波浪中の操縦運動を記述する新しい座標系 とその運動方程式

正員 浜 本 剛 実* 正員 金 潤 洙**

A New Coordinate System and the Equations Describing Manoeuvring Motion of a Ship in Waves

by Masami Hamamoto, Member Yoon-Soo Kim, Member

Summary

The purpose of this paper is to find an equation of motion in a reasonable combination describing the manoeuvring motions in horizontal plane, rolling motion in lateral plane and seakeeping motion in vertical plane. The reasonable combination here is to find such a coordinates system as using the formulae with respect to the hydrodynamic forces which have been developed in field of manoeuvrability, stability and seakeeping. A new coordinate system called Horizontal Body Axes is presented for describing the equations of manoeuvring motion of a ship in waves. Froude-Krylov forces and Hydrodynamic forces on a ship are evaluated with respect to Horizontal Body Axes. The Time domain simulations are carried out for turning and zig-zag trial of a ship in waves. Finally, it is concluded that this new coordinate system would be considered to be available for describing ship motions having six degrees of freedom.

1. まえがき

波浪中で操縦されている船体は前進,横流れ及び回頭運 動に関与する波浪強制力を受けると同時に,波による船の 上下揺,縦及び横揺と連成するため,運動の様相は6自由 度で,その組み合わせも極めて多様となる。このような連 成運動の中には,大きな回頭運動と横傾斜を誘発する不安 定な挙動を内蔵した運動のモードがあり,船の操船及び安 全上重要な問題となることがある。この問題となる運動の モードをあらかじめ設計の段階で予測して,その対策を講 じたり,回避するための操船法を具体的に検討するために は,波浪中の操縦運動の運動力学的性質をさらに分析的に 明らかにすることが求められる。このためには,波浪中の 操縦運動を合理的に記述する座標系とその運動方程式が必 要となる。この場合,静水中の操縦運動は船体固定座標系 (General Body Axes System)²⁹⁹,また波浪中の縦及び横

* 大阪大学

** 大阪大学大学院工学研究科

原稿受理 平成5年1月11日 春季講演会において講演 平成5年5月19,20日 運動は空間固定座標系 (Earth Fixed Axes System)⁵⁾に 関する運動方程式が従来から慣用され、それぞれ座標系が 異なるので、両者が合理的に両立するような座標系とその 運動方程式を考えなければならない。このことは従来から、 議論されて来たが、船体運動の反力として船体に働く流体 力の記述にも関係し、問題のサイズが大きく、その内容が 複雑となることもあって、現在なお、合理的な結論を得る に至っていないようである。

そこで、本研究ではこの問題を分析的に考えるために、 新しい座標系を考え、この座標系を船体水面固定座標系 (Horizontal Body Axes System)²⁶⁾と呼び、これに関す る運動方程式を考えた。

本座標系では船体重心 G の並進運動は静水面と平行な 平面で前後及び左右の運動を記述し、上下運動はこれに垂 直な方向で記述する。また回転運動については、本座標系 は船体重心 G と共に静水面に垂直に上下揺しながら回頭 し、縦揺及び横揺はしない。従って、船の縦揺と横揺はこ の座標系の横及び縦軸まわりに回転運動を記述する。この 点が General Body Axes System のそれと異なる。この場 合、Genaral Body Axes System 以外で記述された慣性モ ーメント及び相乗積モーメントはオイラー角の関数となる ので、その表現が複雑となる。従って、角運動量の時間微

分から得られる回転運動方程式の記述がさらに複雑となる ため一般にはあまり用いられない。しかし、船体のように 水面で運動している細長体の場合、縦揺角 θ は極めて微小 で5度程度であることを考えれば sin $\theta \cong 0$, cos $\theta \cong 1$ と近 似でき、細長体であることを仮定すれば、縦揺と船首揺の 慣性モーメントがほぼ等しいので、実用上簡単化できる。

さらに本座標系に関する運動方程式と従来型のそれとの 関係を検討するために, General Body Axes System 及び Earth Fixed Axes System に関する運動方程式と比較検 討した。この検討結果より,本座標系は従来型の General Body Axes System と Earth Fixed Axes System が合理 的に両立する形となっていることが分かった。従って,流 体力についても従来から操縦性⁴⁾¹⁸⁾,復原性⁷⁾¹³⁾及び耐航 性⁶⁾¹²⁾の各分野でそれぞれ慣用されて来た数学モデルによ って記述できる結論を得たので,数値計算例と合わせてそ の結果を報告する。

2. Horizontal Body Axes System と その運動方程式

波浪中の操縦運動は、一般に平面運動と縦及び横運動と の連成運動となり、船体の回頭及び横揺角は大きくなるこ とが予想されるが、縦揺角は比較的小さく5度程度である。 いま、Fig. 1 に示す General Body Axes G-x, y, z の水平 面内の成分をx', y' 及び垂直下向きの成分をz'とすれば、 新たな座標系 G-x', y', z'を考えることができる。これら 両座標系の間の関係はオイラー角 ϕ , θ を用いて次のよう に表すことができる。

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\phi\sin\theta & \cos\phi\sin\theta\\0 & \cos\phi & -\sin\phi\\-\sin\theta & \sin\phi\cos\theta & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$
(1)

この新しい座標系 G-x', y', z' において, x' 軸方向の速度 を前進速度 U, y' 軸方向の速度を横流れ速度 V, z' 軸方向 の速度を上下速度 W とすれば, 船体重心 G の速度ベクト ル V_{c} は各軸方向の単位ベクトル **i**, **j**, **k** を用いて

$$\mathbf{V}_{c} = \mathbf{i}U + \mathbf{j}V + \mathbf{k}W \tag{2}$$

また, x'軸まわりの横揺角速度を \dot{o} , y'軸まわりの縦揺角 速度を \dot{o} , z'軸まわりの回頭角速度を $\dot{\psi}$ とすれば,船体重 心 Gまわりの角速度ベクトル ω は

 $\boldsymbol{\omega} = \mathbf{i}\dot{\boldsymbol{\omega}} + \mathbf{j}\dot{\boldsymbol{\Theta}} + \mathbf{k}\dot{\boldsymbol{\Psi}} \tag{3}$

のように表すことができる。この場合, 座標系 *G-x', y', z'* は縦揺及び横揺しないので, オイラー角 φ, θ, ψ との間に 次の関係がある。

$$\begin{bmatrix} \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\psi}} \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & 0 \\ 0 & 1 & 0 \\ -\sin \theta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\theta}} \\ \dot{\boldsymbol{\phi}} \end{bmatrix}$$
(4)

この関係は General Body Axes G-x, y, zの各軸まわり の角速度 p, q, r と異なる点である。また, Horizontal Body Axes G-x', y', z' 軸まわりの角運動量 $H_{x'}$, $H_{y'}$, $H_{z'}$ は運動量の定理より次のように与えられる。

$$\begin{bmatrix} H_{x'} \\ H_{y'} \\ H_{z'} \end{bmatrix} = \begin{bmatrix} I_{x'x'} - I_{x'y'} - I_{x'z'} \\ -I_{y'x'} & I_{y'y'} - I_{y'z'} \\ -I_{z'x'} - I_{z'y'} & I_{z'z'} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\phi} \\ \dot{\psi} \end{bmatrix}$$
(5)

ここで、 $I_{x'x'}, I_{y'y'}, I_{z'z'}$ はx', y', z'軸まわりの慣性モーメント、 $I_{x'y'}, I_{y'z'}, I_{z'x'}$ はその相乗積モーメントで、質量mの船体の単位体積当たりの質量をdmとすれば、次式で与えられる。

$$I_{x'x'} = \int_{m} (y'^{2} + z'^{2}) dm \quad I_{x'y'} = \int_{m} x'y' dm$$

$$I_{y'y'} = \int_{m} (z'^{2} + x'^{2}) dm \quad I_{y'z'} = \int_{m} y'z' dm \quad (6)$$

$$I_{z'z'} = \int_{m} (x'^{2} + y'^{2}) dm \quad I_{z'x'} = \int_{m} z'x' dm$$

従って(6)式において、船体は一般に左右対称であるから $I_{xy} = I_{yz} = 0$ とすれば、General Body Axes G-x, y, z に関 する慣性モーメント I_{xx} , I_{yy} , I_{zz} 及び相乗積モーメント I_{xz} を用いて次式のように表すことができる。

Fig. 1 Coordinate systems

$$I_{x'x'} = I_{xx} \cos^2 \theta + (I_{zz} \cos^2 \phi + I_{yy} \sin^2 \phi) \sin^2 \theta$$
$$-I_{xz} \cos \phi \sin 2\theta$$
$$I_{y'y'} = I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi \qquad (7)$$
$$I_{z'z'} = I_{xx} \sin^2 \theta + (I_{zz} \cos^2 \phi + I_{yy} \sin^2 \phi) \cos^2 \theta$$
$$+I_{xz} \cos \phi \sin 2\theta$$

及び

 $I_{x'y'} = (I_{zz} - I_{yy})\sin\phi\cos\phi\sin\theta - I_{xz}\sin\phi\cos\theta$ $I_{y'z'} = (I_{zz} - I_{yy})\sin\phi\cos\phi\cos\theta + I_{xz}\sin\phi\sin\theta$ $I_{z'x'} = (I_{xx} - I_{zz}\cos^2\phi - I_{yy}\sin^2\phi)\sin\theta\cos\theta$ $+ I_{xz}\cos\phi\cos2\theta$

さて、質量 m の船体が速度 V_G で並進しながら回転運動 をしているとき、船体に働く力を F、そのモーメントを Gとすれば、船体の運動方程式はニュートンの第2法則に従って、一般的に次のように記述することができる。

$$m\frac{d\mathbf{V}_{c}}{dt} = \mathbf{F}$$

$$\frac{d\mathbf{H}_{c}}{dt} = \mathbf{G}$$
(9)

この場合, d V_c/dt を Horizontal Body Axes G-x', y', z'に関する加速度とすれば、(2)式より次式を得る。

$$\frac{\mathrm{d}\mathbf{V}_{c}}{\mathrm{d}t} = \mathbf{i}\dot{U} + \mathbf{j}\dot{V} + \mathbf{k}\dot{W} + U\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}t} + V\frac{\mathrm{d}\mathbf{j}}{\mathrm{d}t} + W\frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t}$$
$$= \mathbf{i}(\dot{U} - V\dot{\Psi}) + \mathbf{j}(\dot{V} + U\dot{\Psi}) + \mathbf{k}\dot{W}$$
(10)

ここで、船体は各軸まわりに回転運動するが、Horizontal Body Axes System は Fig. 1 に示す水面に固定した Earth Fixed Axes $O-\xi$, η , ζ に対して並進運動しながら, z' 軸ま わりに回頭運動のみ行うので、各軸方向の単位ベクトル i, j, k の時間微分は次式で与えられる。

$$\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}t} = \mathbf{j}\,\dot{\Psi}, \quad \frac{\mathrm{d}\mathbf{j}}{\mathrm{d}t} = -\mathbf{i}\,\dot{\Psi}, \quad \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} = 0 \tag{11}$$

同様に,角運動量の時間微分も次のように演算することが できる。

$$\frac{\mathrm{d}\mathbf{H}_{c}}{\mathrm{d}t} = \mathbf{i}(\dot{H}_{x'} - H_{y'}\dot{\Psi}) + \mathbf{j}(\dot{H}_{y'} + H_{x'}\dot{\Psi}) + \mathbf{k}\dot{H}_{z'} \quad (12)$$

従って, 船体に働く力 F の x', y', z' 軸方向の成分を X', Y', Z', またそのモーメントの各軸まわりの成分を K', M', N' とすれば, (10)及び(12)式より次の運動方程式を得る。

$$m(\dot{U} - V\dot{\Psi}) = X'$$

$$m(\dot{V} + U\dot{\Psi}) = Y'$$

$$m\dot{W} = Z' + mg$$
(13)

及び

$$\frac{d}{dt} (I_{x'x'} \dot{\phi} - I_{x'y'} \dot{\phi} - I_{x'z'} \dot{\psi})
- \dot{\psi} (I_{y'y'} \dot{\phi} - I_{y'z'} \dot{\psi} - I_{y'x'} \dot{\phi}) = K'
\frac{d}{dt} (I_{y'y'} \dot{\phi} - I_{y'z'} \dot{\psi} - I_{y'x'} \dot{\phi})$$

$$(14)
+ \dot{\psi} (I_{x'x'} \dot{\phi} - I_{x'y'} \dot{\phi} - I_{x'z'} \dot{\psi}) = M'
\frac{d}{dt} (I_{z'z'} \dot{\psi} - I_{z'x'} \dot{\phi} - I_{z'y'} \dot{\phi}) = N'$$

(14)式において, 慣性モーメント及び相乗積モーメントは 共に船体の縦及び横揺角 θ , ϕ の関数となっているので, 左 辺第1項の時間微分は

$$\begin{bmatrix} \dot{H}_{x'} \\ \dot{H}_{y'} \\ \dot{H}_{z'} \end{bmatrix} = \begin{bmatrix} I_{x'x'} - I_{x'y'} - I_{x'z'} \\ -I_{y'x'} & I_{y'y'} - I_{y'z'} \\ -I_{z'x'} - I_{z'y'} & I_{z'z'} \end{bmatrix} \begin{bmatrix} \ddot{\phi} \\ \ddot{\phi} \\ \ddot{\psi} \end{bmatrix} + \begin{bmatrix} \dot{I}_{x'x'} - \dot{I}_{x'y'} - \dot{I}_{x'z'} \\ -\dot{I}_{y'x'} & \dot{I}_{y'y'} - \dot{I}_{y'z'} \\ -\dot{I}_{z'x'} & -\dot{I}_{z'y'} & \dot{I}_{z'z'} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\phi} \\ \dot{\psi} \end{bmatrix}$$
(15)

のように演算しなければならない。従って、慣性モーメントの時間微分 $\dot{I}_{x'x'}$, $\dot{I}_{y'y'}$, $\dot{I}_{z'z'}$ 及び相乗積モーメントの時間微分 $\dot{I}_{x'y'}$, $\dot{I}_{y'z'}$, $\dot{I}_{z'x'}$ は(7)及び(8)式より次のように求めることができる。

$$I_{x'x'} = -I_{xx}\theta \sin 2\theta + (I_{zz}\cos^2\phi + I_{yy}\sin^2\phi)\theta \sin 2\theta$$
$$-(I_{zz} - I_{yy})\dot{\phi}\sin 2\phi \sin^2\theta$$
$$+ I_{xz}(\dot{\phi}\sin\phi\sin 2\theta - 2\dot{\theta}\cos\phi\cos 2\theta)$$
$$\dot{I}_{y'y'} = (I_{zz} - I_{yy})\dot{\phi}\sin 2\phi$$
$$\dot{I}_{z'z'} = I_{xx}\dot{\theta}\sin 2\theta - (I_{zz}\cos^2\phi + I_{yy}\sin^2\phi)\dot{\theta}\sin 2\theta$$
$$-(I_{zz} - I_{yy})\dot{\phi}\sin 2\phi\cos^2\theta$$
$$- I_{xz}(\dot{\phi}\sin\phi\sin 2\theta - 2\dot{\theta}\cos\phi\cos 2\theta)$$
(16)

及び

$$\begin{split} \dot{I}_{x'y'} = & (I_{zz} - I_{yy})(\phi \cos 2\phi \sin \theta + \dot{\theta} \sin \phi \cos \phi \cos \theta) \\ & -I_{xz}(\dot{\phi} \cos \phi \cos \theta - \dot{\theta} \sin \phi \sin \theta) \\ \dot{I}_{y'z'} = & (I_{zz} - I_{yy})(\dot{\phi} \cos 2\phi \cos \theta - \dot{\theta} \sin \phi \cos \phi \sin \theta) \\ & +I_{xz}(\dot{\phi} \cos \phi \sin \theta + \dot{\theta} \sin \phi \cos \theta) \\ \dot{I}_{z'x'} = & (I_{xx} - I_{yy} \sin^2 \phi - I_{zz} \cos^2 \phi) \dot{\theta} \cos 2\theta \\ & + & (I_{zz} - I_{yy})\dot{\phi} \sin \phi \cos \phi \sin 2\theta \\ & - & I_{xz}(\dot{\phi} \sin \phi \cos 2\theta + 2\dot{\theta} \cos \phi \sin 2\theta) \end{split}$$

$$(17)$$

(7),(8),(16)及び(17)式の結果を(14)式に代入すると, Horizontal Body Axes G-x', y', z'に関する一般的な運 動方程式を得ることができるが,波浪中における船体の縦 揺角が5[°]程度で微小となるので, sin $\theta \cong 0$, cos $\theta \cong 1$ と近 似することができる。従って,角速度及び角加速度は(4) 式より

$$\begin{split} \dot{\phi} &= \dot{\phi} \quad \ddot{\phi} &= \ddot{\phi} \\ \dot{\phi} &= \dot{\theta} \quad \ddot{\phi} &= \ddot{\theta} \\ \dot{\psi} &= \dot{\psi} \quad \ddot{\psi} &= \ddot{\psi} - \dot{\phi} \dot{\theta} \end{split} \tag{18}$$

慣性モーメント及び相乗積モーメントは(7)及び(8)式より

$$I_{x'x'} \cong I_{xx}$$

$$I_{y'y'} = I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi \qquad (19)$$

$$I_{z'z'} \cong I_{zz} \cos^2 \phi + I_{yy} \sin^2 \phi$$

及び

$$I_{x'y'} \cong -I_{xz} \sin \phi$$

$$I_{y'z'} \cong (I_{zz} - I_{yy}) \sin \phi \cos \phi \qquad (20)$$

$$I_{z'z'} \cong I_{xz} \cos \phi$$

慣性モーメント及び相乗積モーメントの時間微分は(16)及 び(17)式より $\dot{I}_{x'x'} \cong -2I_{xz}\dot{\theta}\cos\phi$ $\dot{I}_{y'y'} = (I_{zz} - I_{yy})\dot{\phi} \sin 2\phi$ (21) $\dot{I}_{z'z'} \cong (I_{yy} - I_{zz}) \dot{\phi} \sin 2\phi + 2I_{xz} \dot{\theta} \cos \phi$ 及び $\dot{I}_{x'y'} \cong (I_{zz} - I_{yy}) \dot{\theta} \sin \phi \cos \phi - I_{xz} \dot{\phi} \cos \phi$ $\dot{I}_{y'z'} \cong (I_{zz} - I_{yy})\dot{\phi}\cos 2\phi + I_{xz}\dot{\theta}\sin\phi$ $\dot{I}_{z'x'} \cong (I_{xx} - I_{yy} \sin^2 \phi - I_{zz} \cos^2 \phi) \dot{\theta} - I_{xz} \dot{\phi} \sin \phi$ (22)のように演算することができる。(18)式を(13)式に、(18)、 (19), (20), (21)及び(22)式を(14)式に代入すると次の運 動方程式を得る。 $m(\dot{U}-V\dot{\phi})=X'$ $m(\dot{V}+U\dot{\phi})=Y'$ (23)тŴ =Z'+mg及び $I_{xx}\ddot{\phi} - I_{xx}\dot{\theta}\dot{\phi} + (I_{zz} - I_{yy})[\dot{\theta}\dot{\phi}\cos 2\phi]$ $+(\dot{\phi}^2-\dot{\theta}^2)\sin\phi\cos\phi$ $+I_{xz}(\ddot{\theta}\sin\phi-\ddot{\psi}\cos\phi)=K'$ $(I_{yy}\cos^2\phi + I_{zz}\sin^2\phi)\ddot{\theta} + I_{xx}\dot{\phi}\psi - (I_{zz} - I_{yy})$ $(\ddot{\psi}\sin\phi\cos\phi-\dot{\phi}\dot{\theta}\sin2\phi+\dot{\phi}\dot{\psi}\cos2\phi)$ $+I_{xz}[\ddot{\phi}\sin\phi+(\dot{\phi}^2-\dot{\psi}^2)\cos\phi]=M'$ $(I_{zz}\cos^2\phi + I_{yy}\sin^2\phi)\ddot{\psi} - I_{xx}\dot{\phi}\dot{\theta} - (I_{zz} - I_{yy})$ $(\ddot{\theta} \sin \phi \cos \phi + \dot{\phi} \dot{\phi} \sin 2\phi + \dot{\phi} \dot{\theta} \cos 2\phi)$ $-I_{xz}[\dot{\phi}\cos\phi - (\dot{\phi}^2 - \dot{\theta}^2)\sin\phi - 2\dot{\theta}\dot{\phi}\cos\phi] = N'$

(24) ここで、船体が細長体であることを仮定しているので、さ らに $I_{xz} \cong 0, \ I_{zz} \cong I_{yy}$ とすれば(24)式を次のように近似す

ることができる。

及び

$$I_{xx}\ddot{\phi} - I_{xx}\dot{\theta}\dot{\phi} = K'$$

$$I_{yy}\ddot{\theta} + I_{xx}\dot{\phi}\dot{\phi} = M'$$

$$I_{zz}\ddot{\psi} - I_{xx}\dot{\phi}\dot{\theta} = N'$$
(25)

次に,新しく導入した Horizontal Body Axes System に関する運動方程式の力学的性質を明らかにするために, 従来型の General Body Axes System と Earth Fixed Axes System に関する運動方程式と比較してみよう。

General Body Axes System に関する運動方程式

質量 mの船体重心 G に原点をもつ General Body Axes G-x, y, z の各軸方向を Fig. 1 に示すように,速度を u, v, w, 力を X, Y, Z, また各軸まわりの角速度を p, q, r, モーメントを K, M, N とすれば,運動方程式²⁾¹⁵⁾ は一般 に次のように記述することができる。

$$m(\dot{u} - vr + wq) = X - mg\sin\theta$$

$$m(\dot{v} - wp + ur) = Y + mg \cos \theta \sin \phi \qquad (26)$$

$$m(\dot{w} - uq + vp) = Z + mg\cos\theta\cos\phi$$

$$I_{xx}p - I_{xz}\dot{r} - (I_{yy} - I_{zz})qr - I_{xz}pq = K$$

$$I_{yy}\dot{q} - (I_{zz} - I_{xx})rp - I_{xz}(r^2 - p^2) = M$$

$$I_{zz}\dot{r} - I_{xz}\dot{p} - (I_{xx} - I_{yy})pq + I_{xz}qr = N$$
ここで、 p, q, r はオイラー角との間に次の関係がある。

$$\begin{bmatrix} \phi \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \phi \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$
(28)

ここで、 $\sin \theta \approx 0$, $\cos \theta \approx 1$ 及び $I_{xx} \approx 0$, $I_{zx} \approx I_{yy}$ とすれば (26)及び(27)式を次式のように近似することができる。

$$m(\dot{u} - vr + wq) = X$$

$$m(\dot{v} - wp + ur) = Y + mg \sin \phi$$
 (29)

$$m(\dot{w} - uq + vp) = Z + mg \cos \phi$$

及び

$$\begin{aligned} I_{xx}\dot{p} &= K \\ I_{yy}\dot{q} - (I_{zz} - I_{xx})rp &= M \\ I_{zz}\dot{r} - (I_{xx} - I_{yy})pq &= N \end{aligned}$$
(30)

ここで, p, q, r及び $\dot{p}, \dot{q}, \dot{r}$ はオイラー角との間に次の関係がある。

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi \sin \phi \\ 0 - \sin \phi \cos \phi \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$
(31)

及び

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \dot{\phi} - \dot{\theta} \dot{\phi} \\ \ddot{\theta} + \dot{\phi} \dot{\phi} \\ \ddot{\psi} - \dot{\phi} \dot{\theta} \end{bmatrix}$$
(32)

Earth Fixed Axes System に関する運動方程式

Fig. 1 に示す Earth Fixed Axes $O-\xi$, η , ζ において, 船体重心 G の各軸方向の速度を $\dot{\xi}_c$, $\dot{\eta}_c$, $\dot{\zeta}_c$, 力を F_{ϵ} , F_{η} , F_{ϵ} , また各軸まわりの角速度を ω_{ϵ} , ω_{η} , ω_{ϵ} , モーメントを G_{ϵ} , G_{η} , G_{ϵ} とすれば, 運動方程式⁹ はよく知られているように次式で与えられる。

$$m\xi_{c} = F_{e}$$

$$m\ddot{\eta}_{c} = F_{\eta}$$

$$m\dot{\zeta}_{c} = F_{\xi} + mg$$
(33)

及び

$$\frac{\mathrm{d}}{\mathrm{d}t}(I_{\xi\xi}\omega_{\xi} - I_{\xi\eta}\omega_{\eta} - I_{\xi\xi}\omega_{\xi}) = G_{\xi}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(I_{\eta\eta}\omega_{\eta} - I_{\eta\xi}\omega_{\xi} - I_{\eta\xi}\omega_{\xi}) = G_{\eta}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(I_{\xi\xi}\omega_{\xi} - I_{\xi\xi}\omega_{\xi} - I_{\xi\eta}\omega_{\eta}) = G_{\xi}$$
(34)

この場合, Earth Fixed Axes $G-\xi$, η , ξ と General Body Axes G-x, y, z との両座標系の間の座標変換及び角速度 関係はオイラー角 ϕ , θ , ϕ を用いて次式のように与えられ る。

$$\begin{bmatrix} \xi - \xi_c \\ \eta - \eta_c \\ \xi - \xi_c \end{bmatrix} = \begin{bmatrix} \cos \theta \cos \psi \sin \phi \sin \theta \sin \theta \cos \psi \\ -\cos \phi \sin \psi \\ \cos \theta \sin \psi \sin \phi \sin \theta \sin \psi \\ +\cos \phi \cos \psi \\ -\sin \theta & \sin \phi \cos \theta \\ \cos \phi \sin \theta \cos \psi \\ +\sin \phi \sin \psi \\ -\sin \phi \cos \psi \\ -\sin \phi \cos \psi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
(35)

及び

$$\begin{bmatrix} \omega_{\epsilon} \\ \omega_{\eta} \\ \omega_{\tau} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\phi - \sin\phi & 0 \\ \cos\theta\sin\phi & \cos\phi & 0 \\ -\sin\theta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$
(36)

ここで、縦揺角 θ を微小として、sin $\theta \cong 0$ 、cos $\theta \cong 1$ と近似すれば、(34)式の慣性モーメント $I_{\epsilon\epsilon}$, $I_{\eta\eta}$, I_{st} 及び相乗積 モーメント $I_{\epsilon\eta}$, $I_{\eta\tau}$, $I_{t\epsilon}$ は次式のように演算できる。

$$I_{\xi\xi} \cong I_{xx} \cos^2 \psi + (I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi) \sin^2 \psi$$
$$-I_{xz} \sin \phi \sin 2\psi$$

$$I_{\eta\eta} \cong I_{xx} \sin^2 \psi + (I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi) \cos^2 \psi \quad (37)$$
$$+ I_{xz} \sin \phi \sin 2\psi$$

$$I_{\zeta\zeta} \cong I_{zz} \cos^2 \phi + I_{yy} \sin^2 \phi$$

及び

$$I_{\xi\eta} \cong (I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi - I_{xx}) \sin \phi \cos \phi$$
$$-I_{xz} \sin \phi \cos 2\phi$$

 $I_{\eta\xi} \cong (I_{zz} - I_{yy}) \sin \phi \cos \phi \cos \psi + I_{xz} \cos \phi \sin \psi$ $I_{\xi\xi} \cong (I_{yy} - I_{zz}) \sin \phi \cos \phi \sin \psi + I_{xz} \cos \phi \cos \psi$

(38)

また,慣性モーメント及び相乗積モーメントの時間微分は 次のように演算できる。

$$\begin{split} \vec{I}_{\xi\xi} &\cong (I_{yy}\cos^2\phi + I_{zz}\sin^2\phi - I_{xx})\dot{\phi}\sin 2\phi \\ &+ (I_{zz} - I_{yy})(\dot{\phi}\sin 2\phi\sin^2\phi \\ &+ \dot{\theta}\sin 2\phi\sin\phi\cos\phi) \\ &- I_{xz}(2\dot{\theta}\cos\phi\cos^2\phi + 2\dot{\phi}\sin\phi\cos 2\phi \\ &+ \dot{\phi}\cos\phi\sin 2\phi) \\ \vec{I}_{\eta\eta} &\cong (I_{xx} - I_{yy}\cos^2\phi - I_{zz}\sin^2\phi)\dot{\phi}\sin 2\phi \\ &+ (I_{zz} - I_{yy})(\dot{\phi}\sin 2\phi\cos^2\phi \\ &+ \dot{\theta}\sin 2\phi\sin\phi\cos\phi) \\ &- I_{xz}(2\dot{\theta}\cos\phi\sin^2\phi - 2\dot{\phi}\sin\phi\cos 2\phi \\ &- \dot{\phi}\cos\phi\sin 2\phi) \\ \vec{I}_{\xi\xi} &\cong - (I_{zz} - I_{yy})\dot{\phi}\sin 2\phi + 2I_{xz}\dot{\theta}\cos\phi \end{split}$$
(39)

$$I_{\xi\eta} \cong (I_{yy} \cos^2 \phi + I_{zz} \sin^2 \phi - I_{xx}) \phi \cos 2\psi + (I_{zz} - I_{yy}) (\dot{\theta} \cos 2\psi + \dot{\phi} \sin \phi \cos \phi \sin \psi \cos \psi) + I_{xz} (2\dot{\psi} \sin \phi \sin 2\psi + \dot{\theta} \cos \phi \sin 2\psi$$

 $-2\dot{\phi}\cos\phi\cos 2\psi)$ $\dot{I}_{y\xi} \approx (I_{xx} - I_{yy}\sin^2\phi - I_{zz}\cos^2\phi)\dot{\theta}\sin\phi$ $+ (I_{zz} - I_{yy})(\dot{\phi}\cos 2\phi\cos\phi - \dot{\phi}\sin\phi\cos\phi\sin\phi)$ $+ I_{xz}(\dot{\phi}\cos\phi\cos\phi + \dot{\theta}\sin\phi\cos\phi$ $-\dot{\phi}\sin\phi\sin\phi)$ $\dot{I}_{\xi\xi} \approx (I_{xx} - I_{yy}\sin^2\phi - I_{zz}\cos^2\phi)\dot{\theta}\cos\phi$ $- (I_{zz} - I_{yy})(\dot{\phi}\sin\phi\cos\phi\cos\phi + \dot{\phi}\cos 2\phi\sin\phi)$ $- I_{xz}(\dot{\theta}\sin\phi\sin\phi + \dot{\phi}\cos\phi\sin\phi$ $+ \dot{\phi}\sin\phi\cos\phi)$ (40)

ここで、 $\omega_{\epsilon}, \omega_{\eta}, \omega_{\iota}$ 及び $\dot{\omega}_{\epsilon}, \dot{\omega}_{\eta}, \dot{\omega}_{\iota}$ はオイラー角との間に次の関係がある。

$$\begin{bmatrix} \omega_{\ell} \\ \omega_{\eta} \\ \omega_{\zeta} \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$
(41)

及び

$$\begin{aligned} \dot{\omega}_{\theta} \\ \dot{\omega}_{\eta} \\ = \begin{bmatrix} \cos \psi - \sin \psi \ 0 \\ \sin \psi \ \cos \psi \ 0 \\ 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} \ddot{\psi} - \dot{\theta} \dot{\psi} \\ \ddot{\theta} + \dot{\phi} \dot{\psi} \\ \ddot{\psi} - \dot{\phi} \dot{\theta} \end{bmatrix}$$
(42)

ここで(37),(38),(39),(40),(41)及び(42)式の結果を (34)式に代入すれば,Earth Fixed Axes $O-\xi$, η , ξ に関す る回転運動方程式が得られる。しかし,慣性モーメント(37) 式及び相乗積モーメント(38)式は General Body Axes G-x, y, z の z 軸まわりのオイラー角 ϕ の関数となり,複雑と なる。従って,大きな回頭運動を記述する運動方程式には 用いられず, $\phi=0$ として船が直進しながら動揺していると き,次のような運動方程式に限って従来から用いられてい る。

$I_{xx}\ddot{\phi} - I_{xx}\dot{\theta}\dot{\phi} = G_{\xi}$	
$I_{yy}\ddot{\theta} + I_{xx}\dot{\phi}\dot{\psi} = G_{\eta}$	(43)
$I_{zz}\ddot{\psi} - I_{xx}\dot{\phi}\dot{\theta} = G_{\zeta}$	

さて、本節のまとめとして、これまで述べてきた新しい Horizontal Body Axes System に関する運動方程式と従 来型の運動方程式との比較をTable.1に示す。この Table.1から分かるように新しい運動方程式の並進運動 は General Body Axes System に関するそれとよく似て おり、さらに簡素化されている。また、回転運動は Earth Fixed Axes System に関するものと同じ形となっている。 このことから新しい運動方程式の性質は General Body Axes System 及び Earth Fixed Axes System を組み合わ せた内容で、大きな回頭角と横傾斜角をもつ運動の大略を 記述できる性質をもっている。また流体力の記述について は従来からの操縦性、復原性及び耐航性の分野の推定法を 用いることができるので、その概要を次節で述べる。

3. 船体に働く流体力

波浪中で操縦されている船の没水部に働く流体力は静水 圧を含むフルード・クリロフの力,船体運動の反力として

日本造船学会論文集 第173号

Table 1 Traditional and New Equation of Motion

Earth Fixed Axes	General Body Axes	Horizontal Body Axes
Translational Motions and Forces	Translational Motions and Forces	Translational Motions and Forces
$m\dot{\mathbf{V}}_{G}=\mathbf{F}$	$m(\mathbf{\dot{V}}_G + \boldsymbol{\omega} \times \mathbf{V}_G) = \mathbf{F}$	$m(\dot{\mathbf{V}}_G + \mathbf{k}\dot{\Psi} \times \mathbf{V}_G) = \mathbf{F}$
Rotational Motions and Moments	Rotational Motions and Moments	Rotational Motions and Moments
$\dot{\mathbf{H}}_{G} = \mathbf{G}$	$\dot{\mathbf{H}}_{G} + \boldsymbol{\omega} \times \mathbf{H}_{G} = \mathbf{G}$	$\dot{\mathbf{H}}_{G} + \mathbf{k}\dot{\Psi} \times \mathbf{H}_{G} = \mathbf{G}$
where	where	where
$\mathbf{V}_G = \mathbf{i} \dot{\boldsymbol{\xi}}_G + \mathbf{j} \dot{\boldsymbol{\eta}}_G + \mathbf{k} \dot{\boldsymbol{\zeta}}_G$	$\mathbf{V}_{G} = \mathbf{i}u + \mathbf{j}v + \mathbf{k}w$	$\mathbf{V}_{\boldsymbol{G}} = \mathbf{i}\boldsymbol{U} + \mathbf{j}\boldsymbol{V} + \mathbf{k}\boldsymbol{W}$
$\mathbf{H}_{G} = \mathbf{i}H_{\xi} + \mathbf{j}H_{\eta} + \mathbf{k}H_{\zeta}$	$\mathbf{H}_{G} = \mathbf{i}H_{x} + \mathbf{j}H_{y} + \mathbf{k}H_{z}$	$\mathbf{H}_{G} = \mathbf{i}H_{x'} + \mathbf{j}H_{y'} + \mathbf{k}H_{z'}$
$\boldsymbol{\omega} = \mathbf{i}\omega_{\xi} + \mathbf{j}\omega_{\eta} + \mathbf{k}\omega_{\zeta}$	$\boldsymbol{\omega} = \mathbf{i}p + \mathbf{j}q + \mathbf{k}r$	$\omega = i\dot{\Phi} + j\dot{\Theta} + k\dot{\Psi}$
$\omega_F = \dot{\phi}\cos\theta\cos\psi - \dot{\theta}\sin\psi$	$p = \dot{\phi} - \dot{\psi}\sin\theta$	$\dot{\Phi} = \dot{\phi}\cos\theta$
$\omega_n = \dot{\phi}\cos\theta\sin\psi + \dot{\theta}\cos\psi$	$q = \dot{\theta}\cos\phi + \dot{\psi}\sin\phi\cos\theta$	$\dot{\Theta} = \dot{\theta}$
$\omega_{\zeta} = \dot{\psi} - \dot{\phi}\sin\theta$	$r = \dot{\psi}\cos\phi\cos\theta - \dot{\theta}\sin\phi$	$\dot{\Psi} = \dot{\psi} - \dot{\phi}\sin heta$
Translational Motions and Forces	Translational Motions and Forces	Translational Motions and Forces
$m\ddot{\xi}_G = F_{\xi}$	$m(\dot{u}+wq-vr) = X$	$m(\dot{U}-V\dot{\psi}) = X'$
$m\ddot{\eta}_G = F_\eta$	$m(\dot{v}+ur-wp) = Y+mg\sin\phi$	$m(\dot{V}+U\dot{\psi}) = Y'$
$m\ddot{\zeta}_G = F_{\zeta} + mg$	$m(\dot{w} + vp - uq) = Z + mg\cos\phi$	$m\dot{W} = Z' + mg$
Rotational Motions and Moments	Rotational Motions and Moments	Rotational Motions and Moments
$I_{xx}\ddot{\phi} - I_{xx}\dot{ heta}\dot{\psi} = G_{\xi}$	$I_{xx}\dot{p} = K$	$I_{xx}\ddot{\phi}-I_{xx}\dot{\theta}\dot{\psi} = K'$
$I_{yy}\ddot{\theta} + I_{xx}\dot{\psi}\dot{\phi} = G_{\eta}$	$I_{yy}\dot{q} - (I_{xx} - I_{xx})rp = M$	$I_{yy}\ddot{\theta} + I_{xx}\dot{\psi}\dot{\phi} = M'$
$I_{zz}\ddot{\psi}-I_{xx}\dot{\phi}\dot{\theta} = G_{\zeta}$	$I_{xx}\dot{r} - (I_{xx} - I_{yy})pq = N$	$I_{xx}\ddot{\psi}-I_{xx}\dot{\phi}\dot{\theta} = N'$
where	where	where
$I_{yy} \cong I_{xx}, I_{xx} \cong 0, \theta \cong 0, \psi \cong 0$	$I_{yy} \cong I_{zz}, I_{xz} \cong 0, \theta \cong 0$	$I_{yy} \cong I_{xx}, I_{xx} \cong 0, \theta \cong 0$

船体に働く流体の慣性力及び粘性による力,そして波の運動に基づく力に大別できる。これらの流体力は,従来から 操縦性と復原性及び耐航性の分野でそれぞれ分析的に取扱 われ,その主要項は理論的又は実験的推定法が示されてい るので,本論ではこれらの結果を用いて Horizontal Body Axes に関する流体力を概念的に記述することにする。

静水圧を含むフルード・クリロフの力

水面に固定した Earth Fixed Axes $O-\xi$, η , $\zeta O, \xi$ 方向 に位相速度 c をもって進行している規則波中に, 船が ξ 軸 と偏角 ϕ をもって浮かんでいるとき, その重心 G の座標 を ξ_c , ζ_c とすれば, 時刻 t における振幅 a, 波数 k の波形 ζ_w は Horizontal Body Axes G-x', y', z' を用いて

$$\zeta_{w} = -\zeta_{c} + x'\theta + a\cos k(\xi_{c} + x'\cos\psi - y'\sin\psi - ct)$$
(44)

また, 船体没水部に働く静水圧を含む波圧
$$p$$
 は
 $p = \rho g(\zeta_c - x' \theta + z')$
 $- \rho g a e^{-kd} \cos k(\xi_c + x' \cos \psi - y' \sin \psi - ct)$

(45)

のように記述することができる。ここで、 ρ は流体の密度、 g は重力加速度、 θ は船のトリム角である。従って、船体没 水部に働くフルード・クリロフの力 $X_{F,K}(\zeta_{C}, \phi, \theta, \phi), Y_{F,K}(\zeta_{C}, \phi, \theta, \phi), Y_{F,K}(\zeta_{C}, \phi, \theta, \phi), Z_{F,K}(\zeta_{C}, \phi, \theta, \phi) 及 び そ の モーメント K_{F,K}(\zeta_{C}, \phi, \theta, \phi), M_{F,K}(\zeta_{C}, \phi, \theta, \phi) は フ ル ー$ ド・クリロフの仮説²⁷⁾ に従って次式のように求めることができる。

$$\begin{aligned} X'_{F.\kappa}(\zeta_{G}, \phi, \theta, \psi) &\equiv -\iiint_{\nu} \frac{\partial p(F.K)}{\partial x'} dV \\ &\cong \rho g \theta \int_{L} A(x) \mathrm{d}x - \rho g \cos \psi \int_{L} F(x) A(x) \sin k(\xi_{G} + x \cos \psi - ct) \mathrm{d}x \\ Y'_{F.\kappa}(\zeta_{G}, \phi, \theta, \psi) &= -\iiint_{\nu} \frac{\partial p(F.K)}{\partial y'} \mathrm{d}V \\ &\cong \rho g \sin \psi \int_{L} F(x) A(x) \sin k(\xi_{G} + x \cos \psi - ct) \mathrm{d}x \\ Z'_{F.\kappa}(\zeta_{G}, \phi, \theta, \psi) &= -\iiint_{\nu} \frac{\partial p(F.K)}{\partial z'} \mathrm{d}V \end{aligned}$$

波浪中の操縦運動を記述する新しい座標系とその運動方程式

$$\cong -\rho g \int_{L} A(x) dx -\rho g \int_{L} F(x) A(x) \cos k (\xi_{c} + x \cos \psi - ct) dx$$
(46)

及び

$$K_{F.K}'(\zeta_{G}, \phi, \theta, \psi) = -\iiint_{V} \left[y' \frac{\partial p(F.K)}{\partial z'} - z' \frac{\partial p(F.K)}{\partial y'} \right] dV \cong -\rho g \int_{L} y'_{b} A(x) dx$$

$$-\rho g \sin \psi \int_{L} F(x) A(x) z'_{b}$$

$$\sin k(\xi_{G} + x \cos \psi - ct) dx$$

$$M_{F.K}'(\zeta_{G}, \phi, \theta, \psi) = -\iiint_{V} \left[z' \frac{\partial p(F.K)}{\partial x'} - x' \frac{\partial p(F.K)}{\partial z'} \right] dV \cong \rho g \int_{L} x A(x) dx$$

$$+\rho g \int_{L} F(x) A(x) x \cos k(\xi_{G} + x \cos \psi - ct) dx$$

$$N_{F.K}'(\zeta_{G}, \phi, \theta, \psi) = -\iiint_{V} \left[x' \frac{\partial p(F.K)}{\partial y'} - y' \frac{\partial p(F.K)}{\partial x'} \right] dV \cong \rho g \sin \psi \int_{L} F(x) A(x) x$$

$$\sin k(\xi_{G} + x \cos \psi - ct) dx$$

(47)

ここで、p(F.K)船体没水部に働く圧力、Vは船体没水 部体積、A(x)は船体没水部各断面積、B(x)は船幅、dは 喫水、 $y'_{B(x)}, z'_{B(x)}$ は没水部断面の面積重心の座標及びF(x)は波の圧力勾配の係数で次式のように与えられる。

$$F(x) = ak \frac{\sin\left(k\frac{B(x)}{2}\sin\psi\right)}{k\frac{B(x)}{2}\sin\psi} e^{-kd(x)}$$
(48)

流体の慣性力

船体運動の反力として船体に働く流体の慣性力 \mathbf{F}_{B} 及び そのモーメント \mathbf{G}_{B} は船体まわりの流れを表す速度ポテン シャル ϕ_{B} を用いて次式¹¹¹⁷ のように表すことができる。

$$\mathbf{F}_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \mathbf{n} dS + \mathbf{k} \, \dot{\Psi} \times \iint_{S_{B}} \rho \phi_{B} \mathbf{n} dS \qquad (49)$$
$$\mathbf{G}_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} (\mathbf{r} \times \mathbf{n}) dS + \mathbf{k} \, \dot{\Psi} \qquad (49)$$
$$\times \iint_{S_{B}} \rho \phi_{B} (\mathbf{r} \times \mathbf{n}) dS + \mathbf{V}_{C} \times \iint_{S_{B}} \rho \phi_{B} \mathbf{n} dS$$

ここで V_c 及び ψ は船体重心の並進速度ベクトル及び a' 軸まわりの角速度, r は位置を表す距離, n は船体表面に垂直な法線ベクトルで, それぞれ次式のように与えられる。

$$\mathbf{V}_{c} = \mathbf{i}U + \mathbf{j}V + \mathbf{k}W$$

$$\omega = \mathbf{i}\dot{\phi} + \mathbf{j}\dot{\phi} + \mathbf{k}\dot{\Psi}$$

$$\mathbf{r} = \mathbf{i}x' + \mathbf{j}y' + \mathbf{i}z'$$

$$\mathbf{n} = \mathbf{i}n_{x'} + \mathbf{j}n_{y'} + \mathbf{k}n_{z'}$$
(50)

- いま,速度ポテンシャル $\phi_B \ge 6$ 方向の運動の関数として $\phi_B = U\phi_1 + V\phi_2 + W\phi_3 + \dot{\phi}\phi_4 + \dot{\phi}\phi_5 + \dot{\Psi}\phi_6$ (51)
- とすれば,流体の慣性力の3軸方向の成分 X'a, Y'a, Z'a 及び

そのモーメント $K_{b,}$ $M_{b,}$ N_{b} を(49)式より次式のように求 めることができる。

$$X'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{1}}{\partial n} \mathrm{d}S - \dot{\Psi} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{2}}{\partial n} \mathrm{d}S$$
$$Y'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{2}}{\partial n} \mathrm{d}S + \dot{\Psi} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{1}}{\partial n} \mathrm{d}S \qquad (52)$$
$$Z'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{3}}{\partial n} \mathrm{d}S$$

及び

$$K'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{4}}{\partial n} dS - \dot{\Psi} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{5}}{\partial n} dS + \iint_{S_{B}} \rho \phi_{B} \left(V \frac{\partial \phi_{3}}{\partial n} - W \frac{\partial \phi_{2}}{\partial n} \right) dS M'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{5}}{\partial n} dS + \dot{\Psi} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{4}}{\partial n} dS + \iint_{S_{B}} \rho \phi_{B} \left(W \frac{\partial \phi_{1}}{\partial n} - U \frac{\partial \phi_{3}}{\partial n} \right) dS N'_{B} = \frac{\partial}{\partial t} \iint_{S_{B}} \rho \phi_{B} \frac{\partial \phi_{3}}{\partial n} dS + \iint_{S_{B}} \rho \phi_{B} \left(U \frac{\partial \phi_{2}}{\partial n} - V \frac{\partial \phi_{1}}{\partial n} \right) dS$$
(53)

ここで(52)式及び(53)式を演算すると,運動の関数として 船体に働く流体の慣性力を求めることができる。この演算 結果は極めて多くの項になるので,その主要項として船体 の直立時の値で近似すると次式を得る。

$$\begin{aligned} X'_{b} &= -m_{x}U - m_{x}z_{c}\theta + (m_{x} - m_{z})W\theta \\ &+ m_{z}x_{c}\dot{\theta}^{2} + m_{y}V\dot{\phi} - (m_{x} + m_{y})z_{c}\dot{\phi}\dot{\phi} + m_{y}x_{c}\dot{\phi}^{2} \\ &\cong -m_{x}\dot{U} - m_{x}z_{c}\dot{\theta} - m_{z}W\dot{\theta} + m_{y}V\dot{\phi} \\ Y'_{b} &= -m_{y}\dot{V} + m_{y}z_{c}\dot{\phi} + (m_{y} - m_{z})x_{c}\dot{\theta}\dot{\phi} \\ &- (m_{y} - m_{z})W\dot{\phi} - m_{y}x_{c}\dot{\phi} - m_{x}U\dot{\phi} \\ &- (m_{x} + m_{y})z_{c}\dot{\theta}\dot{\phi} \\ &\cong -m_{y}\dot{V} + m_{y}z_{c}\dot{\phi} - m_{y}x_{c}\dot{\phi} - m_{x}U\dot{\phi} \\ Z'_{b} &= -m_{z}\dot{W} + m_{x}x_{c}\dot{\theta} - (m_{z} - m_{x})U\dot{\theta} + m_{y}z_{c}\dot{\phi}^{2} \\ &- (m_{y} - m_{z})V\dot{\phi} - (m_{y} - m_{z})x_{c}\dot{\phi}\dot{\phi} + m_{x}z_{c}\dot{\theta}^{2} \\ &\cong -m_{z}\dot{W} + m_{z}x_{c}\ddot{\theta} - (m_{z} - m_{x})U\dot{\theta} + m_{y}z_{c}\dot{\phi}^{2} \end{aligned}$$

及び

$$K'_{B} = -J_{xx}\ddot{\phi} + m_{y}z_{G}\dot{V} + (m_{y} - m_{z})WV$$

$$-(m_{y} - m_{z})x_{G}\dot{\theta}V + m_{x}z_{C}U\dot{\phi} + (m_{y} - m_{z})x_{C}W\dot{\phi}$$

$$+J_{xx}\dot{\theta}\dot{\phi} + (J_{yy} - J_{zz})\dot{\theta}\dot{\phi}$$

$$\cong -J_{xx}\ddot{\phi} + m_{y}z_{G}\dot{V} + J_{xx}\dot{\theta}\dot{\phi} + m_{x}z_{C}U\dot{\phi}$$

$$M'_{B} = -J_{yy}\ddot{\theta} + m_{z}x_{C}\dot{W} - (m_{x} - m_{z})UW - m_{x}z_{G}\dot{U}$$

$$+ m_{y}z_{G}V\dot{\phi} - J_{xx}\dot{\phi}\dot{\phi} - (J_{yy} - J_{zz})\dot{\phi}\dot{\phi}$$

$$+ (m_{y} - m_{z})x_{C}V\dot{\phi}$$

$$\cong -J_{yy}\ddot{\theta} + m_{z}x_{C}\dot{W} - (m_{x} - m_{z})UW$$

$$- m_{x}z_{C}\dot{U} - J_{xx}\dot{\phi}\dot{\phi}$$

$$N'_{B} = -J_{zz}\ddot{\phi} - m_{y}x_{G}U\dot{\phi} - m_{y}x_{G}\dot{V} + (m_{x} - m_{y})UV$$

$$+ (m_{x} - m_{y})z_{C}\dot{\theta}V - (J_{yy} - J_{zz})\dot{\theta}\dot{\phi} + J_{xx}\dot{\theta}\dot{\phi}$$

$$- (m_{x} - m_{y})z_{C}U\dot{\phi} - (m_{y} - m_{z})x_{G}W\dot{\phi}$$

(54)

(55)

$$\cong -J_{zz}\dot{\psi} - m_y x_G U\dot{\psi} - m_y x_G \dot{V} - m_y UV$$

+ $J_{xx}\dot{\theta}\dot{\phi} + m_y z_G U\dot{\phi}$

ここで、(54)及び(55)式の中には造波減衰力及び粘性によ る力は含まれていない。(52)及び(53)式から求めた流体の 慣性力は付加質量力と呼ばれ、一般的には運動の周波数の 関数となるので、これを定量的に求めるにはストリップ・ メソッド¹²⁾等によって計算しなければならない。この場 合,船の前進,横流れ及び回頭運動に関与する付加質量。) mx, my 及び付加慣性モーメント3) Jzz は船の操縦運動の応 答周波数が極めて低いので鏡像の理によって周波数が零の ときの値を用いることができる。しかし、上下揺及び縦揺 に関与する付加質量 mz 及び付加慣性モーメント Jyy は船 の縦運動の周波数が比較的高周波数域まで応答するので、 これを含むインパルス応答関数を用いて時間領域の畳み込 み積分によって記述するか又は田才の方法6)による固有周 波数近傍の値で代表することになる。また、横揺について は従来から横揺固有周波数近傍の値を用いる方法が定着し ている。このような従来からの経過に従って流体の慣性及 び粘性による力を次のように操縦運動、横揺及び縦運動に 分けて記述するのが現段階では現実的方法と考えられる。 操縦運動に関与する流体力とモーメント

X'(Manoeuvring)

$$= T(1-t) - R - X_{\nu\phi}V\dot{\phi} - m_x \dot{U}$$

- $m_x z_G \ddot{\theta} - m_z W\dot{\theta} + m_y V\dot{\phi}$
+ $X'_{F,K}(\zeta_G, \phi, \theta, \phi) - \frac{1}{2}\rho A_R U_R^2 f_a \sin a_R \sin \delta$

Y'(Manoeuvring)

$$= -Y_{V}V + Y_{\dot{\psi}}\dot{\psi} - m_{y}\dot{V} + m_{y}z_{G}\ddot{\phi}$$
$$- m_{y}x_{G}\ddot{\psi} - m_{x}U\dot{\psi} + Y_{F.K}'(\zeta_{G}, \phi, \theta, \psi)$$
$$+ Y_{D.F}(\dot{\zeta}_{w}, \ddot{\zeta}_{w}) - \frac{1}{2}\rho A_{R}U_{R}^{2}f_{a}\sin\alpha_{R}\cos\delta$$

$$N'(Manoeuvring) = -N_{V}V - N_{\dot{a}}\dot{\psi} - I_{zz}\ddot{\psi}$$

$$= -N_{V}V - N_{\dot{\phi}}\dot{\phi} - J_{zz}\ddot{\phi} - m_{y}x_{c}U\dot{\phi}$$

$$- m_{y}x_{c}\dot{V} - m_{y}UV + J_{xx}\dot{\theta}\dot{\phi} + m_{y}z_{c}U\dot{\phi}$$

$$+ N_{F.K}'(\zeta_{c}, \phi, \theta, \phi) + N_{D.F}(\dot{\zeta}_{w}, \dot{\zeta}_{w})$$

$$+ \frac{1}{2}\rho A_{R}l_{R}U_{k}^{2}f_{a}\sin a_{R}\cos \delta$$

(56)

ここで、Tはスラスト、tは推力減少率、Rは抵抗、 A_R 、 U_R 、 f_a 及び α_R^{19} は舵面積、舵有効流入速度、舵の圧力勾配及び 舵有効流入角、 l_R は船体重心から舵までの水平距離、 δ は 舵角、 $Y_{D.F}(\zeta_w, \zeta_w)$ 及び $N_{D.F}(\zeta_w, \zeta_w)^{12}$ は波によるディ フラクション力とそのモーメント、 X_{Vi} は横流れ及び回頭 運動による抵抗微係数である。また Y_V 、 Y_i 、 N_V 及び N_i は 横流れ及び回頭運動の微係数で、次のような井上の実用 式¹⁹、または模型試験によって推定する。尚、これらの微係 数に対する波の影響は現在のところ不明である。

$$Y_{\nu} = \left[\frac{\pi}{2} \left(\frac{2d}{L}\right) + 1.4 C_{B} \frac{B}{L}\right] \frac{1}{2} \rho L dU$$

$$N_{\nu} = \frac{2d}{L} \frac{1}{2} \rho L^{2} dU$$

$$Y_{\psi} = \frac{\pi}{4} \left(\frac{2d}{L}\right) \frac{1}{2} \rho L^{2} dU$$

$$N_{\psi} = \frac{2d}{L} \left(0.54 - \frac{2d}{L}\right) \frac{1}{2} \rho L^{3} dU$$
(57)

ここで、 C_B は方形係数である。また横方向の付加質量 m_y 及び回頭方向の付加慣性モーメント J_{zz} はルイス・フォーム断面の慣性係数 $C(x)^{12}$ を用いて次のように推定できる。

$$m_{y} = \frac{\pi}{2} \rho \int_{L} d^{2}C(x) \mathrm{d}x$$

$$J_{zz} = \frac{\pi}{2} \rho \int_{L} x^{2} d^{2}C(x) \mathrm{d}x$$
(58)

横揺運動に関与するモーメント

$$K'(\text{Rolling}) = -J_{xx}\ddot{\phi} - K_{\phi}\dot{\phi} + m_y z_C \dot{V}$$

 $+J_{xx}\dot{\theta}\dot{\phi} + m_x z_C U\dot{\phi} + K'_{F,K}(\zeta_C, \phi, \theta, \phi)$
 $+ \frac{1}{2}\rho A_R h_R U_R^2 f_a \sin a_R \cos \delta$
(59)

ここで、 h_R は船体重心から舵 までの垂直距離、 K_ϕ は横揺の減衰係数で、 F_n をフルード数、 T_ϕ を横揺固有周期、 N_{20} を減滅係数、 ϕ_m を平均横揺角とすれば、高橋の近似式¹³⁾ から次のようになる。

$$K_{\phi} = 2\alpha_{e}(I_{xx} + J_{xx})\{1 + 0.8(1 - e^{-10F_{n}})\}$$

$$\alpha_{e} = \frac{2}{T_{\phi}}N_{20}\phi_{m}$$
(60)

縦運動に関与する流体力とモーメント
Z'(Seakeeping)

$$= -m_z \dot{W} - Z_w W - Z_{\dot{\theta}} \ddot{\theta} - Z_{\dot{\theta}} \theta - Z_{\theta} \theta + m_y z_G \dot{\phi}^2 + Z'_{F.K}(\zeta_G, \phi, \theta, \phi) + Z_{D.F}(\dot{\zeta}_w, \ddot{\zeta}_w)$$
M'(Seakeeping)

$$= -J_{yy} \ddot{\theta} - M_{\dot{\theta}} \dot{\theta} - M_{\theta} \theta - M_{\dot{W}} \dot{W} - M_w W - m_x z_G \dot{U} - J_{xx} \dot{\phi} \dot{\phi} + M'_{F.K}(\zeta_G, \phi, \theta, \phi) + M_{D.F}(\dot{\zeta}_w, \dot{\zeta}_w)$$
(61)

ここで, $Z_{D,F}(\dot{\zeta}_{w}, \ddot{\zeta}_{w}) \ge M_{D,F}(\dot{\zeta}_{w}, \ddot{\zeta}_{w})$ は波によるディフ ラクション力とそのモーメントで,運動方程式の中の各係 数の内訳は次式⁵⁾⁶⁾¹⁰⁾¹²⁾

$$Z_{w} = \int N(x) dx$$

$$Z = -m_{z}x_{G}$$

$$Z = -\int N(x)x dx + (m_{z} - m_{x})U$$

$$Z_{\theta} = U \int N(x) dx$$

$$M = \int N(x)x^{2} dx$$
(62)

波浪中の操縦運動を記述する新しい座標系とその運動方程式

$$M_{\theta} = -U \int N(x) x dx$$
$$M_{\dot{w}} = -m_z x_G$$
$$M_w = -\int N(x) x dx - (m_z - m_x) U$$

で与えられ、造波減衰係数Nと付加質量 m_z はストリッ プ・メソッドなどから推定する。この場合、 M_θ は従来から 耐航性の分野で慣用されている係数と異なるので、Table 2に両者の比較を示す。ここで、基本的な差異は M_θ の前進 速度による項である。

 Table 2
 Coefficient of Traditional and New Equation of Sea-Keeping Motion

Cofficient	Horizontal Body Axes	Earth Fixed Axes
Z _Ŵ	$-m_z$	m _z
Zw	$\int N(x) \mathrm{d}x$	$\int N(x) \mathrm{d}x$
Zõ	$-m_z x_G$	$-m_x x_G$
Zè	$-\int N(x)x\mathrm{d}x+(m_x-m_x)U$	$-\int N(x)xdx + m_xU$
Zθ	$U\int N(x)\mathrm{d}x$	$Z_{F.K} + U \int N(x) \mathrm{d}x$
Mö	- J _{vv}	-J _{vv}
Mà	$\int N(x)x^2 \mathrm{d}x$	$\int N(x)x^2 \mathrm{d}x$
M ₈	$-U\int N(x)xdx$	$M_{F.K} - U \int N(x) x \mathrm{d}x - m_z U^2$
M _W	$-m_z x_G$	$-m_x x_G$
Mw	$-\int N(x)x\mathrm{d}x-(m_z-m_z)U$	$-\int N(x)x\mathrm{d}x-m_{z}U$

4. 数值計算例

前節で求めた流体力とそのモーメントを(23)及び(25)式 に代入して,整理すると操縦運動,横揺運動及び縦運動そ れぞれについて次式を得る。

操縱運動方程式

$$(m+m_x)\dot{U} - (m+m_y)V\dot{\psi} + X_{V\dot{\psi}}V\dot{\psi} + m_xz_G\ddot{\theta} + m_zW\dot{\theta} = T(1-t) - R + X'_{F.K}(\zeta_G, \phi, \theta, \psi) - \frac{1}{2}\rho A_R U_R^2 f_a \sin a_R \sin \delta$$

$$(m+m_{y})\dot{V} + Y_{v}V + m_{y}x_{c}\ddot{\psi} + (m+m_{x})U\dot{\psi} - Y_{\dot{\psi}}\dot{\psi}$$
$$-m_{y}z_{c}\ddot{\phi} = Y_{F.K}'(\zeta_{c}, \phi, \theta, \psi) + Y_{D.F}(\dot{\zeta}_{w}, \ddot{\zeta}_{w})$$
$$-\frac{1}{2}\rho A_{R}U_{R}^{2}f_{a}\sin \alpha_{R}\cos \delta$$
$$(I_{zz}+J_{zz})\ddot{\psi} + (N\psi + m_{y}x_{c}U)\dot{\psi} + m_{y}x_{c}\dot{V}$$
$$+N_{v}V - (I_{xx}+J_{xx})\dot{\theta}\dot{\phi} - m_{y}z_{c}U\dot{\phi}$$

(63)

$$= N_{F,K}(\zeta_G, \phi, \theta, \psi) + N_{D,F}(\dot{\zeta}_{\psi}, \ddot{\zeta})$$

$$+\frac{1}{2}\rho A_{R}l_{R}U_{R}^{2}f_{\alpha}\sin\alpha_{R}\cos\delta$$

 $(I_{xx}+J_{xx})\ddot{\phi}+K\phi\dot{\phi}-(I_{xx}+J_{xx})\dot{\theta}\dot{\phi}$

$$-m_{x}z_{G}U\dot{\psi} - m_{y}z_{G}\dot{V} = K_{F.K}'(\zeta_{G}, \phi, \theta, \psi)$$

$$+\frac{1}{2}\rho A_{R}h_{R}U_{R}^{2}f_{a}\sin\alpha_{R}\cos\delta$$
(64)

217

縦運動方程式

$$(m+m_{z})\dot{W} + Z_{W}W + Z\ddot{\theta}\dot{\theta}$$

$$+ Z_{\dot{\theta}}\dot{\theta} + Z_{\theta}\theta - m_{y}z_{G}\dot{\phi}^{2}$$

$$= Z'_{F.K}(\zeta_{G}, \phi, \theta, \psi) + Z_{D.F}(\dot{\zeta}_{w}, \dot{\zeta}_{w}) + mg$$

$$(I_{yy} + J_{yy})\ddot{\theta} + M_{\dot{\theta}}\dot{\theta} + M_{\theta}\theta + M_{\dot{W}}\dot{W}$$

$$+ M_{W}W + m_{x}z_{G}\dot{U} + J_{xx}\dot{\phi}\dot{\phi}$$

$$= M'_{F.K}(\zeta_{G}, \phi, \theta, \psi) + M_{D.F}(\dot{\zeta}_{w}, \dot{\zeta}_{w})$$
(65)

さて、Horizontal Body Axes に関する運動方程式(63)、 (64)及び(65)式の計算内容を検討するために、Fig. 2 に示 す 4990 GT 型コンテナ船の 35°旋回試験及び 10°-10° Z_{ig} - Z_{ag} 試験のシミュレーション計算を静水中と波浪中につ いて実施した。

まず,35°旋回試験の旋回航跡とその回頭角速度のタイムヒストリーについてのシミュレーション計算結果を Fig.3とFig.4に示した。ここで,波浪中の旋回試験は追波

Fig. 2 Body Plan of 4990GT Container Ship

Fig. 3 Turning tests of a ship in waves of 115 m

Fig. 4 The time history of turning rate of ship in waves

Fig. 5 Zig-Zag tests of a ship in waves of 115 m length at hesding angle zero degree

の状態から始め, 波長 λは 115 m とし, 波高 H を 2.3 m と 3.45 m の場合について静水中のそれと比較して示してあ る。

次に、10°-10° Z_{ig} - Z_{ag} 試験の回頭角 ϕ , 縦及び横傾斜角 θ , ϕ のタイムヒストリーのシミュレーション計算結果を 波と船との偏角が 0°、30°及び 60°の場合について Fig. 5、Fig. 6 及び Fig. 7 に示した。ここで、波浪中の Z_{ig} - Z_{ag} 試験は波長 λ は 115 m とし、波高 H を 2.3 m と 3.45 m の 場合について静水中のそれと比較して示してある。Fig. 3 から Fig. 7 までのシミュレーション試計算結果より、静水 中の値に比べて波浪中の値がそれなりに変動していること が分かる。このことより、Horizontal Body Axes に関す る運動方程式(63)、(64)及び(65)式は今後、波浪中の操縦 運動を分析的に検討するための運動方程式として期待でき る。

Fig. 6 Zig-Zag tests of a ship in waves of 115 m length at hesding angle 30 degrees

5. 結 語

波浪中で操縦されている船の運動力学的性質をさらに明 らかにするために,波浪中の操縦運動を合理的に記述する 座標系について分析的に検討し,次の結果を得た。

- この目的のために、新しい座標系として Horizontal Body Axes System を導入し、この座標系に関する 運動方程式を導いた。
- (2) この座標系は従来の General Body Axes System と Earth Fixed Axes System を組み合わせた形と なっており、この座標系に関する流体力は従来から 操縦性、復原性及び耐航性の各分野で発展して来た 理論及び実験的な数学モデルを用いて記述すること ができる。
- (3) ここで導いた運動方程式の計算内容を検討するため に実施した試計算結果より,波浪中の操縦運動を分

Fig. 7 Zig-Zag tests of a ship in waves of 115 m length at hesding angle 60 degrees

析的に扱う運動方程式として利用できそうである が,各係数の推定法については今後さらなる研究が 必要である。

本研究は、平成4年度文部省科学研究費及び日本造船研 究協会 RR 24 研究部会の補助を受けた。関係各位に謝意を 表わす。

参考文献

- 1) Lamb, Sir H., "Hydrodynamics", 6th Edition, Cambridge, 1932
- Davidson, K., Schiff, L., "Turning and Course-Keeping Qualities of Ships", Trans. of Soc.of Naval Arch. and Marine Engineers, 1964
- 3) 元良誠三, "見掛質量について", 会報 87 号, 1950
- 4) 元良誠三,"施回中の船に働く見掛の力と旋回初期運動について、会報95号,1954
- Korvin-Kroukovsky, B. V., "Investigation of Ship Motions in Regular Waves", Trans.SNAME, Vol. 63, 1955
- Tasai, F., "Damping Force and Added Mass of Ships Heaving and Pitching (Continued)", Trans. of the West-Japan Soc. of Naval Arch., Vol. 21, 1961
- Paulling, J. R., The Transverse Stability of a Ship in a Longitudinal Seaway, J. of Ship Research, SNAME, Vol. 14, No. 4, March, 1961
- Du Cane, P., Goordrich, gG. J., "The Following Sea, Broaching and Surging", Trans.RINA, Vol. 104, April, 1962
- 9) "第1回操縦性シンポジウムテキスト", 1964
- 10) Vassilopoulos, L., Mandel, P., "A New Appraisal of Strip Theory", Fifth Symp. on Naval Hydrodynamics, Septemper, 1964
- Lewis, E. V., "The Motion of Ships in Waves", Principles of Naval Architecture (edited by J. B. Comstock), SNAME, 1967
- 12) "第1回耐航性に関するシンポジウム, 1969
- 13) Takahashi, T., "Mechanism of Rolling and Application", (in Japanese), Report of Mitsubishi Heavy Industry Nagasaki Technical Institute, No. 2842, 1969, Unpublished
- 14) Vugts, J. H., "The Hydrodynamic Forces and Ship Motions in Oblique Waves", Ship-bbuilding Laboratory, Delft Univ. of Technology, Report No. 150S, December, 1971
- 15) Price, W. G., "The Stability of a Ship in a Simple Sinusocal Wave", The Journal of Mechanical Engineering Science, Vol. 14, No. 7, 1972
- 16) Paulling, J. R., Oakley, and Wood, P. A. "Ship Capsizing in Heavy Seas: The Correlation of theory and Experiments". International Conference on Stability of Ships and Ocean Vehicles. University of Strathclyde, 1975
- Newman, J. N., "Marine Hydrodynamics", MIT Press, 1977
- 18) 井上正祐, 貴島勝郎, 森山文雄, "トリム時の船体操

日本造船学会論文集 第173号

縦微係数の推定",西部造船会会報,第55号,1978 19) "第3回操縦性シンポジウムテキスト",1964

- 20) Renilson, M. R., Driscoll, A., "Broaching-An Investigation into the Loss of Directional Control Severe Following Seas", Spring Meeting RINA, 1981
- Motora, S., Fujino, M., Fuwa, T., "On the Mechanism of Broaching-to Phenomena", STABILITY '82, 1982
- 22) Ohkusu, M., "Prediction of Wave Forces in a Ship Running in a Following Waves with Vory Low Encounter Frequency", J. of Soc. of Naval Arch. Vol. 159, 1986
- 23) Hamamoto, M., Akiyoshi, T., "Study on Ship Motions and Capsizing in Following Seas (1st Report)", J. of Soc. of Naval Arch. Vol. 163, 1988
- 24) Hamamoto, M., Shirai, T., "Study on Ship Motions and Capsizing in Following Seas (2nd Report)", J. of Soc. of Naval Arch. Vol. 165, 1989
- 25) Jan O. de Kat, J. Randolph Paulling, "The Simu-

lation of Ship Motions and Capsizing in Severe Seas", The Society of Naval Architects and Marine Engineers, 1989

- 26) M. S, Chislet, "The Addition of a Heel-Roll Servo Mechanism to the DMI Horizontal Planar Motion Mechanism", MARSIM and ICSM 90 Tokyo, Japan, 1990
- 27) Hamamoto, M., Kim, Y. S., Uwatoko, K., "Study on Ship Motions and Capsizing in Following Seas (Final Report)", J. of Soc. of Naval Arch. Vol. 170, 1991
- 28) 浜本剛実,司恭彦,"斜め追波中の船体に働く横力と 回頭モーメントの分析",日本造船学会。第171号, 1992
- 29) 浜本剛実,金潤洙,松田秋彦,小谷博之,"斜め追波 中の船の転覆とその原因の分析",日本造船学会。第 172 号,1992
- 30) Hamamoto, M., Saito, K., "Time-domain Analysis of Ship Motions in following Waves", 11th Austrarian Fluid Mechanis Conf. 1992

220