  is defined by
the wave  height function so  that  the nonlinear

kinematic  condition  can  be written  as,

    
OoXt3

 +u'- gg- Ei,i3r+u2 3: :--- u2==  o, (16)

when  

'x:
 is the Cartesian coDrdinate  to present  the free-

surface.  However, as  shown  in the works  by
YamazakiiO) and  Hinatsu-,  in the curvilinear  coordi-

nate  system  it will  be more  reasonable  to empJoy  e3==
const.  as  F.  Therefore, Eq, (15) becomes,

   -tb,E+uitstl--o. (m

Therefore the nonlinear  kinematic conditien  used  in the
present study  is the inverse form qf the above  equation

as  follows.

    
{I;--JU3get

 -O, (18)

where  U3  is the  contravariant  velocity  at  the free-
surface.  This  equation  means  that the  free-surface is
defonned so  as  Io preserve the mass  at  the free-surface,
In the present study,  only  the wave  height x:  is updated
in an  Euler manner  by using  Eq, (18>i!}.
  Since the viscous  stress  is ignored in this study,  the
dynamic  condition  on  the  free-surface is
   H=gx".  (19)
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  2.3 Wave  making  condition

  The  co}nputational  regien  is a  three-dimensional

rectangu]ar  region  with  a  numerical  wave  mal<er  set at

the  inflow boundary.  The  wave  is generated  in a  manner

based on  the  linear wave  theory. As  shown  in Fig. 1, the
infiow velocities  are  given as follows

    tt`-aaCOSshi(nhh{D(t7+)XS}Lsin(at-x･r)
                           at xL-e,  1, (20 a)
    u2-o.o  at  si ==･O,  1, (20 b)

    u3tL'affSinei(nXi2iiLi)X3})cos(at-x･r)
     at  x]-O,  1, 2, <2e c)
where  a  is the  half wave  height, o  is the  angular  fre-

quency, x  is the wave  number  and  D  is the depth of the

region.  r  is the position  vector  of  the definition points

and  x3  is their coordinate  in the x3-direction  when  the
still  water  surface  is set  at  x3=O.O.  The  wave  height at

the  infiow boundary is set  as  lollows.
   x3-asin(ot-x･r),ate]=T-O,].  (21>
  2.4 Boundary  conditions

  A  cyclic  boundary condition  is imposed  at  the lateral
boundary of  the three-ditnensional computational

region.  At  the  bottom  boundary, the velecity  is given to
have  no  normal  gradient and  the pressure is set at the

hydrostatic value  since  t,he bottom boundary is located
deep  enough  in comparison  wlth  the  wave  length consid-

ered.

  In the  free-surface wave  problem,  the open  boundary
condition  is important. There  are  several  methods  such

as  the  Sommerfeld-Orlanski  condition,  its modifica-

tionsiS)'`), the added  dissipation zone  methodi5)  and  its
comb{nation  with  the artificial damping scheme]])i6)i7).

In the present  study,  the added  dissipation zone  method

with  the  artificial  damping  scheme  is employed  as  the

wave  absorbing  condition.  An  artificia] damping scheme

in the  dissipation zone  is added  to the right-hand-side  o'f

Eq, (le) as follows.

   a==  (o.o, e.o, -o.s('gSi'.let9s'g )Z( ii,llEl3. u eb'g!, ))' u

     61.<ei<ea., eg,<E3<ev,, (22)
where  ei, e3 are  the transformed  coerdinates,  and  the

i1
i

m-1,
     xl

I N

Ue,j,kUa,j.k u31,j.kU:.j,lt U]2,j,k

POaj,t Pa.j.k

     i=1

(iiifiow boundary)2

Fig.1 Definitionslcetchforthewavemakingcondition

      (case A).

subscripts  ds and  de denote the coordinates  of  the  start

and  end  points of  the added  dissipation zone  in the

e'-direction. bt denotes the bottom  and  ts the free-
surface  position  of  the  zone  in the  eS-direction,

  3. SimulatedWayesbyWISDAM-VMethod

  3. 1 Condition of  computation

  Regular  waves  with  small  amplitude  are  generated
and  the degree of  accuracy  is examined  with  the physi-

ca]ly  measured  wave  records  at the experimental  tank.

The  condition  of  cornputation  is listed in Table 1. The
conditions  of the two  methods,  i. e,, WISDAM-V  (case
A)  and  TUMMAC-VI  (case B), were  kept the  same  as

far as  possible.

  Three  wave  periods of  O,9, 1,2 and  1.5 second  are

chosen  with  the constant  wave  height ef  O.06 m,  Since
the wave  length is greater than  21 times of  wave  height,
tlie nonlinearity  of  waves  is supposed  to  be  very  smalt.

  The  grids are  attracted  in the  vicinity  of  the  free-

surface  as  shown  in Fig. 2 so that satisfactory  resolution

can  be obtained  with  a  limited number  of  grid  points.

The  horizontal spacing  is set  at  4 percent of  wave

length. Therefore  the  computational  domain  is stret-
ched  due to the elongation  of the wave  length. For the
added  dissipation zone  of wave  absorption  20 horizental

grid points are  allotted  and  the  horizontal spacing  is

stretched  exponentially  as  shown  in Fig. 2.

Table  1 Condition of  compuation,

CaseA CflseB

SiinulntioaC(xle WiSDAM.V TUMMAC.VI

Computational.domain

length(rn) 41 3A
width{m) o.s '
depth{m) 3.0 2,5

Namberofghdpoints

horizontat 101 171

vertical 31 145

latera] 5 '

Gridspacinghorizontal(m]
O.04A O,02A

vertical(m) 5*10'`(min) 3*tO"(min]
taleral(m) O,1 '

kinematicvlseosity(mZis) ].Ol07*10-fi{freshwater)

WaveperiedTtsee)

O.9,1,2,1.5

lengthA(rn} 1.260,Z246,3,5t

height2aC[rb) O,06

"
//l'11i

gill]iili,
iS.Ilk

iIl･lliiIiiiliUilI'''fli:i'Irll･./1il'i'I1-･l
lil,:,ll ll,ii 

,[,ii
 ilit,li!l

 , L..1.t.l'

 l.. l. I l/t t/

i･ I, .iJ.il-11･i

Fig.2 Boundary-fitted grid system.
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   The physically  measured  wave  records  were  present-
 ed  from the Seakeeping Tank  of the University of

 Tokyo  which  is 45m  long, 5m  wide  and  3.5m  deep.

 Regular  waves  were  generated by a flap-type wave

 generator and  their profiles were  recorded  by  a wave

 probe of  capttcitance  type.  The wave  records  were ,
 mstantaneously  digitized and  stored  in a  persona] com-

 puter. In order  to compare  with  the computation,  a

 low-pass filter is employed  to eliminate  the  mechanical

 noise  at high frequencies (highet than 5eO frequency) in
 the wave  profile records.  The  difference of  the wave

 prefile due to the change  of  the  stroke  ef  wave  maker  is
shown  in Fig. 3. It is very  hard to have wave  height with
exact  accordance  with  the predetermined  value.  The
error  of  experiment  is noted  in this figure.
  3.2  Results

  An  example  of  velocity  vector  field is shown  in Fig. 4.
It is noted  that the  damping of  velocity  field by the
added  dissipation zone  is well  perforrned,

  Comparison of  wave  profiles in time  and  space  is
made  in Figs. 5 and  6, and  that of  wave  spectra  in Figs.
7 and  8, In these figures X  denotes longitudinal coordi-

nate  in meter,  T  is the wave  period  and  the frequency
is defined as

   frequency;ZT-" (23)

  It is obviously  noted  that the time-variation  of  wave

profile is small,  which  implies that the contamination  by
the numerical  error  is negligibly  small.  Considering that
some  errors  are  also  inevitable in the measurement  as

shown  in Fig. 3, the agreement  between  numerical  simu-
lation and  experiment  is good. It is realized  in the

simulation  that the slope  of  the  wave  profile is gentle on
the trough,  while  it is steeper  on  the crests,  especially
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when  the wave  height to length ratiois  larger.
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  4. TUMMAC-VI  Finite-Pilference Method

  4.1 Computationalprocedure
  The TUMMAC-VI  method')  which  first succeeded  in

the simulations  of  3D  wave  breaking and  water-sand

flow is llsed  here,

  Assuming  that  the  fluid flows in the  two-layer  with

the  specific  density are  incompressible and  continuous,

the governing  equations  for the two-layer fiow are  the
following continuity  and  Navier-Stokes equations  for
the two  fiuids, respectively.

    p`]'(V･u) =' O, (24 a)
    p<2'(V･ u)  ==O,  (24 b)

    
aDUt
 +(u･v)u=--p:ITs/vp+a<b,  (2s a)

   
-aaUT+(u

 ny v) u=  
-
± vp  

-f
 a<2),  (2s b)

where,

    a='.vV2u+f,  (26)
here, the  superscripts  <1> and.<2>  denote the fluid
below and  above  the interface, respectively,  in the

present  study  < 1 > correspond  to the water  region  below

and  <2>  the air  region  on  it, V is the gradient operator,

u, P,t and  v  are  the  velocity,  the  pressure, the  time  and

the kinematic viseosity,  respectively,  and  f  is the exter-
nal  force including Ihe gravitational  acceleration.

  The substantial  concept  and  computational  procedure
of  the TUMMAC-VI  are  described in Ref. [ 7 ], and  they

are  only  very  briefiy described here.

  The  fluid region  is assumed  to be  divided into the

upper  and  lower layers and  the  solution  of  the  above

governing  equations  is performed  quite separately  at

each  time  step  of  time-marching,  The  configuration  of

the  interface is determined  by the free-surface condition

described in the subsequent  section  and  both the veloc-

ity and  the  pressure are  assumed  to be continuous  at  the

interface. The  surface  tension is not  considered  here.

  The  solution  algorithm  for each  layer is similar  to the

previous TUMMAC  method')2)S)  in which  the velocity

and  pressure points are  defined in a  staggered  manner  in

a  rectangular  ceordinate  system.

  4.2 Free-surface  condition

  Since the  viscous  stresses  are  ignored at the free-
surface  the following dynamic and  kinematic  conditions

are  considered.

   p<i)..p(2>, (27)

    grt 
-Fugri+v

 gy4 
-t-
 tv grt =o.  (2s>

Here, f denotes the  free-surface location, and  u,  v,  w

the velocities  in the respective  x,  y, z  directions, con-

trary to the case  A, the x,  y,a  represent  the  longitudi-

nal,  lateral and  vertical  coordinates.  Eq. (28) means

that the particle on  the free-surface stays  there by  the

free-surfaee movement,  and  does not  seem  to be appro-

priate for the  strongly  interacting free-surface motions

which  include overturning  and  breaking behaviors.
  For the  movement  of  fluid interface the following

equation  of  the marker-density  is introcluced.
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                         ond) -
   

-aiM-
 
br+.-llonlEfE-)

 +vaoMJb-+w  a, 
--o.

 (2g)

Here, the marker-density  Mh  is assumed  to take  t}ie

value  between p<i' and  p`Z' all  over  the  computfltional

domain  and  this scalar  value  has the meaning  of  poros-

ity in each  cell,  In the case  that an  air-water  flow is

considered  the  value  of  Mb  mean$  the volume  fraction

of water  in a  cell,

  Eq. (29) is calculated  at  each  time step  and  the free-

surface  location is determined  to be a  point  where  the

marker-density  takes the mean  value  of  p`"  and  p`2'

as

    M-,ii}-(p("gp`2'). (3o)

  After determining the free-surface location the two

fluicl regions  are  treated separately  and  the Navier-
Sokes equation  is integrated with  the respective  density

p`i' and  p`Z', The  free-surface location and  pressure on

this surface  are  used  as  boundary conditions  in this

process.
  The  dynamic  free-surface condition  of  Eq. (27) is

implemented  by  the so-called  
"irregular

 star"  tech-

niqueLa)  in the solution  process  of  the Poisson equation
for the pressure. The  length nf  leg in the irregular star

technique is calculated  using  the marker-density  as, for
the positive x-direction.

    ny =  n4nak, !t iijva,,., '4: (31)

where,  A  is the  spacing  and  the  subscript  iis used  

'for

the x  location.
  In the present  problem, it is very  important to

extrapolate  the physical values  into the  other  layer,

since  the  fluid motion  at  the interface is determined by

the lnteraction between  the  fluids of  two-layers. There-

fore, the pressure at  the interface is determined by

extrapolating  the pressure of  the  fiuid <2>  to the

interface location. The  pressure  is extrapelated  with

zero  gradient in the horizontal and  lateral direction
while  the  static  pressure difference due to the gravita-
tion ls considered  in the  vertical  direction.

  At the  interface the velocities  are  extrapolated  with

approximate]y  no  normal  gradient from  the fluid < 1 >
to the fluid <2>. The  velocities  are  horizontally

extrapolated  when  the interface slope  is greater than 45 
O

or  vertically  etherwise.  This treatrnent very  grossly
corresponds  with  the viscous  tangential conditien  at

the  free-surface.
  4. 3 Difference equatien  for the marker-density

  For  the finite-difference approxitnation  of  the

marker-density  equation  (29), the  Adams-Bashforth

method  is used  for time-differencing  as  follows,

    M;n+i) ..  utn)-nt[3M`".' 
'l}
 .e-`-" 

-rL'
 ], (32)

where,

    th= u. 
aatM-.

 +.  
aoAy4)

 -. .,-Q:t4Sh= (33)

The  prelirninary test cornputations  proved  that the use

of  the  Adams-Bashforth  method  is very  effective  for the

ptevention of  the excessive  diffusion of  the  marker-

density.

  For the space  differencing terms  of  Eq. (29), a  variety

ef  scheme  are  tested. The  scheme  representation  is as

follows for the first term  for simplicity.

p m(1)theltd  winddifferencin

   tht =  uo  
ua!Il

 . rvilf,Ii, 
"
 
'

 (if uo  >  e),

      =  tto-A4)Ih', 
.i'-iua-L(if

 uo  <  o) ,

where,

   u,=--U-iJllz-+2..U.{tye...

(2)rrthe2nLdtzgll!gluggu!g!g{Ldiffgl!g!iugd eteddiff  ni

na-u,-ca-tA''t'iltL.!{r.i,

(3) the 2nd-order centered.diffg!gugiggdt]fltg!:filt

(34)

(35)

(36)

  Here, the filter is used  only  in the vertical  direction as

fo]Jows.

    
-Mhi-.2-4M)i+i+1OMhi+4Mpt-,-uai-2

   
--T'T'rm'---'--'''

 16r"'-r'----  . (37)

(4) the 2nd-or-cler comLR4ag!ut  ftc-h-em..g

  The  compact  differencing method  by Hirshi9) is used

here as

    
(mb"F'+4(Iii+tht-')-u,(M"i'i2rrA,1.l4)'-'2'.

 (38)

  The  differential coeMcient  fii is simultaneously  cal-

culated  along  a  coordinate  line by  the  numerical  solu-

tion  of  the  triagonal linear system.  However, for the
computational  eMciency  the initial value  of Mi  is

predicted by the  centered  differencing as

   thf･"'== uo  
ta"i2-A,ta.

 
"i,

 (39)

and  then an  iterative calculation  is made  to raise  the

accuracy  up  to the fourth-order through  the following
equations  derived from  Eq. (38)2").

   ths.m+"=.abfm,+,-,･(-(Mi+i+4(Yi+-Mi.i)

           +  uo<4-4le--E't!2--n- i "t:-'>-1[M' "e)

where  the  relaxation  factor m- is set  at  O,6.

( 5 ) the 2nd-order compact  differencing+filter
(6) the  3rd-order uplolind,ct!'fferegglug

  It is attained  in the  upwind  differencing manner  as

follows

   fii=u,-U-hi'Lt22-iM'"'"i2, (41)

where,

   Mpi+u2=Mh'+u!(iftfi+in)O)

         =RCi.,,,(if za,..,<e).  (42)
  In the case  of  the variable  mesh  system,  the value  of

M:L･+w2 nnd  A4f,+],2 are  determined following ReL [21]
[22], as

   MJI'+u2==Mlii+Z"(tai-tai-])+4z(Mpi+i-Mpi),

                                        (43a)
   nf:-+v2=ani+(1-zl.)(Mhi,1-M),>
           

-dn2(Mlii+2-nai+i),
 (43b)

where,
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     aLr=ch/..,iri,{h4･t'ii-(A,-,irf,)',
             .ig,(A,.,+d,)
    

Zi-2=rJ,
 ., +d,･ +Zi,)(rmt,L+  nJ･ll. )',

    nre,-rJ,-.+Sii
±

.!g4,H-tt','.-'iSf%ttV)n,.,i

                 d,Z,.1
    

ri"'=-(Z;
 lAi+r+ll ;2) Zfi+i+ditJ"

   Since the value  of  the marker-density  is numericalJy

 
diffused across  the interface in the course  of  the compu-

 tation of  Eq. (29) at each  time  step, the present method

 
obscures

 the interface iocation and  the accuracy  is
inten-or to the other methods unless an appropriate
scherne  is employed  and  very  fine gtrid spacing  and  time.increment

 are  used.

  4.4 Wavemakingcondition

  In this probfem of  numerical  wave  making,  we  sup-

pose  the layer <1>  and  <2>  to be water  and  air,

respectively.

  The  computational  region  is atwopdimensional  rectan-

gular region  with  a  numerical  wave  maker  set  at  the

inflo"' boundary  of  the  region  <1>.Since  the wave  in
the region  < 1 > is generated in a manner  based on  the
iinear  theory  of a finite-amplitude wave,  the inflow

velocities  in the  region  < 1 > defined in Fig. 9 are  given
as  follows,

   uL=ao  
COS,hii"h((et+)Z)}-

 sin  (at-xx), (44 a)

   u2  =  aa  
CO
 
S,hi
 i"h((eb+･->`9)/L sin{ot  -x(x-  zi c)}, {44 b)

   w,  ..  aa  
SMh-{:!(.-nD-fit(xma

 
+
 
A2Z)]

 cos(ot  -x(x-  n2X )],
                                     (44 c)

P1,k+1
Ul,k+1O a2,k-･1

P1,k.!

W1,k+1

7.t

P1,k
Ul,kO U2,k

e1.k

VV1,k

k+1

free  slnface

k

           i=1

Fig. 9 Definition sketch  for the wave  inaking  condition

      (case B).

  
where  a  is the half wave  height, o  is the angular  fre-

  quency, x  is the wave  number  and  D  is the depth of  the

 
region,

 and  (x, z)  is the  position of  the veleeity  when

 the origin  of  the  coordinate  system  is set at  the first cell

 in the x-direction  and  the  still water  surface  set at 
zrr-'

 
e.O.

 On  the other  hand, the inflow velocities  in the  region

 <2>  are  set at zero.  The  pressure in the cell  is cajcu-

 lated by the Navier-Stokes  equation  as

    P, = pi'riA17( u!  - bxz) +  pa <44)

 where  b.2 is the  sum  of  the right-hand-side  of  the

 x･directional  Navier-Stokes equation  except  the pres-
 sure  term.

  The  values  of  the  marker-density  are  extrapolated

with  no-gradjent  in tl}e horizontal direction.

  4.5 Boundary  conditions

  At  the top and  bottom boundaries, the free-slip bound-
ary  cendition  is imposed en  the velocity  and  the  hydros-
tatic pressure is given  since  the  vertical  distances frorn

the interface are  surnciently  large in comparison  with

the wave  heig'ht of  interest, The  absorbing  outflow

beundary  condition  is same  with  the  case  A, employing

the added  diss{pation zone  with  the  artificial  damping

scheme,

 5. Simulated Wayes  by TUMMAC-VI  Method

  5.1 Condition  of  computation

  The  condition  of  computation  is listed in Table1.

Except for the  substantial  difference it is set as same  as

the case  A  by the WISDAM-V  method.

 The  grid spacing  is variable  in the venical  direction
and  the  grids are  clustered  in the  vicinity  ef  the free-

surface  as  shown  in Fig. 10,

  Being completely  different from  the case  A, both  the

air  region  and  the water  region  are  computed  sirnultane-

ously  and  the velocity  vector  field becomes as  shown  in

Fig, 11, However, since  the density of  air  is relatively

very  small,  the action  of  air  is not  suppesed  to give
influence on  the water  wave  motion.

 5.2  Effect of  dirrerencing scheme  and  time  incre-

      ment

 The  choice  of  the space-differencing  scherne  for the
marker-density  equation  (29) is of significant  impor-

le=ssk..61

Fag,10 Rectangular grid system,i=152

/
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tance.

  Fer the accuracy  of free-surface motion  because
the nurnerical  error  may  dissipate it. The  schemes

described in sectien  4.3 are  compared  for ene  wave

period of  the case  of T-=1.5sec, and  the results  are

shown  for the vertical  variation  of  the marker-density

in Fig. 12. It is obviously  noted  that the  scheme  which

contains  the error  of  the form  of  second  derivative of

ve]ocity  make$  the marker-density  dlffused in the verti-

cal  direction, while  others  give  rather  steep  variation  of

the ma]"ker-density.  However, the compact  scheme  is
lacking with  robustness  and  has  sorne  diMculties in

continLiing  wave  generation for a  number  of  wave

period.

  Three schemes  are  tested  for ten  wave  periods and

the results  are  shown  in Fig. 13 in the  same  form and  in

7--  tL.-

Fig. 14

TT-tnvr-'r"rT

 

 
O:t21Slln

                  xbu)

  Comparison of  wave  profiles at

  three differencing schemes.

'r t:

S10

t=leTby

Fig. 14 in the form  of  wave  profiles. Since the interface
moves  up  and  down  due to the  wave  motion,  the

marlcer-density  is diffused by  the elapse  of  time, It is
hard to choose  ene  from  the  three  in Fig. 13, but from

the standpoint  ef  stability the third-order upwind

scheme  is used  for the advanced  examination.

  It is neted  that the va!ue  of  time  increment  is a

significant  parameter  on  the clegree of accuracy.  As

shown  in Fig.15 the discontinuous variation  of the

marker-density  disappears anc]  very  steep  slepe  is

obtained  when  the time inerement  is set half of  the

previous case  with  the third-order upwind  differencing

scheme.  Therefore,  this  scherne  order  upwind

di fferencing scheme.  Therefore, this scheme  is employed
with  At t1 × IO"  sec  hereafter.

  5.3 Results

  The  slrnulated  waves  for the three  cases  are  presented

in Figs. 16 to ]8 in the  same  way  with  the case  A. Since
the wave  profile used  for compari$on  is one  of  the  three
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in Fig. 3 and  it is different frem  the case  A, the compam･

son  shows  some  different features. However, the agree-

rnent  is excellent  censidering  the  complicated  treat-

ments  of  the marker･density  and  related  procedures. It

is demonstrated that  at  least ten waves  are  generated

with  suMcient  degree  of accuracy  and  the error  due to

the numerical  modeling  is of the  same  order  of  magni-

tucle with  the physical experiment.

            6. Conclusions

 It is demonstrated  that two  numerical  simulation

methods  can  generate waves  with  suMcient  degree of

accuracy.  This  means  that  the  numerical  experiments

can  be perfermed  with  the numerical  wave  making

apparatus  with  satisfactory  accuracy.  The  hydrodyna-

mic  properties of  ships  and  other  fioating structures

will  be tested  both in the  calm  sea  condition  and  in Lhe

heading wave  condition  by  the  same  numerical  inethod.

Two  methods  have respective  advantages  and  disadvan-

tages. The  WISDAM-V  method  can  simulate  delicate

viscous  motions  on  the  body  surface  of  gentle curvature,

whereas  the TUMMAC-VI  method  can  simulate  strongly

interacting free-surface flow, sueh  as  3D  wave  breaking.

Beth  seem  to be useful  for a  variety  of problerns,
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